Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Test Agents
2.3. Experimental Methods for Life Tables
2.4. Data Analysis
2.5. Population Projections
3. Results
3.1. Effect of miR-184 Agomir Treatment on Growth and Development of S. avenae
3.2. Effect of miR-184 Agomir Treatment on Population Parameters of S. avenae Adult Aphids
3.3. Effect of miR-184 Agomir Treatment on Survival Rate and Survival Time of S. avenae
3.4. Effect of miR-184 Agomir Treatment on Life Table Parameters in S. avenae Populations
3.5. Prediction of S. avenae Population Followed by miR-184 Agomir Treatment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, T.K.; Kolb, F.L. Effects of barley yellow dwarf virus on yield and yield components of drilled winter wheat. Plant Dis. 1998, 82, 620–624. [Google Scholar] [CrossRef]
- Larsson, H. A crop loss model and economic thresholds for the grain aphid, Sitobion avenae (F.), in winter wheat in southern Sweden. Crop Prot. 2005, 24, 397–405. [Google Scholar] [CrossRef]
- Li, D.D.; Su, D.; Tong, Z.Q.; Zhang, C.; Zhang, G.S.; Zhao, H.Y.; Hu, Z.Q. Virus-Dependent and -Independent Responses of Sitobion avenae (Homoptera: Aphididae) Feeding on Wheat Infected by Transmitted and Nontransmitted Viruses at Transcriptomic Level. J. Econ. Entomol. 2019, 112, 2067–2076. [Google Scholar] [CrossRef]
- Van Emden, H.F.; Harrington, R. Aphids as Crop Pests; CABI: Wallingford, UK, 2007. [Google Scholar]
- Fontaine, S.; Caddoux, L.; Barres, B. First report of the kdr pyrethroid resistance mutation in a French population of the English grain aphid, Sitobion avenae. Crop Prot. 2023, 165, 106153. [Google Scholar] [CrossRef]
- Gong, P.P.; Li, X.N.; Gao, H.F.; Wang, C.; Li, M.Y.; Zhang, Y.H.; Li, X.R.; Liu, E.L.; Zhu, X. Field evolved resistance to pyrethroids, neonicotinoids, organophosphates and macrolides in Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius) from China. Chemosphere 2021, 269, 128747. [Google Scholar] [CrossRef]
- Liu, A.; Ru, T.; Wang, X.; Li, S. Sensitivity Determination of Two Species of Aphids to Insecticides. Plant Prot. 2001, 27, 20–21. (In Chinese) [Google Scholar]
- Yan, S.; Ren, B.; Zeng, B.; Shen, J. Improving RNAi efficiency for pest control in crop species. Biotechniques 2020, 68, 283–290. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Singh, I.K.; Singh, S.; Mogilicherla, K.; Shukla, J.N.; Palli, S.R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 2017, 7, 17059. [Google Scholar] [CrossRef]
- Behura, S.K. Insect microRNAs: Structure, function and evolution. Insect Biochem. Mol. Biol. 2007, 37, 3–9. [Google Scholar] [CrossRef]
- Zhang, Q.; Dou, W.; Taning, C.N.T.; Smagghe, G.; Wang, J.J. Regulatory roles of microRNAs in insect pests: Prospective targets for insect pest control. Curr. Opin. Biotechnol. 2021, 70, 158–166. [Google Scholar] [CrossRef]
- Zheng, X.X.; Weng, Z.J.; Li, H.; Kong, Z.C.; Zhou, Z.H.; Li, F.; Ma, W.H.; Lin, Y.J.; Chen, H. Transgenic rice overexpressing insect endogenous microRNA csu-novel-260 is resistant to striped stem borer under field conditions. Plant Biotechnol. J. 2021, 19, 421–423. [Google Scholar] [CrossRef]
- Shen, Z.J.; Liu, Y.J.; Zhu, F.; Cai, L.M.; Liu, X.M.; Tian, Z.Q.; Cheng, J.; Li, Z.; Liu, X.X. MicroRNA-277 regulates dopa decarboxylase to control larval-pupal and pupal-adult metamorphosis of Helicoverpa armigera. Insect Biochem. Mol. Biol. 2020, 122, 103391. [Google Scholar] [CrossRef]
- Shen, Z.J.; Zhu, F.; Liu, Y.J.; Li, Z.; Moural, T.W.; Liu, X.M.; Liu, X. MicroRNAs miR-14 and miR-2766 regulate tyrosine hydroxylase to control larval-pupal metamorphosis in Helicoverpa armigera. Pest Manag. Sci. 2022, 78, 3540–3550. [Google Scholar] [CrossRef]
