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Simple Summary: Previous studies have shown many populations of Culex quinquefasciatus are
resistant to pyrethroids, the most common class of pesticide used by public health agencies. A genetic
mutation has been identified that contributes to this insecticide resistance. Culex quinquefasciatus
mosquitoes from numerous locations were tested to assess the correlation between standard resistance
bioassays and this resistance mutation to determine if the mutation is a useful surrogate to assess
insecticide resistance. The results from these Culex quinquefasciatus populations indicate that this kdr
mutation is only a moderate strength correlate of phenotypic resistance and is thus unlikely to be a
good surrogate for estimating insecticide resistance.

Abstract: Culex quinquefasciatus is an important target for vector control because of its ability to
transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often
to organophosphates, the two most common classes of active ingredients used by public health
agencies. A knockdown resistance (kdr) mutation, resulting in an amino acid change from a leucine to
phenylalanine in the voltage gated sodium channel, is one mechanism contributing to the pyrethroid
resistant phenotype. Enzymatic resistance has also been shown to play a very important role. Recent
studies have shown strong resistance in populations even when kdr is relatively low, which indicates
that factors other than kdr may be larger contributors to resistance. In this study, we examined, on a
statewide scale (over 70 populations), the strength of the correlation between resistance in the CDC
bottle bioassay and the kdr genotypes and allele frequencies. Spearman correlation analysis showed
only moderate (−0.51) or weak (−0.29) correlation between the kdr genotype and permethrin or
deltamethrin resistance, respectively. The frequency of the kdr allele was an even weaker correlate
than genotype. These results indicate that assessing kdr in populations of Culex quinquefasciatus is not
a good surrogate for phenotypic resistance testing.
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1. Introduction

Culex quinquefasciatus is an efficient vector of several disease agents including those
causing West Nile disease, lymphatic filariasis, and Japanese encephalitis and is a world-
wide target for vector control operations [1–4]. This species has posed challenges for
operational control, but using the principles of integrated vector management (IVM) has
been shown as the most effective way to manage mosquito populations including Cx.
quinquefasciatus [5–7]. Monitoring insecticide resistance is a critical element of an effective
IVM strategy as it can guide decision-making on appropriate and effective operational
responses while helping to avoid interventions likely to be of low efficacy.

A 70-year history shows examples of insecticide resistance (IR) in Cx. quinquefasciatus
to a variety of active ingredients (AIs), including larvicides and adulticides. Laboratory
testing on populations from Okinawa, Japan, showed increasing resistance to DDT [8].
Studies from Peru and Ecuador around the same time showed that Cx. quinquefasciatus had
a high level of “natural” resistance and that IR could be rapidly induced in the laboratory
in as little as six generations although the specific mechanism was undetermined [9,10].
In a real-world demonstration of this same principle, Tanzanian populations taken from
areas subject to intense pressure from malaria eradication by house spraying with dieldrin
were 10-fold more resistant than a population collected from an untreated area [11]. The initial
reports of IR in US Cx. quinquefasciatus populations from Texas and California were published
in the 1960s [12,13]. Pyrethroids were initially effective against Culex populations up through
the mid-1970s [14–16]. However, pyrethroid resistance was widely detected over the next
decade, and this increasing IR was linked to preexisting DDT resistance [17–21]. In Florida,
IR has been reported in Cx. quinquefasciatus populations for a few decades and appears to
be widespread and frequently intense [22–26].

Studies of IR populations of Cx. quinquefasciatus have implicated both target site resis-
tance mutations and enzymatic resistance, the two primary IR mechanisms in mosquitoes,
as contributing to the observed IR phenotype (reviewed in [27]). Studies have identified
SNPs that result in resistance across various insect orders by altering the binding of pesti-
cides to the voltage-gated sodium channel or acetylcholinesterase, the molecular targets
of pyrethroids and organophosphates, respectively [27–29]. In field populations of Aedes
aegypti, the presence of specific knockdown resistance (kdr) genotypes has been shown
to strongly correlate with pyrethroid resistance intensity, but this is not as clear for Cx.
quinquefasciatus [30–33]. Two adjacent SNPs in the sodium channel result in changes of the
normal leucine at position 1014 (1014L) to either a phenylalanine or rarely a serine (1014F
or 1014S), and both SNPs have been found in Florida Cx. quinquefasciatus [24,26,33,34]. The
1014F mutation, the canonical kdr mutation, has been shown in laboratory studies to result
in resistance to pyrethroids and DDT. An acetylcholinesterase SNP resulting in a glycine to
serine substitution (119G to 119S) has been detected in Cx. quinquefasciatus populations in
the Caribbean and shown to result in resistance to organophosphates [28,29].

