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Simple Summary: Temperature is an important factor that affects the growth and reproduction
of insects. The silkworm is an economically important insect, and as a representative insect of
Lepidoptera, it is particularly important to investigate its extreme-temperature resistance mechanisms.
In this article, we identified a gene in B. mori, the B. mori singed (Bmsn) gene, which is involved in
the high-temperature resistance of silkworms. We demonstrated that the Bmsn gene can increase the
proliferation activity of silkworm cells and enhance their tolerance to high temperatures. Furthermore,
we constructed a transgenic B. mori strain that overexpressed the Bmsn gene and demonstrated that
its overexpression can increase high-temperature resistance and improve the economic characteristics
of silkworms.

Abstract: Temperature is an important factor in the growth, development, survival, and reproduction
of organisms. The high-temperature resistance mechanism of insects may be significant for use in
the prevention and control of insect pests. The silkworm, Bombyx mori, is an important Lepidoptera
model species for studies on pest control in agriculture and forestry. We identified a gene in B. mori,
the B. mori singed (Bmsn) gene, which is involved in the high-temperature resistance of silkworms.
Sn proteins are highly conserved among species in many taxonomic groups. The overexpression
of the Bmsn gene promoted the proliferation of silkworm cells, reduced oxidation, and reduced the
accumulation of reactive oxygen species under stress. Interfering with the Bmsn gene had the opposite
result. We constructed a transgenic B. mori strain that overexpressed the Bmsn gene. The physiological
traits of the transgenic strain were significantly improved, and it had stronger high-temperature
resistance. The Bmsn gene is involved in the process by which fat bodies respond to high-temperature
stress. These findings provide insights into the mechanism of high-temperature resistance of insects
and offer a new perspective on agricultural and forestry pest control.

Keywords: silkworm; high temperature stress; singed gene; oxidative stress; DNA damage

1. Introduction

Almost all living things undergo adaptive changes in response to external stimuli to
maintain their health and normal life activities. These stimuli include temperature changes,
chemical stimuli, and microbial infections [1]. Insects are a diverse and widely distributed
group. Temperature is a key factor that has a great impact on insect populations and
distributions. Insects are ectothermic, and they rely on external heat sources to regulate
their body temperature [2]. As a result, they are more sensitive to changes in ambient
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temperature than endothermic animals. The behavior, growth, and metabolism of insects
are influenced by variations in ambient temperature [3]. For example, many insects adapt
to changes in ambient temperature by regulating their respiration until they reach a critical
temperature limit [4].

Heat stress is the most conserved adaptive response in organisms [5]. Heat stress
under natural conditions usually has a short duration due to diurnal temperature variations.
Under heat stress, insects tend to reduce their activity to lower their metabolism, thus ensur-
ing their survival in high temperatures [6]. However, when faced with prolonged extreme
heat, insects often suffer irreversible damage [7]. Heat stress leads to the accumulation of
reactive oxygen species (ROS). The accumulation of ROS causes oxidative stress, which
results in DNA damage, lipid oxidation, protein degradation, enzyme inactivation, and,
ultimately, cell death [8]. Insects regulate their body metabolism via a heat stress response
to adapt to high-temperature environments [9]. When the ambient temperature increases, a
variety of regulated factors participate in the stress response, including heat shock proteins
(HSPs) and activating transcription factor 2 [10,11].

The global climate is warming, and increased environmental temperatures pose a
threat to the normal activities of many insects. High-temperature shock can alter the
intestinal microbial composition and metabolism of insects, subsequently affecting their
resistance, growth, development, and nutrient absorption [12,13]. For example, high
temperatures can alter the balance of lactic acid bacteria in the intestinal tract of Drosophila,
leading to a shorter lifespan [14]. The silkworm, Bombyx mori, is an important economic
insect that produces silk [15]. High temperature is a significant factor contributing to the
decline in sericulture production. More than half of all pests of agriculture and forests
belong to Lepidoptera. The silkworm is a representative Lepidoptera species and a useful
biological model for research on pest control [16]. High temperatures affect the absorption
of nutrients and shorten the fifth instar growth period of silkworms [17]. In the silkworm,
interfering with the BmGrpE (XM_004926291.4) gene of the Hsp transcription factor can
enhance its high-temperature resistance [18]. However, the mechanism of high-temperature
resistance of silkworms is incompletely known.