- Iovino, N.; Pane, A.; Gaul, U. miR-184 Has Multiple Roles in Drosophila Female Germline Development. Dev. Cell 2009, 17, 123–133. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wu, L.X.; Li, H.Y.; Wen, X.Q.; Ma, E.B.; Zhu, K.Y.; Zhang, J.Z. The microRNA miR-184 regulates the CYP303A1 transcript level to control molting of Locusta migratoria. Insect Sci. 2021, 28, 941–951. [Google Scholar] [CrossRef]
- Ma, L.; Liu, L.; Zhao, Y.; Yang, L.; Chen, C.; Li, Z.; Lu, Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020, 16, e1008627. [Google Scholar] [CrossRef]
- Wu, W.; Wang, M.; Deng, Z.; Xi, M.; Dong, Y.; Wang, H.; Zhang, J.; Wang, C.; Zhou, Y.; Xu, Q. miR-184-3p promotes rice black-streaked dwarf virus infection by suppressing Ken in Laodelphax striatellus (Fallén). Pest Manag Sci 2023, 80, 1849–1858. [Google Scholar] [CrossRef]
- Li, X.R.; Zhang, F.M.; Coates, B.; Wei, C.P.; Zhu, X.; Zhang, Y.H.; Zhou, X.G. Temporal analysis of microRNAs associated with wing development in the English grain aphid, Sitobion avenae (F.) (Homoptera: Aphidiae). Insect Biochem. Mol. Biol. 2022, 142, 103579. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Xu, Y.; Yan, S.; Shen, J.; Yin, M. A Facile-Synthesized Star Polycation Constructed as a Highly Efficient Gene Vector in Pest Management. ACS Sustain. Chem. Eng. 2019, 7, 6316–6322. [Google Scholar] [CrossRef]
- Yang, J.; Yan, S.; Xie, S.; Yin, M.; Shen, J.; Li, Z.; Zhou, Y.; Duan, L. Construction and application of star polycation nanocarrier-based microRNA delivery system in Arabidopsis and maize. J. Nanobiotechnology 2022, 20, 219. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Chi, H.; Güncan, A.; Kavousi, A.; Gharakhani, G.; Atlihan, R.; Özgökçe, M.S.; Shirazi, J.; Amir-Maafi, M.; Maroufpoor, M.; Roya, T. TWOSEX-MSChart: The key tool for life table research and education. Entomol. Gen. 2022, 42, 845–849. [Google Scholar] [CrossRef]
- Chi, H.; Kavousi, A.; Gharekhani, G.; Atlihan, R.; Özgökçe, M.S.; Güncan, A.; Gökçe, A.; Smith, C.L.; Benelli, G.; Guedes, R.N.C.; et al. Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research, biological control, and pest management. Entomol. Gen. 2023, 43, 705–732. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chi, H. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. J. Appl. Entomol. 2013, 137, 327–339. [Google Scholar] [CrossRef]
- Markus, M.T.; Groenen, P.J.F. An introduction to the bootstrap. Psychometrika 1998, 63, 97–101. [Google Scholar]
- Akca, I.; Ayvaz, T.; Yazici, E.; Smith, C.L.; Chi, H. Demography and Population Projection of Aphis fabae (Hemiptera: Aphididae): With Additional Comments on Life Table Research Criteria. J. Econ. Entomol. 2015, 108, 1466–1478. [Google Scholar] [CrossRef]
- Akkopru, E.P.; Atlihan, R.; Okut, H.; Chi, H. Demographic Assessment of Plant Cultivar Resistance to Insect Pests: A Case Study of the Dusky-Veined Walnut Aphid (Hemiptera: Callaphididae) on Five Walnut Cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef]
- Smucker, M.D.; Allan, J.; Carterette, B. A Comparison of Statistical Significance Tests for Information Retrieval Evaluation. In Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal, 6–10 November 2007. [Google Scholar]
- Wei, M.F.; Chi, H.; Guo, Y.F.; Li, X.W.; Zhao, L.L.; Ma, R.Y. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) Reared on Four Cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis Pears With Estimations of Confidence Intervals of Specific Life Table Statistics. J. Econ. Entomol. 2020, 113, 2343–2353. [Google Scholar] [CrossRef]
- Chi, H. Timing of control based on the stage structure of pest populations: A simulation approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Chi, H. TIMING-MSChart-Exe.rar. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 July 2023).
