Topic: Arthropod Biodiversity: Ecological and Functional Aspects
Author Contributions
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Culliney, T.W. Role of arthropods in maintaining soil fertility. Agriculture 2013, 3, 629–659. [Google Scholar] [CrossRef]
- Menta, C.; Remelli, S. Soil health and arthropods: From complex system to worthwhile investigation. Insects 2020, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.I.; Del Toro, I.; Goulson, D.; Ibanez, S.; Landis, D.A. Research trends in ecosystem services provided by insects. Basic. Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.H.; Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2014, 2, 26–32. [Google Scholar] [CrossRef]
- Griffiths, H.M.; Ashton, L.A.; Parr, C.L.; Eggleton, P. The impact of invertebrate decomposers on plants and soil. New Phytol. 2021, 231, 2142–2149. [Google Scholar] [CrossRef]
- Ghannem, S.; Touaylia, S.; Boumaiza, M. Beetles (Insecta: Coleoptera) as bioindicators of the assessment of environmental pollution. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 456–464. [Google Scholar] [CrossRef]
- Cavaliere, F.; Brandmayr, P.; Giglio, A. DNA Damage in haemocytes of Harpalus (Pseudophonus) rufipes (De Geer, 1774) (Coleoptera, Carabidae) as an indicator of sublethal effects of exposure to herbicides. Ecol. Indic. 2019, 98, 88–91. [Google Scholar] [CrossRef]
- Naccarato, A.; Vommaro, M.L.; Amico, D.; Sprovieri, F.; Pirrone, N.; Tagarelli, A.; Giglio, A. Triazine herbicide and NPK fertilizer exposure: Accumulation of heavy metals and rare earth elements, effects on cuticle melanization, and immunocompetence in the model species Tenebrio molitor. Toxics 2023, 11, 499. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Z.; Song, L.; Farag, M.A. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J. Adv. Res. 2024, 57, 59–76. [Google Scholar] [CrossRef]
- Manfrin, C.; Souty-Grosset, C.; Anastácio, P.M.; Reynolds, J.; Giulianini, P.G. Detection and control of invasive freshwater crayfish: From traditional to innovative methods. Diversity 2019, 11, 5. [Google Scholar] [CrossRef]
- Manfrin, C.; Zanetti, M.; Stanković, D.; Fattori, U.; Bertucci-Maresca, V.; Giulianini, P.G.; Pallavicini, A. Detection of the Endangered Stone Crayfish Austropotamobius Torrentium (Schrank, 1803) and Its Congeneric A. Pallipes in Its Last Italian Biotope by EDNA Analysis. Diversity 2022, 14, 205. [Google Scholar] [CrossRef]
- Giglio, A.; Manfrin, C.; Zanetti, M.; Aquiloni, L.; Simeon, E.; Bravin, M.K.; Battistella, S.; Giulianini, P.G. Effects of X-ray irradiation on haemocytes of Procambarus clarkii (Arthropoda: Decapoda) males. Eur. Zool. J. 2018, 85, 26–35. [Google Scholar] [CrossRef]
- Manfrin, C.; Giglio, A.; Pallavicini, L.; Zampa, L.; Vecchiet, L.; Caputi, A.; Chiandetti, C.; Beorchia, A.; Vidimari, R.; Giulianini, P.G. Medium-term feasibility of the management of the invasive crayfish Procambarus clarkii with the sterile males release technique. Pest. Manag. Sci. 2021, 77, 2494–2501. [Google Scholar] [CrossRef]
- Peddio, S.; Sollai, G.; Podda, C.; Frau, G.; Palmas, F.; Sabatini, A.; Crnjar, R.; Solari, P. The success in the short-distance communication for mating does not depend on chemical signals in the crustacean decapod Procambarus clarkii (Girard, 1852): Mating behaviour in the red swamp crayfish. Adv. Oceanogr. Limnol. 2019, 10, 8617. [Google Scholar] [CrossRef]