Enzymatic resistance acts through the enhanced degradation of pesticides and/or
enhanced transport and excretion. In one Florida population (and three others from
Alabama), resistance ratios up to nearly 300-fold were described in the absence of the
1014F kdr mutation [25]. Mosquitoes collected from Vero Beach, Florida, in 1998 were
resistant to pyrethroids, organophosphates, fipronil, imidacloprid, and spinosad, but
not Bti [23]. This broad resistance to multiple AIs was attributed to strong enzymatic
activity, and the relative importance of this mechanism seemed to be greater than the
contribution from kdr mutations [24,25]. Studies using a variety of synergists indicated
that the resistance phenotype had a large enzymatic contribution [18,26,34,35]. Our recent
study of IR in Miami-Dade Cx. quinquefasciatus, demonstrated only a moderate correlation
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between phenotypic resistance and kdr genotypes, implicating enzymatic resistance as a
large contributing factor [33].

The impetus for this study was, in part, driven by these recent IR studies in field
populations of Florida Cx. quinquefasciatus which have shown limited phenotypic impact
from this 1014F kdr mutation [26,33]. We wanted to conduct a larger study with samples
from across the state to see if the same conclusions that were drawn from these studies in SE
and SW Florida were consistent across the more than 1100 km span of Florida. We examined
phenotypic insecticide resistance using the CDC bottle bioassay and kdr frequency in
89 Cx. quinquefasciatus populations from the state of Florida, including 17 populations from
Miami-Dade County and 7 from Collier County, to test for any correlations [26,33]. We also
conducted direct topical application on select populations from the Gulf Coast of Florida to
quantify the level of resistance to permethrin observed in the bottle bioassay.

2. Materials and Methods
2.1. Mosquito Collections

Six to twelve egg rafts were collected from 89 locations across Florida (Figure 1) by
local vector control personnel and research staff, and then shipped to the Florida Medical
Entomology Laboratory or the Center for Medical, Agricultural, and Veterinary Entomology
(CMAVE) to be reared for CDC bottle bioassay testing. Strains for topical application were
similarly collected (10–50 rafts/location) by local vector control and shipped to CMAVE.
Rafts were collected from open, artificial containers baited with dried plant material or,
in the case of the strains colonized from Pinellas County, chicken excrement. Specific
collection information is in Supplementary Materials Table S1. Detailed collection methods,
rearing procedures, and morphological identification followed the same methods as in [33].
The CMAVE laboratory Cx. quinquefasciatus strains were reared using a standard protocol
previously described [36].
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Figure 1. Map of sampling locations used in this and previous studies. Individual sites are marked
with solid black circles and counties that provided samples are in orange. Counties highlighted in blue
are locations described in previous studies of Culex quinquefasciatus for which knockdown resistance
and phenotypic resistance testing were reported [24,26,33]. The exact location of the population
tested in [24] is unclear and thus not marked with a black circle. Map created in ArcGIS Pro Version
3.1.2 using Florida county boundaries from the Florida Geographic Data Library. Detailed sample
location data are in Supplementary Materials Table S1.
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2.2. Phenotypic Resistance Testing

Insecticide resistance testing was conducted using the standard CDC bottle bioas-
say with AI-specific diagnostic doses (DDs) and diagnostic times (DTs) on F0 genera-
tion mosquitoes. This method as implemented in our laboratories has been described
previously [33,37]. Briefly, four bottles were coated with technical grade permethrin at
43 µg/bottle, deltamethrin at 0.75 µg/bottle, or malathion at 400 µg/bottle, along with
acetone-only negative control bottles. Mosquitoes were aspirated into bottles, and knockdown
was scored at 0, 5, 10, and 15 min, and then every 15 min through 2 h as specified by the proto-
col. A subset of bottles (permethrin testing conducted at Florida Medical Entomology Labora-
tory) was monitored with a final count at 24 h to assess recovery [26]. If sufficient mosquitoes
were available, all three AIs were tested. Knockdown was converted to percent mortality as
per the CDC protocol. Data are found in Supplementary Materials Files S1 and S2.