To study the mechanism of silkworm response to high temperatures and identify
the key genes that contribute to high-temperature resistance, we previously identified
12 differentially expressed genes via transcriptome sequencing analysis of two silkworm
strains with different high-temperature sensitivity [19]. The B. mori singed (Bmsn) gene,
a member of the fascin family, was upregulated fourfold in resistant silkworm strains at
24 h of high-temperature treatment. These data suggested its involvement in the silkworm
response to high temperatures. In the present study, we investigated the role of the
Bmsn gene in the high-temperature resistance of silkworms. Our results showed that the
overexpression of the Bmsn gene enhanced the proliferation activity of silkworm cells,
decreased the accumulation of ROS caused by oxidative stress, repaired DNA damage in
cells, and extended cell survival, whereas interfering with the Bmsn gene had the opposite
results. At the individual level, a transgenic strain overexpressing the Bmsn gene (Bmsn-OE)
was constructed, and our data showed that transgenic strains can significantly increase the
survival rate at high temperatures and the cocoon layer quantity. We also revealed that
fat bodies play an important role in the high-temperature response of Bmsn-OE strains.
Our results provide a new perspective for understanding the heat tolerance mechanism of
insects and new targets for the control of agricultural pests.

2. Materials and Methods
2.1. Gene Analysis and Vector Construction

The Bmsn gene sequence (XM_038017024.1) was obtained from the National Cen-
ter for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/, accessed on
2 December 2020) and SilkDB3.0 (https://silkdb.bioinfotoolkits.net/, accessed on 10
December 2020). The structure of the Bmsn protein was predicted using the SMART website
(http://smart.embl-heidelberg.de/, accessed on 15 December 2020), and the homologous
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sequence of the Bmsn protein was compared using Clustalx1.83 and GenDoc2.7 software. A
phylogenetic tree was constructed using Clustalx1.83 software and MEGA6.0 software, and
it was visualized using iTOL v6 (https://itol.embl.de, accessed on 5 April 2021). The Bmsn
gene with a Flag tag was cloned onto the eukaryotic expression vector pIZ/V5-His carrying
green fluorescent protein (GFP), and transcription was driven by the OpIE2 promoter.
The siRNA targeting the Bmsn gene for the interference vector was predicted using the
BLOCK-IT interference RNAi Designer website (http://rnaidesigner.thermofisher.com,
accessed on 20 September 2021). The gene was cloned into the pIZ/V5-His vector after
synthesis. The primers used in this study are listed in Table S1.

2.2. Cell Culture and Transfection

The silkworm BmN-SWU1 cell line [20] was cultured at 27 ◦C in TC-100 insect cell
culture medium (US Biological, Swampscott, MA, USA) supplemented with 10% fetal
bovine serum (FBS; BIOAGRIO, S1356). Transfections were performed at ratios of 2 µg/
6-well plates (4–8 × 105 cells), 1 µg/12-well plates (1.6–3.2 × 105 cells), and 0.5 µg/
24-well plates (0.8–1.6 × 105 cells). The ratio of the plasmid to transfection reagent (Roche,
Shanghai, China) was 1 µg to 2 µL.

2.3. Treatment of Silkworms

The Dazao strain was provided by the Gene Bank of Domestic Silkworm Resources
of Southwest University. In the experimental group exposed to the hyperthermic shock,
the larvae were kept at 37 ◦C, while the control group was kept at 27 ◦C. Both groups were
fed with fresh mulberry leaves. The experimental group (~0.8 g) was injected with a 20 µL
solution of 3% H2O2 into the fourth abdominal spiracle. The control group was injected
with 20 µL of PBS solution (0.01 M). The fat body (~8–11 mg) was collected at different time
points, washed twice in phosphate buffer (0.01 M), placed in a 1.5 mL RNA-free centrifuge
tube, and stored at −80 ◦C.

2.4. Total RNA Extraction

Total RNA was extracted from cells and tissues according to the Total RNA Kit (Omega
Bio-Tek, Guangzhou, China). The tissues were ground with a sterilized mortar, and the cells
were collected in a 1.5 mL RNA-free centrifuge tube. We then added an appropriate amount of
lysate. The entire process was conducted on ice to prevent RNA degradation. After extraction,
the RNA pellet was dissolved in 30–40 µL of RNA-free water and stored at −80 ◦C.