- Solari, P.; Peddio, S.; Sollai, G.; Masala, C.; Podda, C.; Frau, G.; Palmas, F.; Sabatini, A.; Crnjar, R. Development of PVC dispensers for long-lasting release of attractants for the control of invasive crayfish populations. Diversity 2018, 10, 128. [Google Scholar] [CrossRef]
- Stathas, I.G.; Sakellaridis, A.C.; Papadelli, M.; Kapolos, J.; Papadimitriou, K.; Stathas, G.J. The Effects of insect infestation on stored agricultural products and the quality of food. Foods 2023, 12, 2046. [Google Scholar] [CrossRef]
- Belluco, S.; Bertola, M.; Montarsi, F.; Di Martino, G.; Granato, A.; Stella, R.; Martinello, M.; Bordin, F.; Mutinelli, F. Insects and public health: An overview. Insects 2023, 14, 240. [Google Scholar] [CrossRef]
- Olszewski, P.; Sparks, T.; Twerd, L.; Wiśniowski, B. Communities of digger wasps (Hymenoptera: Spheciformes) along a tree cover gradient in the cultural landscape of river Valleys in Poland. Insects 2024, 15, 88. [Google Scholar] [CrossRef]
- Wisniowski, B. Żądłówki z Rodzin Tiphiidae, Sapygidae, Mutillidae, Pompilidae, Eumenidae, Vespidae i Sphecidae (Hymenoptera: Aculeata) Ojcowskiego Parku Narodowego. Cz. II. Analiza Zgrupowań. Prądnik. Prace i Materiały Muzeum im. Prof. Wł. Szafera 2005, 15, 311–338. [Google Scholar]
- Munguia-Soto, E.O.; Golubov, J.; Mandujano, M.C. Bee Assemblage in the Southern Chihuahuan desert: The role of season, year, and trap color in abundance. Insects 2023, 14, 875. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Marín, F.J.; Montoya-Mendoza, J.; Salgado-Maldonado, G.; Lango-Reynoso, F.; del Castañeda-Chávez, M.R.; Ortiz-Muñiz, B. Diversity of freshwater macroinvertebrate communities in Los Tuxtlas, Veracruz, Mexico. Diversity 2024, 16, 103. [Google Scholar] [CrossRef]
- Tovar, H.L.; Correa, C.M.A.; Lumaret, J.-P.; López-Bedoya, P.A.; Navarro, B.; Tovar, V.; Noriega, J.A. Effect of antiparasitic management of cattle on the diversity and functional structure of dung beetle (Coleoptera: Scarabaeidae) assemblages in the Colombian Caribbean. Diversity 2023, 15, 555. [Google Scholar] [CrossRef]
- Nervo, B.; Tocco, C.; Caprio, E.; Palestrini, C.; Rolando, A. The effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 2014, 9, e107699. [Google Scholar] [CrossRef]
- Laliberte, E.; Wells, J.A.; DeClerck, F.; Metcalfe, D.J.; Catterall, C.P.; Queiroz, C.; Aubin, I.; Bonser, S.P.; Ding, Y.; Fraterrigo, J.M. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 2010, 13, 76–86. [Google Scholar] [CrossRef]
- García-Meseguer, A.J.; Villastrigo, A.; Mirón-Gatón, J.M.; Millán, A.; Velasco, J.; Muñoz, I. Novel microsatellite loci, cross-species validation of multiplex assays, and by-catch mitochondrial genomes on Ochthebius beetles from supratidal rockpools. Insects 2023, 14, 881. [Google Scholar] [CrossRef]
- Málik-Roffa, H.; Tőzsér, D.; Tóthmérész, B.; Magura, T. BugTracker: Software for tracking and measuring arthropod activity. Diversity 2023, 15, 846. [Google Scholar] [CrossRef]
- Sridhar, V.H.; Roche, D.G.; Gingins, S. Tracktor: Image-based automated tracking of animal movement and behaviour. Methods Ecol. Evol. 2019, 10, 815–820. [Google Scholar] [CrossRef]
- Rodriguez, A.; Zhang, H.; Klaminder, J.; Brodin, T.; Andersson, P.L.; Andersson, M. ToxTrac: A fast and robust software for tracking organisms. Methods Ecol. Evol. 2018, 9, 460–464. [Google Scholar] [CrossRef]
- Harmer, A.M.T.; Thomas, D.B. An R package for video tracking and analysing animal movement. Methods Ecol. Evol. 2019, 10, 1196–1202. [Google Scholar] [CrossRef]