- Dietzl, G.; Chen, D.; Schnorrer, F.; Su, K.C.; Barinova, Y.; Fellner, M.; Gasser, B.; Kinsey, K.; Oppel, S.; Scheiblauer, S.; et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007, 448, 151–156. [Google Scholar] [CrossRef]
- Dubelman, S.; Fischer, J.; Zapata, F.; Huizinga, K.; Jiang, C.J.; Uffman, J.; Levine, S.; Carson, D. Environmental Fate of Double-Stranded RNA in Agricultural Soils. PLoS ONE 2014, 9, e93155. [Google Scholar] [CrossRef]
- Tan, J.G.; Levine, S.L.; Bachman, P.M.; Jensen, P.D.; Mueller, G.M.; Uffman, J.P.; Meng, C.; Song, Z.H.; Richards, K.B.; Beevers, M.H. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 2016, 35, 287–294. [Google Scholar] [CrossRef]
- Song, H.F.; Zhang, J.Q.; Li, D.Q.; Cooper, A.M.W.; Silver, K.; Li, T.; Liu, X.J.; Ma, E.B.; Zhu, K.Y.; Zhang, J.Z. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochem. Mol. Biol. 2017, 86, 68–80. [Google Scholar] [CrossRef]
- Gendron, C.M.; Pletcher, S.D. MicroRNAs mir-184 and let-7 alter Drosophila metabolism and longevity. Aging Cell 2017, 16, 1434–1438. [Google Scholar] [CrossRef]
- Li, Y.; Song, W.; Li, H.; Liu, C. Effects of Sublethal Concentrations of Two Pesticides on the Population Density of Sitobion Miscanthi. Plant Prot. 2021, 47, 6. [Google Scholar]
- Yan, S.; Qian, J.; Cai, C.; Ma, Z.; Li, J.; Yin, M.; Ren, B.; Shen, J. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 2020, 93, 449–459. [Google Scholar] [CrossRef]
- Yu, X.D.; Killiny, N. RNA interference of two glutathione S-transferase genes, Diaphorina citri DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid (Hemiptera: Liviidae) to the pesticides fenpropathrin and thiamethoxam. Pest Manag. Sci. 2018, 74, 638–647. [Google Scholar] [CrossRef]
- Petrick, J.S.; Brower-Toland, B.; Jackson, A.L.; Kier, L.D. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: A scientific review. Regul. Toxicol. Pharmacol. 2013, 66, 167–176. [Google Scholar] [CrossRef]
Development Duration | miR-184 Agomir | NC SPc | NC Water |
---|---|---|---|
1st instar nymph | 2.06 ± 0.04 a | 2.06 ± 0.05 a | 2.00 ± 0.03 a |
2nd instar nymph | 2.34 ± 0.06 a | 2.14 ± 0.06 ab | 1.78 ± 0.04 b |
3rd instar nymph | 2.4 ± 0.08 a | 2.56 ± 0.06 a | 2.17 ± 0.05 b |
4th instar nymph | 2.58 ± 0.07 a | 2.69 ± 0.05 a | 2.73 ± 0.05 a |
Pre-adult | 9.36 ± 0.10 a | 9.45 ± 0.09 a | 8.66 ± 0.09 b |
Adult longevity | 10.58 ± 0.55 a | 10.24 ± 0.43 a | 11.45 ± 0.58 a |
Total longevity | 19.94 ± 0.54 a | 19.69 ± 0.44 a | 20.11 ± 0.58 a |
Parameters | miR-184 Agomir | NC SPc | NC Water |
---|---|---|---|
Mean longevity (d) | 12.9 ± 0.68 b | 17.31 ± 0.58 a | 18.61 ± 0.63 a |
Fecundity | 20.1 ± 1.27 b | 23.76 ± 1.15 a | 24.92 ± 1.43 a |
Oviposition period (d) | 9.00 ± 0.75 a | 9.00 ± 0.48 a | 9.00 ± 0.60 a |
Pre-adult survival | 0.53 ± 0.04 b | 0.84 ± 0.03 a | 0.89 ± 0.03 a |
Parameters | miR-184 Agomir | NC SPc | NC Water |
---|---|---|---|
Intrinsic rate of increase r | 0.1754 ± 0.0067 b | 0.2069 ± 0.0040 a | 0.2167 ± 0.0044 a |
Finite rate of increase λ | 1.1917 ± 0.0079 b | 1.2298 ± 0.0049 a | 1.2420 ± 0.0054 a |
Net reproductive rate R0 | 13.71 ± 1.35 b | 20.72 ± 1.30 a | 22.26 ± 1.43 a |
Mean generation time T (d) | 14.93 ± 0.17 a | 14.65 ± 0.17 ab | 14.32 ± 0.17 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wei, G.; Wu, L.; Zhang, Y.; Zhu, X.; Merchant, A.; Zhou, X.; Liu, X.; Li, X. Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae. Insects 2024, 15, 459. https://doi.org/10.3390/insects15060459
Zhang C, Wei G, Wu L, Zhang Y, Zhu X, Merchant A, Zhou X, Liu X, Li X. Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae. Insects. 2024; 15(6):459. https://doi.org/10.3390/insects15060459
Chicago/Turabian StyleZhang, Cong, Guohua Wei, Linyuan Wu, Yunhui Zhang, Xun Zhu, Austin Merchant, Xuguo Zhou, Xiangying Liu, and Xiangrui Li. 2024. "Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae" Insects 15, no. 6: 459. https://doi.org/10.3390/insects15060459
APA StyleZhang, C., Wei, G., Wu, L., Zhang, Y., Zhu, X., Merchant, A., Zhou, X., Liu, X., & Li, X. (2024). Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae. Insects, 15(6), 459. https://doi.org/10.3390/insects15060459