2.5. Quantitative Real-Time PCR (qRT-PCR)

The cDNA for qRT-PCR was synthesized from the previously prepared total RNA
above using the PrimeScript™ RT Reagent Kit (Takara, Beijing, China). qRT-PCR was
performed using Hieff® qPCR SYBR Green Master Mix (Yeasen, Shanghai, China) and
the CFX96™ Touch Real-Time PCR System (Bio-Rad, Berkeley, CA, USA). The reaction
conditions were 95 ◦C for 30 s, 95 ◦C for 5 s, and 60 ◦C for 30 s, for a total of 40 cycles. Three
biological replicates were performed for each sample. The internal reference gene was the
Eukaryotic translation initiation factor 4A (SW22934) (Table S1).

2.6. Detection of ROS

We used the ROS kit (Beyotime, Shanghai, China) to detect the level of ROS in cells
and tissues. DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate) was diluted to 10 µM
with serum-free medium. We then added the appropriate amount of solution, according to
the type of well plate, and incubated for 20–30 min at 37 ◦C, protected from light. The cells
were observed with a laser confocal microscope after incubation. The cells were treated
similarly; they were added to a 96-well enzyme labeling plate, and the fluorescence value
was detected using a multifunctional microplate reader (BioTek, Winooski, VT, USA). A
total of 20 µL of the above solution was taken to determine the protein concentration, and
the relative ROS level was calculated as the fluorescence value/protein concentration. qRT-

https://itol.embl.de
http://rnaidesigner.thermofisher.com


Insects 2024, 15, 264 4 of 15

PCR was used to detect the expression of BmSOD1, BmSOD2, BmSOD3, BmCAT, BmGpx,
and BmGADD45 (Table S1).

2.7. Cell Proliferation Activity Detection

We used a Cell Counting Kit-8 kit (CCK-8) (Beyotime) to measure cell viability ac-
cording to the manufacturer’s instructions. First, walled cells were gently suspended by
pipetting 100 µL (2000 cells) into a 96-well plate. Subsequently, 10 µL of CCK-8 reagent
was added to each well in complete darkness. Each group of samples was repeated three
times. The samples were then incubated in an incubator at 37 ◦C for 4 h, after which
the absorbance was measured at 450 nm using a Multifunctional enzyme marker (BioTek,
Winooski, VT, USA).

2.8. Single Cell Gel Electrophoresis Assay

We used the DNA Damage Comet Assay Kit (Keygentec, Nanjing, China) to detect
whether the accumulation of ROS caused by hyperthermic treatment of BmN-SWU1 cells
for 12 h would cause DNA damage and, if so, the degree of damage. The DNA-damaged
cells were analyzed in detail by Casplab2.0 software. A total of 30 cells in each group were
selected to measure the length of the comet tail, the ratio of DNA content in the head and
tail to total DNA content, and the distance from the tail to OTM (the distance between the
tail and cell).

2.9. CalCEIIN-AM/PI Fluorescent Double Staining

The survival of BmN-SWU1 cells treated with a high temperature was detected by a
Calcein-AM/PI living cell/dead cell double staining kit (Yeasen). The cells were treated
according to the kit instructions. A 490 ± 10 nm amount of excitation filter was used to
detect both living cells (yellow-green fluorescence) and dead cells (red fluorescence) under
a fluorescence microscope.

2.10. Construction of Transgenic Vector of Silkworm

The Bmsn gene with a Flag tag was constructed on the vector piggyBac [3 × P3 EGFP],
along with green fluorescent protein. This vector was mixed with the helper plasmid
(pHA3PIG) at a molar ratio of 1:1 and microinjected into silkworm eggs to obtain the Bmsn
overexpression transgenic strain. Then, by detecting the insertion site, the genes on the
left and right sides of the insertion site were determined and their expression levels were
detected by qRT-PCR.

2.11. Statistical Analysis

All experiments were performed at least three times. All data were expressed as the
mean ± standard deviation (SD) of three independent experiments. All of the statistically sig-
nificant differences between treatments were determined using Student’s t-test. A value
of p < 0.05 (*) was considered statistically significant, and p < 0.01 (**) was considered
very significant.