- Flinte, V.; Pádua, D.G.; Durand, E.M.; Hodgin, C.; Khattar, G.; da Silveira, L.F.L.; Fernandes, D.R.R.; Sääksjärvi, I.E.; Monteiro, R.F.; Macedo, M.V.; et al. Variation in a Darwin wasp (Hymenoptera: Ichneumonidae) community along an elevation gradient in a tropical biodiversity hotspot: Implications for ecology and conservation. Insects 2023, 14, 861. [Google Scholar] [CrossRef] [PubMed]
- Gornostaev, N.G.; Ruchin, A.B.; Esin, M.N.; Lazebny, O.E.; Kulikov, A.M. Vertical distribution of fruit flies (Diptera: Drosophilidae) in deciduous forests in the center of European Russia. Insects 2023, 14, 822. [Google Scholar] [CrossRef] [PubMed]
- Manu, M.; Băncilă, R.I.; Onete, M. Effect of grazing management on predator soil mite communities (Acari: Mesotigmata) in some Subalpine grasslands from the Făgăraş Mountains—Romania. Insects 2023, 14, 626. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Gao, Y.-X.; Li, C.-Y.; Jin, Y.-L.; Yang, S.-Q.; Xia, J.-H.; Zhang, Y.-F.; Bu, Y.; Li, K. Effects of species invasion and inundation on the collembola community in coastal Mudflat Wetland from the perspective of functional traits. Insects 2023, 14, 210. [Google Scholar] [CrossRef]
- Song, X.; Ji, L.; Liu, G.; Zhang, X.; Hou, X.; Gao, S.; Wang, N. Patterns and drivers of aboveground insect diversity along ecological transect in temperate grazed steppes of Eastern Eurasian. Insects 2023, 14, 191. [Google Scholar] [CrossRef]
- Buras, A.; Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, M.; Cui, L.; Xu, J.; Dai, X.; Liu, X. Elevational Pattern of Leaf Mine Diversity on Quercus Variabilis Blume at Baotianman, Henan, China. Insects 2023, 14, 7. [Google Scholar] [CrossRef]
- Lotfollahi, P.; Mehri-Heyran, H.; Azimi, S.; de Lillo, E. Field and laboratory observations on the biology of Aceria angustifoliae with emphasis on emergence of overwintering mites. Insects 2023, 14, 633. [Google Scholar] [CrossRef]
- Lynikienė, J.; Gedminas, A.; Marčiulynas, A.; Marčiulynienė, D.; Menkis, A. Can Larix Sp. Mill. Provide suitable habitats for insects and lichens associated with stems of Picea abies (L.) H. Karst. in Northern Europe? Diversity 2022, 14, 729. [Google Scholar] [CrossRef]
- Anttonen, P.; Li, Y.; Chesters, D.; Davrinche, A.; Haider, S.; Bruelheide, H.; Chen, J.-T.; Wang, M.-Q.; Ma, K.-P.; Zhu, C.-D.; et al. Leaf nutritional content, tree richness, and season shape the caterpillar functional trait composition hosted by trees. Insects 2022, 13, 1100. [Google Scholar] [CrossRef]
- Nishida, R. Chemosensory basis of host recognition in butterflies—Multi-component system of oviposition stimulants and deterrents. Chem. Senses 2005, 30, i293–i294. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.; Zalucki, M.P.; Battisti, A. Host specificity in canopy nesting forms of Ochrogaster lunifer: The larger children do not care. Insects 2023, 14, 420. [Google Scholar] [CrossRef] [PubMed]
- Meshcheryakova, E.N.; Bulakhova, N.A.; Zhigulskaya, Z.A.; Shekhovtsov, S.V.; Berman, D.I. Wintering and cold hardiness of the small tortoiseshell Aglais urticae (Linnaeus, 1758) (Nymphalidae, Lepidoptera) in the West and East of the Northern Palearctic. Diversity 2023, 15, 72. [Google Scholar] [CrossRef]