2.3. Topical Application

Topical application of permethrin and malathion was conducted as previously de-
scribed [32,38]. Five to ten-day-old post-emergence mosquitoes from each strain were
anesthetized with CO2, sorted on ice, and then weighed to allow an average mass per
female. Females were sorted into cohorts of 10–20 and then dosed with 0.5 µL of a gravi-
metrically prepared permethrin concentration series using a PB600 repeater pipette with
a 25 µL gas tight, blunt-tip syringe (Hamilton Company, Reno, NV, USA). The range of
tested concentrations varied by strain to produce mortality between 0 and 100%. Control
mosquitoes were treated with acetone only. Mortality was scored at 24 hr after application.
The assay was repeated at least three times on different days. Topical bioassay data and
fitting parameters are found in Supplementary File S3. Abbott’s corrected mortality data
for each strain were fitted to a 4-parameter logistic regression using PRISM v10 (GraphPad
Software, San Diego, CA, USA). Median lethal doses (LD50), 95% confidence intervals, and
fitting parameters for each strain were calculated by the software.

2.4. Knockdown Resistance Genotyping

The assessment of the 1014 kdr mutation used a previously described genotyping
assay [33,39]. Individual organisms (collected from bottles after CDC bioassay testing
and freeze-kill or tested as F0 organisms submitted directly by vector control personnel),
averaging 43 per location (range: 24–147), were homogenized in 400 µL of deionized
water and used immediately as template for a SYBR Green-based competitive PCR with
variously GC-tailed primers for 1014L, 1014F, and 1014S and a common reverse primer.
As this melt curve assay, like any other PCR-based assay, can be imprecise without proper
controls, we included positive controls with known genotypes in each assay to ensure
accurate genotyping. Positive controls were homogenate or purified DNA from the CMAVE
susceptible strain (1014LL), an in-house Louisiana (LA) pyrethroid resistant strain with the
1014F mutation (1014FF), and an LA heterozygote (1014LF, confirmed by Sanger sequencing)
or an artificial heterozygote created by combining a 1014LL and a 1014FF mosquito [33,39].
Each assay included a deionized water negative control.

Assays were assembled in 384-well plates on an epMotion 5750 liquid handling
system (Eppendorf, Hamburg, Germany) and cycled using default “FAST” conditions on a
QuantStudio 6 Flex system (Thermo Fisher, Waltham, MA, USA), followed by a 60–95 ◦C
melt curve phase. The presence or absence of the 1014L and 1014F alleles was determined
by characteristic melting temperature (Tm) peaks of 86.0 ± 0.4 ◦C and 82.2 ± 0.4 ◦C,
respectively, from the positive controls [39]. The rare 1014S allele produces a Tm peak at
~84.5 ◦C. Heterozygosity at position 1014 was identified by the presence of a peak at both
Tms. The calculation of allele frequencies was performed using the equations:

f (1014L) =
(2 × N(LL)) + (1 × N(LF))
(2 × N(FF + LF + LL))

and f (1014F) =
(2 × N(FF)) + (1 × N(LF))
(2 × N(FF + LF + LL))
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Correlation analysis. Percent mortality from the bottle bioassay at each AI-specific DT
(permethrin: 30 min; deltamethrin: 60 min; and malathion: 45 min), mortality at 120 min,
genotype percentages, and allele frequencies were used as input for Spearman’s correlation
analysis and 95% confidence interval calculation using PRISM v10. Data and correlation
information are found in Supplementary Files S1 and S4.