3. Results
3.1. Identification and Characteristic Analysis of the Bmsn Gene

To identify the sn gene in the silkworm, we cloned this gene and found that it coded a
protein of 511 amino acids containing four Fascin protein domains (Figure S1A). Multiple
sequence alignment analysis showed that the sequences of sn were highly conserved among
Spodoptera litura, Helicoverpa armigera, Tribolium castaneum, Drosophila melanogaster, Apis
mellifera, Mus musculus, and Homo sapiens (Figure S1B). We examined the phylogenetic
relationship of sn proteins by performing a phylogenetic analysis. Sn in vertebrates clus-
tered on one branch, while insect species in the Lepidoptera, Diptera, Hymenoptera, and
Homoptera clustered on individual branches. The sn of silkworm is most closely related to
the sn of Manduca sexta (Figure 1A).
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Figure 1. Identification and characteristic analysis of the Bmsn gene. (A) Phylogenetic analysis
of Bmsn. Green indicates vertebrates, pink indicates Diptera, blue indicates Lepidoptera, purple
indicates Hemiptera, and yellow indicates Hymenoptera. (B) Fluorescence subcellular localization
of Bmsn protein in BmN-SWU1 cells, Scale bar = 5 µm. (C) Quantitative analysis of Bmsn gene
expression in different tissues of silkworm larvae on the third day of the fifth instar. The internal
reference gene was the Eukaryotic translation initiation factor 4A (SW22934).
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To analyze the expression characteristics of the Bmsn gene, we constructed a Bmsn
overexpression vector and transfected it into BmN-SWU1 cells. Immunofluorescence results
showed that the Bmsn protein was localized in the nucleus (Figure 1B). The expression levels
of Bmsn were examined at the transcription level in tissues of the silkworm via quantitative
and semi-quantitative PCR. Analysis of the expression pattern of the Bmsn gene in the
tissues of silkworm larvae showed that the Bmsn gene was most highly expressed in the fat
body (Figures 1C and S2).

3.2. Effect of Bmsn on the Proliferation Activity of Silkworm Cells

We analyzed the effects of the Bmsn gene on the activity and proliferative capacity
of silkworm cells after high-temperature treatment. The overexpression and interference
vectors of the Bmsn gene were constructed and transfected into silkworm BmN-SWU1 cells.
The expression levels of the Bmsn gene increased significantly after overexpression and
decreased significantly after interference (Figure 2A,B).
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Figure 2. Effects of the Bmsn gene on cell proliferation. (A) Relative expression levels of the Bmsn
gene after overexpression in BmN-SWU1 cells. (B) Relative expression levels of the Bmsn gene after
interference in BmN-SWU1 cells. (C) Cell proliferation activities after overexpression of Bmsn gene
at 27 ◦C. (D) Cell proliferation activities after overexpression of the Bmsn gene at 37 ◦C. (E) Cell
proliferation activities after interference with the Bmsn gene at 27 ◦C. (F) Cell proliferation activities
after interference with the Bmsn gene at 37 ◦C. **, p < 0.01, Student’s t-test.

Changes in cell activity and proliferative capacity occurred after overexpressing and
interfering with the Bmsn gene in the cells. The proliferation of cells increased significantly with
time at 27 ◦C after overexpressing the Bmsn gene compared to the control group (Figure 2C).
After 37 ◦C treatment, the proliferation of cells increased significantly from 0 to 12 h compared



Insects 2024, 15, 264 7 of 15

to the control group. The proliferation activity was reduced after 12 h, but it was still
significantly higher than that of the control group (Figure 2D). After interfering with Bmsn, cell
proliferation decreased in all cases. Compared to 27 ◦C, the decrease in cell proliferation was
more obvious after 37 ◦C treatment. These results indicate that interfering with the Bmsn gene
significantly inhibited cell proliferation, while overexpression of the Bmsn gene significantly
promoted cell proliferation, especially at a high temperature (Figure 2E,F).