- Shapira, T.; Roth, T.; Bar, A.; Coll, M.; Mandelik, Y. Complex effects of a land-use gradient on pollinators and natural enemies: Natural habitats mitigate the effects of aphid infestation on pollination services. Insects 2023, 14, 872. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.; Zhu, Y.; Lai, Q.; Wu, S.; Jiang, T.; Zhang, D.; Xiao, H. Response of spider and epigaeic beetle assemblages to overwinter planting regimes and surrounding landscape compositions. Insects 2023, 14, 951. [Google Scholar] [CrossRef]
- Crespo, N.; Louzada, J.; Fernandes, L.S.; Tavares, P.B.; Aranha, J. Microscopic identification of anatomical elements and chemical analysis of secondary nests of Vespa velutina nigrithorax Du Buyson. Insects 2022, 13, 537. [Google Scholar] [CrossRef]
- El-Zoghby, I.R.M.; Awad, N.S.; Alkhaibari, A.M.; Abdel-Hameid, N.F. Ultrastructure traits and genetic variability of red palm weevil Rhynchophorus ferrugineus (Olivier) adults from different geographical locations in Egypt. Diversity 2022, 14, 404. [Google Scholar] [CrossRef]
- Cano-Calle, D.; Montoya-Porras, L.M.; Ochoa-Giraldo, S.; Junca, H.; Garcia-Bonilla, E.; Saldamando-Benjumea, C.; Moreno-Herrera, C.X.; Arango-Isaza, R.E. Thrips microbiome study in commercial avocado (Persea americana Mill.) from Northwest Colombian Andes (Antioquia, Colombia) shows the presence of Wolbachia, Ehrlichia, Enterobacter. Diversity 2022, 14, 540. [Google Scholar] [CrossRef]
- Uemura, M.; Zalucki, M.P.; Battisti, A. Large male caterpillars are the primary builders: Exploring tent construction and foraging behaviour in gregarious pine processionary caterpillar. Insects 2023, 14, 829. [Google Scholar] [CrossRef]
- Poitou, L.; Robinet, C.; Suppo, C.; Rousselet, J.; Laparie, M.; Pincebourde, S. When insect pests build their own thermal niche: The hot nest of the pine processionary moth. J. Therm. Biol. 2021, 98, 102947. [Google Scholar] [CrossRef]
- Hódar, J.A.; Castro, J.; Zamora, R. Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict mediterranean scots pine forests under climatic warming. Biol. Conserv. 2003, 110, 123–129. [Google Scholar] [CrossRef]
- Branco, M.; Santos, M.; Calvao, T.; Telfer, G.; PAIVA, M. Arthropod diversity sheltered in Thaumetopoea pityocampa (Lepidoptera: Notodontidae) larval nests. Insect Conserv. Divers. 2008, 1, 215–221. [Google Scholar] [CrossRef]
- Wu, Z.; Du, Y.; Li, Z.; Guo, R.; Li, Y.; Wei, J.; Yin, X.; Su, L. Soldier caste-specific protein 1 is involved in soldier differentiation in termite Reticulitermes aculabialis. Insects 2022, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.-Y.; Hou, D.-Y.; Sun, Q.-Z.; Yu, S.-J.; Li, S.-C.; Liu, H.-Q.; Cong, L.; Ran, C. Biochemical and molecular analysis of field resistance to spirodiclofen in Panonychus citri (McGregor). Insects 2022, 13, 1011. [Google Scholar] [CrossRef]
- Franzén, M.; Forsman, A.; Karimi, B. Anthropogenic influence on moth populations: A comparative study in Southern Sweden. Insects 2023, 14, 702. [Google Scholar] [CrossRef]
- Deschamps-Cottin, M.; Jacek, G.; Seguinel, L.; Le Champion, C.; Robles, C.; Ternisien, M.; Duque, C.; Vila, B. A 12-Year experimental design to test the recovery of butterfly biodiversity in an urban ecosystem: Lessons from the parc urbain des papillons. Insects 2023, 14, 780. [Google Scholar] [CrossRef]
- Gerwing, T.G.; Hawkes, V.C.; Gann, G.D.; Murphy, S.D. Restoration, reclamation, and rehabilitation: On the need for, and positing a definition of, ecological reclamation. Restor. Ecol. 2022, 30, e13461. [Google Scholar] [CrossRef]