3. Results
3.1. Phenotypic Resistance Testing
3.1.1. CDC Bottle Bioassay

Bottle bioassay testing indicated resistance to all three AIs, but the percentage of resis-
tant populations varied. The testing of 75 populations with permethrin at the
43 µg/bottle DD and 30 min DT found that 92% were resistant (<90% down at DT) un-
der CDC guidelines (Figures 2A and 3A) [37]. Only five (6.7%)—three from Escambia
County in the Florida Panhandle and two from Lee County in SW Florida—were susceptible
(97–100% mortality). One population, from Palm Beach County, was susceptible but showed
developing resistance (90–96% mortality). In both Lee and Palm Beach Counties, these suscep-
tible populations represented only a fraction of the tested populations from these counties
(2 of 13 and 1 of 11, respectively). We also noted varied recovery (less knockdown/mortality at
24 h versus knockdown/mortality at 2 h) in populations with extended exposure to perme-
thrin. This recovery averaged 21% across 27 populations (File S2).
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Figure 2. CDC bottle bioassay mortality for Culex quinquefasciatus collected from 16 Florida counties
to (A) permethrin at 43 µg/bottle and 30 min; (B) deltamethrin at 0.75 µg/bottle and 60 min; and
(C) malathion at 400 µg/bottle and 45 min. Results that meet the CDC definitions of susceptible,
developing resistance, and resistant are colored green, orange, and black, respectively [37]. * Samples
from Miami-Dade County are from [33].
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Figure 3. CDC bottle bioassay mortality for Culex quinquefasciatus collected from 16 Florida counties
displayed as a map for (A) permethrin at 43 µg/bottle and 30 min; (B) deltamethrin at 0.75 µg/bottle
and 60 min; and (C) malathion at 400 µg/bottle and 45 min. Results that meet the CDC definitions of
susceptible, developing resistance, and resistant are colored green, orange, and black, respectively.
Map created in ArcGIS Pro Version 3.1.2 using Florida county boundaries from the Florida Geographic
Data Library. Detailed sample location data are in Table S1. Samples from Miami-Dade County are
from [33].

Testing with the type II pyrethroid deltamethrin on the same populations showed
similar results (Figures 2B and 3B). Only 1 population, from Shalimar in Broward County,
was susceptible at the DD and DT, while 57 populations were resistant. Notably, only 7 of
the 58 tested had mortality above 50% at the diagnostic time. Even at 120 min, mortality
was 50% or more in only 29% (17 of 58) of the populations.

The testing of 55 populations with the organophosphate malathion at 400µg/bottle DD and
45 min DT showed a range of susceptibilities (Figure 2C). Approximately 21.8% of populations
were susceptible, 18.2% were categorized as developing resistance, and 60% were resistant. Four
of the five counties with malathion susceptible populations (Broward, Palm Beach, Miami-Dade,
and Lee) were along the south Florida coast (Figure 3C). Hillsborough County, home to the
city of Tampa, also had a malathion-susceptible population.
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3.1.2. Topical Application

To confirm and quantify the resistance to permethrin that we observed in the bottle
bioassay, we conducted a topical application of permethrin on six field strains from Pasco
and Pinellas Counties that were provided in adequate quantity. In all six strains, we
measured resistance relative to the CMAVE susceptible strain [36] (Table 1). Resistance
ratios, determined by dividing the LD50 by the LD50 of the CMAVE strain, ranged from
20.3 in the Pinellas Cross Bayou population to 40.6 in the Pasco County strain. The Keller
strain, collected from a wastewater treatment facility, had a RR of 34.9. The very resistant
Pasco and Keller strains had LD50s of about 56 and 49 ng permethrin/mg mosquito,
respectively. Assuming an average weight of about 2 mg, this is equivalent to a total dose
of over 100 ng of permethrin needed to kill the average adult Cx. quinquefasciatus from
these areas.

Table 1. Median lethal dose for permethrin for the CMAVE laboratory strain and six field populations
of Culex quinquefasciatus.