3.3. Effects of the Bmsn Gene on ROS Levels and Cell Survival in BmN Cells

To explore the effect of the Bmsn gene on oxidative stress, the Bmsn gene was over-
expressed in silkworm cells. The level of ROS was then detected using a reactive oxygen
fluorescence probe after the cells were treated with a high temperature or H2O2 for 12 h.
The green fluorescence was significantly reduced compared to the control group after
overexpression of Bmsn, indicating that the cellular ROS level was significantly reduced.
The results measured by the enzyme marker were consistent with those observed by
fluorescence microscopy (Figure 3A–C).
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after H2O2 treatment for 12 h. Scale bar = 80 µm. (B) The relative ROS content in the cells treated at
37 ◦C for 12 h was detected with an enzyme marker. (C) Relative ROS content in cells treated with
H2O2 for 12 h was detected by an enzyme marker; **, p < 0.01, Student’s t-test. (D) Effects of the
Bmsn gene on DNA damage in BmN-SWU1 cells under high-temperature stress. Scale bar = 40 µm.
(E) Effects of the Bmsn gene on the survival rate of BmN-SWU1 cells under high-temperature stress.
Scale bar = 80 µm.

ROS accumulation can damage cellular nucleic acids, proteins, and lipids [21]. We
determined whether the ROS accumulation caused by the high-temperature treatment of
BmN cells after 12 h caused cellular DNA damage and the extent of the damage using a
comet electrophoresis kit. The cells showed an obvious “comet-shaped tail”, as compared
to the control group, after high-temperature treatment for 12 h, indicating that the cellular
DNA was damaged (Figure 3D, Table 1). Overexpression of the Bmsn gene significantly
reduced this damage. To clarify the ability of the Bmsn gene to reduce the damage caused
by cellular oxidative stress, cell survival was examined after high-temperature treatment
for 12 h. The living cells appeared green, and the dead cells were red under the fluorescence
microscope. These results showed that the survival rate of cells after overexpression of
Bmsn was significantly higher than the survival of the control group. After 37 ◦C treatment,
a large number of cells in the control group died, while few cells died after overexpression
of Bmsn (Figure 3E). This indicates that Bmsn can improve the survival rate of cells after
oxidative stress.

Table 1. DNA Damage Comet Assay results.

Group Tail Length (µm + SD) Head DNA (%) Tail DNA
(%) Olive Tail Moments

Control (37 ◦C) 56.94 ± 11.49 a 65.98 ± 8.78 a 34.02 ± 8.78 a 24.32 ± 6.63 a
Bmsn-OE (37 ◦C) 34.42 ± 8.48 bbb 75.64 ± 7.59 bbb 24.36 ± 7.59 bbb 12.64 ± 4.58 bbb
Control (27 ◦C) 6.34 ± 5.51 ccc 97.96 ± 3.42 ccc 2.04 ± 3.42 ccc 1.03 ± 1.49 ccc

Bmsn-OE (27 ◦C) 5.26 ± 5.62 ccc 98.36 ± 2.65 ccc 1.64 ± 2.65 ccc 0.82 ± 1.23 ccc

Values that do not share a common subscript letter in each column are significantly different at the p < 0.001 level.

3.4. Construction and Characteristic Analysis of Transgenic Silkworms Overexpressing the
Bmsn Gene

To further explore the effect of the Bmsn gene on silkworm individuals, we constructed
an overexpressing Bmsn transgenic silkworm strain, identified its reliability, and then ana-
lyzed the main traits of these transgenic silkworms. We successfully obtained a transgenic
strain with overexpression of the Bmsn gene and demonstrated that the insertion of the
Bmsn gene does not affect the expression of the adjacent genes KWMTBOMO10022 and
KWMTBOMO10022 (Figure 4). Compared to the same developmental stage of the con-
trol strain (Dazao), the larval sizes and weights of the Bmsn-OE strain were higher than
those of the control group (Figure 5A,B). This indicated that the Bmsn gene can promote
silkworm growth. Sixty individuals from the Bmsn-OE strain and the Dazao strain were
randomly selected, and the full cocoon weight, pupal weight, and cocoon layer weight
were scored. The cocoons and pupae of the Bmsn-OE strain were larger than those of the
control strain. The whole cocoon weight, pupa weight, cocoon layer weight, and cocoon
layer rate were greater than those of the control strain. This indicated that the Bmsn-OE
strain had improved economic traits (Figure 5C–H).
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Figure 4. Establishment and analysis of insertion sites of the Bmsn-OE transgenic strain. (A) Schematic
diagram of the Bmsn-OE transgenic strain vector construction. (B) The Bmsn-OE transgenic strain
was screened positive, and the arrow indicates the green fluorescence in the eyes of the positive
individuals, Scale bar (left) = 0.4 mm; Scale bar (right) = 2 mm. (C) Detection of the insertion site of
the Bmsn-OE transgenic strain vector and expression analysis of the Bmsn gene and genes on both
sides of the insertion site. **, p < 0.01; ns, p > 0.05, Student’s t-test.