- Luo, X.-Y.; Newman, C.; Luo, Y.; Zhou, Z.-M. Comparing ant assemblages and functional groups across urban habitats and seasons in an East Asia Monsoon climate area. Animals 2023, 13, 40. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, S.; Fang, W.; Zhao, Y.; Huang, Z.; Zheng, R.; Huang, J.; Dong, J.; Fu, W. Butterfly communities vary under different urbanization types in city parks. Animals 2023, 13, 1775. [Google Scholar] [CrossRef]
- Curran, M.F.; Sorenson, J.R.; Craft, Z.A.; Crow, T.M.; Robinson, T.J.; Stahl, P.D. Ecological restoration practices within a semi-arid natural gas field improve insect abundance and diversity during early and late growing season. Animals 2023, 13, 134. [Google Scholar] [CrossRef]
- Xu, R.; Chen, J.; Pan, Y.; Wang, J.; Chen, L.; Ruan, H.; Wu, Y.; Xu, H.; Wang, G.; Liu, H. Genetic diversity and population structure of Spirobolus bungii as revealed by mitochondrial DNA sequences. Insects 2022, 13, 729. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Ge, X.; Peng, L.; Sun, C.; Wang, B. A New species of Limnephilus (Insecta: Trichoptera: Limnephilidae) from China, with revision of the genus Limnephilus on the Chinese Mainland. Insects 2022, 13, 653. [Google Scholar] [CrossRef] [PubMed]
- Solari, P.; Corda, V.; Sollai, G.; Kreissl, S.; Galizia, C.G.; Crnjar, R. Morphological characterization of the antennal lobes in the mediterranean fruit fly Ceratitis capitata. J. Comp. Physiol. A 2016, 202, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Whalen, M.R.; Chang, K.J.; Jones, A.B.; Rivera, G.; Worthington, A.M. Fluctuating asymmetry in the polymorphic sand cricket (Gryllus firmus): Are more functionally important structures always more symmetric? Insects 2022, 13, 640. [Google Scholar] [CrossRef]
- Sollai, G.; Biolchini, M.; Crnjar, R. Taste sensitivity and divergence in host plant acceptance between adult females and larvae of Papilio hospiton. Insect Sci. 2018, 25, 809–822. [Google Scholar] [CrossRef]
- Sollai, G.; Biolchini, M.; Solari, P.; Crnjar, R. Chemosensory basis of larval performance of Papilio hospiton on different host plants. J. Insect Physiol. 2017, 99, 47–57. [Google Scholar] [CrossRef]
- Nijhout, H.F. Control mechanisms of polyphenic development in insects: In polyphenic development, environmental factors alter some aspects of development in an orderly and predictable way. Bioscience 1999, 49, 181–192. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative strategies for controlling wireworms in field crops: A review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Wang, W.; He, P.; Liu, T.; Jing, X.; Zhang, S. Morphology and distribution of antennal sensilla on Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and adults. Diversity 2023, 15, 992. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, F.; Zhang, D.; Zhang, S.; Yu, X.; Yang, M. Genetic diversity and fine-scale genetic structure of Spodoptera litura Fabricius (Lepidoptera: Noctuidae) in Southern China based on microsatellite markers. Animals 2023, 13, 560. [Google Scholar] [CrossRef]