Strain 1 Permethrin LD50 ± 95% CI
(ng AI/mg Mosquito) Resistance Ratio 2 R2

CMAVE 1.39 (1.16–1.64) 1.0 0.7165
Pasco F4 56.47 (42.25–74.14) 40.6 0.9169

Cross Bayou F0 28.31 (24.06–33.75) 20.3 0.9450
North Highway F0 32.24 (21.17–50.23) 23.2 0.7067
Oldsmar Sewer F0 30.86 (22.98–42.68) 22.2 0.8291

Clearwater Nursery
F0 32.98 (27.00–40.83) 23.7 0.9186

Keller F1 48.54 (39.62–58.86) 34.9 0.9223
1 The generation tested is noted after the strain name. F0 are adults reared from field collected rafts. F1 or F4
indicate the first and fourth generation of colonized strains. 2 Resistance ratio calculated by dividing the LD50
of the field strain by the LD50 of the CMAVE laboratory susceptible strain. Raw data and fitting results are in
Supplementary Materials File S3.

3.2. Knockdown Resistance Testing

More than 3300 individual Cx. quinquefasciatus representing 79 populations from
across 18 counties (1–17 populations/county) were genotyped for kdr mutations at position
1014 using a melt curve assay (Figure 4A and Supplementary Materials File S1). We detected
the 1014L and 1014F alleles but not the relatively rare 1014S allele. Cx. quinquefasciatus
averaged 35% 1014LL, 41.9% 1014LF, and 23.1% 1014FF. Except for Escambia County, all
counties had a mix of the three possible genotypes. The relative genotype percentages
varied from county to county. In Escambia County, we did not detect either the 1014LF or
1014FF genotypes. At the other extreme, the 1014FF genotype was present in approximately
70% of mosquitoes from Walton and Clay Counties.

We did observe individual populations within counties with skewed genotype per-
centages. Five locations, three in Escambia County and one each in Lee and Broward
Counties, had only the 1014LL genotype. At the other extreme, only one location in Walton
County was 100% 1014FF. The 1014FF genotype was absent from 18 samples, which were
the 5 locations mentioned above that were 100% 1014LL and 13 locations that were a mix
of 1014LL and 1014LF.

Allele frequencies were calculated from these genotyping data for each individual
sampling location (Figure 4B and File S1). The frequency of the 1014F allele was variable by
site but was completely penetrant at only one sampling site in Walton County. The 1014L
allele was absent from five sites. The statewide 1014F allele frequency was 0.44.
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Figure 4. Knockdown resistance of Culex quinquefasciatus collected from 18 Florida counties showing
(A) average genotype percentage by county; and (B) 1014F allele frequency where each black circle
represents results from an independent collection. Genotyping was conducted using a previously
described melt curve assay [33,39], and allele frequency was calculated as described in the methods.
* Samples from Collier and Miami-Dade Counties are from [26,33].

3.3. Correlation between Bottle Bioassay and kdr Genotype or Allele Frequency

The correlation analysis of the percent mortality at DT, genotype percentages, and
allele frequencies indicated that there was a moderate negative correlation (−0.51) between
permethrin mortality observed in the bottle bioassay and the 1014FF genotype percentage
(Figure 5). The negative correlation between mortality and 1014F allele frequency was
weaker (−0.34). We observed a weak negative correlation between deltamethrin-induced
mortality and the 1014FF genotype or 1014F frequency (−0.25). The correlation coefficient
for malathion-induced mortality was slightly above that of permethrin with the 1014FF
genotype percentage (−0.60) or 1014F allele frequency (−0.48). Notably, because of the
matrix comparison, we observed that mortality between permethrin and malathion or
deltamethrin was moderately correlated (0.55 and 0.50).
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the methods.

4. Discussion

This study sought to thoroughly examine on a statewide scale, the correlation between
IR detected at the standard CDC-specified DDs and DTs for three of the most common
AIs in mosquito adulticides (permethrin, deltamethrin, and malathion), and the genetic
marker of pyrethroid IR in Culex, the 1014 kdr mutation. To do this, we collaborated
with numerous mosquito control programs to acquire egg rafts in sufficient quantity for
CDC bottle bioassay testing from nearly 80 locations representing urban, suburban, and
agricultural areas in Florida. We also conducted permethrin topical application on a few
populations to quantify the IR detected using the bottle bioassay. We further conducted
testing to determine kdr genotypes and frequencies in many of these same populations.