3.5. Effects of High Temperature on Transgenic Silkworms Overexpressing Bmsn Gene

We verified that the Bmsn-OE strain has improved economic traits. To further explore
the high temperature tolerance of the Bmsn-OE strain, high-temperature shock experiments
lasting three days were conducted on the two silkworm strains at the fifth instar. Analysis
of the health index data of the Bmsn-OE strain and Dazao control showed that the average
mortality in the Bmsn-OE strain was significantly lower than that of the control group.
Under high temperatures, the cocooning rate and pupa life rate of the Bmsn-OE strain were
significantly higher than those of the control group. There was no significant difference
between the two strains at the normal feeding temperature (27 ◦C) (Figure 6). These
results show that the high-temperature environment had a significant impact on the growth
and development of the silkworm. The Bmsn-OE strain was less affected, indicating that
overexpression of the Bmsn gene can help silkworms resist high temperatures.
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Figure 6. Tolerance differences between the Bmsn-OE strain and the Dazao strain. (A) Growth of
Bmsn-OE and Dazao strains at 27 ◦C. (B) Growth of Bmsn-OE and Dazao strains at 37 ◦C. *, p < 0.05;
**, p < 0.01; ns, p > 0.05, Student’s t-test.

3.6. Effects of Overexpression of the Bmsn Gene on the Silkworm Fat Body

High expression of the Bmsn gene occurs in the silkworm fat body (Figure 1C), so
we investigated the detailed relationship between the Bmsn gene and the fat body. The
morphological changes in the fat body of the experimental group (Bmsn-OE strain) and
the control (Dazao) group were observed at different time points after high-temperature
treatment. After 37 ◦C treatment for 48 h, differences between the fat body morphology
of the control and the experimental group were apparent. After 72 h of 37 ◦C treatment,
the fat body morphology of the control group was flocculent, while the fat body of the
experimental group retained its flake-like shape (Figure 7A). This suggested that the Bmsn
gene may play a role in delaying the degradation of the fat body. Changes in the fat body
cells after high-temperature shock were also observed by HE staining. The fat body cells in
the control group and the experimental group were densely arranged after 48 h of high-
temperature treatment. The boundary between the adipose body cells in the control group
then began to disappear, and the adipose body cells were dissociated after 72 h of treatment,
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while the cells in the experimental group were still densely distributed (Figure 7B). This
suggests that overexpression of the Bmsn gene may delay the dissociation of fat body cells
under high temperatures.
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Figure 7. Effects of overexpression of the Bmsn gene on silkworm fat body. (A) Morphological
changes in silkworm fat body after overexpression of the Bmsn gene. Scale bar = 2.5 mm. (B) Fat body
HE staining. Scale bar = 10 µm. (C) Expression characteristics of fat body oxidative stress indexes
and related genes in different strains. *, p < 0.05; **, p < 0.01, Student’s t-test.

Changes in related indexes and related genes such as ROS, total SOD, and CAT were
also detected in the fat body [22]. The oxidative stress index, ROS, total SOD, and CAT-
related genes of silkworms treated with high temperatures for 24 h were significantly
lower than those of the control group (Figure 7C). These data suggest that the Bmsn gene
has a high-temperature resistance function by delaying damage to fat bodies caused by
high-temperature stress.

4. Discussion

Insects are poikilothermic and generally have high-temperature requirements for
their growth and development [23]. Under suitable temperature conditions, growth and
development will accelerate with a temperature increase. However, when the temperature
exceeds the suitable range, insect development will be retarded [24]. The reproduction
of insects also requires a suitable temperature. Beyond this range, reproduction and
reproductive capacity are inhibited [25]. High temperatures can cause changes in the
structure and function of biological macromolecules and proteins in insects. It will affect



Insects 2024, 15, 264 12 of 15

their efficiency and function, including nuclear RNA transcription, translation, and RNA
binding to ribosomal proteins [14,26]. Therefore, understanding the internal mechanism
of high-temperature effects on insects is valuable for economically important insects and
has significance for pest control. The silkworm is a useful biological model for research
on pest control [27]. In this study, we demonstrated that the Bmsn gene is involved in the
high-temperature resistance of the silkworm, and this provides a new target for further
molecular improvement.