- Zayed, M.S.; Taha, E.-K.A.; Hegazy, F.H.; Albogami, B.; Noureldeen, A.; Elnabawy, E.-S.M. Influence of effective microorganisms on some biological and biochemical aspects of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Life 2022, 12, 1726. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Biolchini, M.; Crnjar, R. Taste receptor plasticity in relation to feeding history in two congeneric species of Papilionidae (Lepidoptera). J. Insect Physiol. 2018, 107, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Frizzi, F.; Buonafede, L.; Masoni, A.; Balzani, P.; Santini, G. Comparative analysis of facial coloration between introduced and source populations of the red wood ant Formica paralugubris. Insects 2022, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Balzani, P.; Vizzini, S.; Frizzi, F.; Masoni, A.; Lessard, J.; Bernasconi, C.; Francoeur, A.; Ibarra-Isassi, J.; Brassard, F.; Cherix, D. Plasticity in the trophic niche of an invasive ant explains establishment success and long-term coexistence. Oikos 2021, 130, 691–696. [Google Scholar] [CrossRef]
- Solari, P.; Sollai, G.; Crnjar, R. Neuromuscular anatomy and motor patterns at the base of calling behaviour in the female spongy moth Lymantria dispar. Insects 2024, 15, 169. [Google Scholar] [CrossRef]
- Solari, P.; Sollai, G.; Masala, C.; Maccioni, R.; Crnjar, R.; Liscia, A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. Insect Sci. 2018, 25, 797–808. [Google Scholar] [CrossRef]
- Sabella, G.; Nicolosi, G. A New species of Bryaxis (Coleoptera: Staphylinidae: Pselaphinae) from Mount Etna (Sicily, Italy) and notes on its ecology and distribution. Animals 2023, 13, 2941. [Google Scholar] [CrossRef]
- Klimov, P.B.; Kolesnikov, V.B.; Demard, E.P.; Stinson, C.S.A.; Merckx, J.; Duarte, M.V.A.; Pedroso, L.G.A.; Khaustov, A.A.; Myers-Hansen, J.L.; Wäkers, F.L.; et al. Going Asexual: A survey of mites of the genus Thyreophagus (Acari: Acaridae) revealing a large number of new parthenogenetic species in the Holarctic Region. Life 2023, 13, 2168. [Google Scholar] [CrossRef]
- Defilippo, F.; Carrera, M.; Lelli, D.; Canziani, S.; Moreno, A.; Sozzi, E.; Manarolla, G.; Chiari, M.; Marco, F.; Cerioli, M.P.; et al. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in the Lombardy Region, Northern Italy. Insects 2022, 13, 463. [Google Scholar] [CrossRef]
- Pekağırbaş, M.; Karakuş, M.; Kasap, O.E.; Demir, S.; Nalçacı, M.; Töz, S.; Eren, H.; Özbel, Y. Investigation of Phlebotominae (Diptera: Psychodidae) fauna, seasonal dynamics, and natural Leishmania spp. infection in Muğla, Southwest of Turkey. Acta Trop. 2021, 216, 105827. [Google Scholar] [CrossRef]
- Da Silva, B.Q.; Afonso, M.M. dos S.; Freire, L.J.M.; Santana, A.L.F. de; Pereira-Colavite, A.; Rangel, E.F. Ecological aspects of the Phlebotominae fauna (Diptera: Psychodidae) among forest fragments and built areas in an endemic area of american visceral Leishmaniasis in João Pessoa, Paraíba, Brazil. Insects 2022, 13, 1156. [Google Scholar] [CrossRef]
- Kim, H.K.; Chan, B.K.K.; Kang, C.-B.; Kim, H.W.; Kim, W. How do whale barnacles live on their hosts? functional morphology and mating-group sizes of Coronula diadema (Linnaeus, 1767) and Conchoderma auritum (Linnaeus, 1767)(Cirripedia: Thoracicalcarea). J. Crustac. Biol. 2020, 40, 808–824. [Google Scholar] [CrossRef]
- Chan, B.K.K.; Chen, Y.-H. Distinguishing long-discussed cryptic species of the epibiotic goose-neck barnacle of the genus Conchoderma (Thoracicalcarea: Lepadidae) with integrative taxonomy. Diversity 2022, 14, 593. [Google Scholar] [CrossRef]
- Ye, W.; Wang, J.; Zhao, X.; Liu, H.; Zhu, S. Mitochondrial genomes of two Lycosa spiders (Araneae, Lycosidae): Genome description and phylogenetic implications. Diversity 2022, 14, 538. [Google Scholar] [CrossRef]
- Planas, E.; Fernandez-Montraveta, C.; Ribera, C. Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin. Mol. Phylogenet Evol. 2013, 67, 414–428. [Google Scholar] [CrossRef]