Our primary observations from the resistance testing portion of this study are straight-
forward and agree with previous studies in the SE US. Most populations of Cx. quinque-
fasciatus have resistance, often strong resistance, to pyrethroid AIs [26,27,33,35]. In this
study, we found that more than 93% of the populations were resistant to permethrin and
more than 98% of the populations were resistant to deltamethrin. The quantification of
permethrin resistance in a subset of strains using topical application showed that this IR
was intense, with resistance ratios up to 40. We also observed some level of recovery to
extended exposure to permethrin as had been observed in a previous FL study, and this
strongly suggests enzymatic detoxification [26,40]. The operational impact of this ability to
recover from exposure is unclear and needs to be thoroughly investigated.

With respect to malathion, our testing showed that IR was much more variable than
with the pyrethroids. In this study, nearly a quarter of the populations we tested were
susceptible and likely to be well controlled by commercial adulticides containing OPs.
About a quarter of the populations were in the CDC “developing resistance” category
which may indicate that OP resistance is widely increasing. This calls for additional IR
monitoring from these sites to determine if levels of IR are increasing over time.

We note one additional observation from the malathion testing; populations with
susceptibility to malathion were found in Miami-Dade, Broward, Lee, Palm Beach, and
Pinellas Counties. These are among the most urbanized and densely populated counties
in Florida and have large mosquito control programs, yet they have some of the most
susceptible populations of Cx. quinquefasciatus. Our previous study noted that malathion
IR was more intense in industrial and agricultural areas rather than the urban areas of
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Miami-Dade, and this current study appears to support this [33]. In these locations,
operational mosquito control is infrequent and thus it may not be the primary driver of
strong OP resistance in Culex populations. Understanding the drivers of this IR, whether the
agricultural or industrial use of OPs or other classes of chemicals that can drive enzymatic
activity and cross resistance to other classes of AI, in these infrequently treated areas has
clear implications for effective public health control, and defining these drivers is certainly
an area for additional study [40].

The assessment of the 1014 kdr mutation showed, on a statewide scale, the same
patterns we had previously observed locally in Miami-Dade Cx. quinquefasciatus. First, we
did not observe the 1014S mutation in the testing we conducted. It appears to still be rare,
as it was even during the initial detection in Jacksonville in 2009, and it is thus unlikely to be
an important factor in operational control [26]. Second, we found that the frequency of the
1014F allele was not generally high across the state (0.44) and was more often found as the
1014LF heterozygote (~41%) rather than as the homozygous 1014FF (~23%). This is notably
different from Florida populations of Ae. aegypti where the 1534C kdr mutation has reached
near-fixation [30]. Selection for this mutation may not be as strong in Cx. quinquefasciatus if
other mechanisms are responsible for a large portion of the IR phenotype.

The negative correlation between permethrin mortality and the 1014FF genotype was
the strongest that we observed among the two pyrethroids, but it was moderate and not
comparable to the strong/very strong correlation between the dilocus kdr genotype and
permethrin LD50 or resistance ratio (ρ = 0.90) in Ae. aegypti [30,41,42]. The correlation
between deltamethrin mortality and 1014FF in these Culex populations was even weaker.
Additionally, we also observed that the correlation between the 1014FF genotype and
mortality from malathion, an OP with a mode of action different than the pyrethroids, was
equally as strong (−0.60) as that of permethrin and that permethrin and malathion mortality
were positively correlated. Taken together, this suggests that using the kdr genotype is not a
rigorous predictor of pyrethroid resistance intensity in these Florida Culex quinquefasciatus.
It is clear that kdr plays a role and is beneficial for surviving insecticide exposure, but this
data set suggests that factors other than kdr play a large role in the observed pyrethroid
resistance, making the value of using kdr genotype as a surrogate or marker for strong
IR in Cx. quinquefasciatus potentially dubious; this requires further investigation in other
locations than Florida.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects15030197/s1, Table S1: Collection and data source infor-
mation for samples used in this study; File S1: Summary data for phenotypic and genetic testing;
File S2: CDC bottle bioassay data; File S3: Median lethal dose data and fitting results; File S4:
Correlation analysis results.
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