The sn gene encodes a single protein product that has homology with the myobundle
protein (Fascin) from sea urchins [28]. The human sn gene is involved in cell proliferation [29].
Multiple sequence alignment analysis showed that the sequences of sn are highly conserved
among different species (Figure S1). This suggests that its functionality may also be conser-
vative. The sn gene plays an important role in insects. For example, the scales on the wings
of moths and butterflies are specialized chitin layers that can sense the temperature and
allow for thermoregulation [30]. Insects can develop heat stress in hot environments [31].
Heat stress produces highly conserved adaptive responses in animals [32]. Heat stress
leads to the accumulation of ROS [33]. ROS accumulation causes oxidative stress, which in
turn results in DNA damage, lipid oxidation, protein degradation, enzyme inactivation,
and cell death [34]. In this study, we found that the Bmsn gene reduces heat stress-induced
ROS accumulation in silkworms, reduces cellular DNA damage, improves cell viability,
and prolongs cell survival. This suggests that the Bmsn gene is able to regulate intracellular
ROS levels and increase the resistance to high temperatures in the silkworm.

The fat body is an important metabolic organ of insects, and it has a direct effect on the
regulation of insect growth and development [35]. The silkworm fat body is equivalent to
the adipose tissue and liver of vertebrates, and it is an important organ for nutrient storage,
energy metabolism, immune response, and detoxification [36]. Our data showed that the
Bmsn gene is highly expressed in the fat body of the silkworm (Figure 1C), and there was
a significant difference in the morphology of the fat body of the Bmsn-OE strain and the
Dazao strain after high-temperature treatment. At high temperatures, the fat body of the
Dazao strain was flocculent, and the cells of fat corpuscles dissociated, while the fat body
of the Bmsn-OE strain remained flaky, and the cells were still dense. The fat body is the
center of material and energy metabolism in the silkworm. During the larval stage, the
fat body absorbs a large amount of nutrients from the blood to supply the energy needed
during the less active pupa and adult stages [37]. The Bmsn gene delays the dissociation of
fat body cells at high temperatures, indicating that it participates in the response of the fat
body to high-temperature stress [38].

To detail the effects of the Bmsn gene on individual development in silkworms exposed
to high temperatures, we constructed a transgenic silkworm strain overexpressing the Bmsn
gene. We analyzed the economic characteristics (cocoon weight and cocoon shell weight)
and high-temperature resistance of the Bmsn-OE strain and the Dazao strain. The Bmsn-OE
strain had a larger body size, greater weight, and higher cocoon formation rate under
the same feeding conditions, which indicates that the Bmsn gene promotes silkworm
growth and development and improves its economic characteristics. In the 27 ◦C group,
the mortality statistics showed a small but significant difference; this result was within a
reasonable range considering the influence of abiotic factors and the randomly selected
growth stage of the silkworms. The high-temperature resistance of the Bmsn-OE strain was
superior to that of the Dazao strain, with a significantly higher silkworm mortality, cocoon
formation rate, and pupa life rate observed in the Bmsn-OE strain compared to the Dazao
strain at high temperatures. It is important for the sericulture industry to improve the high-
temperature resistance and economic characteristics of silkworms. Additionally, nearly
half of the agricultural and forestry pests are Lepidoptera [16], suggesting that the negative
effect of interfering with the sn gene may be significant for Lepidoptera pest control.
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5. Conclusions

To summarize, we demonstrated that the Bmsn gene can increase the proliferation
activity of silkworm cells and enhance their tolerance to high temperatures. Overexpression
of the Bmsn gene can increase high-temperature resistance and improve the economic
characteristics of silkworms (Figure 8). The Bmsn-OE transgenic strain is valuable for
the development of stress-resistant silkworm varieties and the advanced study of high-
temperature resistance mechanisms. This study also provides new molecular targets that
may be useful for the management of Lepidoptera pests.
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