- Gutiérrez, Y.; Ott, D.; Töpperwien, M.; Salditt, T.; Scherber, C. X-ray computed tomography and its potential in ecological research: A review of studies and optimization of specimen preparation. Ecol. Evol. 2018, 8, 7717–7732. [Google Scholar] [CrossRef]
- Betz, O.; Wegst, U.; Weide, D.; Heethoff, M.; Helfen, L.; LEE, W.; Cloetens, P. Imaging applications of Synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. i. general aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J. Microsc. 2007, 227, 51–71. [Google Scholar] [CrossRef]
- Friedrich, F.; Beutel, R.G. Micro-computer tomography and a renaissance of insect morphology. In Developments in X-ray Tomography VI; SPIE: Bellingham, WA, USA, 2008; Volume 7078, pp. 545–550. [Google Scholar]
- Vommaro, M.L.; Donato, S.; Giglio, A. Virtual sections and 3D reconstructions of female reproductive system in a carabid beetle using Synchrotron X-ray phase-contrast microtomography. Zool. Anz. 2022, 298, 123–130. [Google Scholar] [CrossRef]
- Donato, S.; Vommaro, M.L.; Tromba, G.; Giglio, A. Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). Arthropod. Struct. Dev. 2021, 62, 101044. [Google Scholar] [CrossRef]
- Vommaro, M.L.; Donato, S.; Lo, L.K.; Brandmayr, P.; Giglio, A. Anatomical study of the red flour beetle using Synchrotron radiation X-ray phase-contrast micro-tomography. J. Anat. 2023, 242, 510–524. [Google Scholar] [CrossRef]
- Vommaro, M.L.; Donato, S.; Caputo, S.; Agostino, R.G.; Montali, A.; Tettamanti, G.; Giglio, A. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis. Cell Tissue Res. 2024, 396, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Giglio, A.; Vommaro, M.L.; Agostino, R.G.; Lo, L.K.; Donato, S. Exploring compound eyes in adults of four coleopteran species using Synchrotron X-ray phase-contrast microtomography (SR-PhC Micro-CT). Life 2022, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ponce, E.; Rodríguez-Rangel, S.; Martinez, R.; Alvarado, A.; Ruiz-Baca, E.; Miranda, P.; Sánchez-Rodríguez, J.E.; Lopez-Rodriguez, A. Scorpions, science and folklore in Durango City. Diversity 2023, 15, 743. [Google Scholar] [CrossRef]
- Dong, H.; Huang, X.; Gao, Q.; Li, S.; Yang, S.; Chen, F. Research progress on the species and diversity of ants and their three tropisms. Insects 2023, 14, 892. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G. The structure of rice stemborer assemblages: A review of species’ distributions, host ranges, and interspecific interactions. Insects 2023, 14, 921. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollai, G.; Giglio, A.; Giulianini, P.G.; Crnjar, R.; Solari, P. Topic: Arthropod Biodiversity: Ecological and Functional Aspects. Insects 2024, 15, 766. https://doi.org/10.3390/insects15100766
Sollai G, Giglio A, Giulianini PG, Crnjar R, Solari P. Topic: Arthropod Biodiversity: Ecological and Functional Aspects. Insects. 2024; 15(10):766. https://doi.org/10.3390/insects15100766
Chicago/Turabian StyleSollai, Giorgia, Anita Giglio, Piero G. Giulianini, Roberto Crnjar, and Paolo Solari. 2024. "Topic: Arthropod Biodiversity: Ecological and Functional Aspects" Insects 15, no. 10: 766. https://doi.org/10.3390/insects15100766
APA StyleSollai, G., Giglio, A., Giulianini, P. G., Crnjar, R., & Solari, P. (2024). Topic: Arthropod Biodiversity: Ecological and Functional Aspects. Insects, 15(10), 766. https://doi.org/10.3390/insects15100766