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Abstract: The purpose of this study was to relate the shape of countermovement jump (CMJ) vertical
ground reaction force waveforms to discrete parameters and determine if waveform shape could
enhance CMJ analysis. Vertical ground reaction forces during CMJs were collected for 394 male
and female collegiate athletes competing at the National Collegiate Athletic Association (NCAA)
Division 1 and National Association of Intercollegiate Athletics (NAIA) levels. Jump parameters were
calculated for each athlete and principal component analysis (PCA) was performed on normalized
force-time waveforms consisting of the eccentric braking and concentric phases. A K-means clustering
of PCA scores placed athletes into three groups based on their waveform shape. The overall
average waveforms of all athletes in each cluster produced three distinct vertical ground reaction
force waveform patterns. There were significant differences across clusters for all calculated jump
parameters. Athletes with a rounded single hump shape jumped highest and quickest. Athletes
with a plateau at the transition between the eccentric braking and concentric phase (amortization)
followed by a peak in force near the end of the concentric phase had the lowest jump height and
slowest jump time. Analysis of force-time waveform shape can identify differences in CMJ strategies
in collegiate athletes.

Keywords: countermovement jump; force plates; principal component analysis; jump strategy;
collegiate athletics

1. Introduction

The countermovement jump (CMJ) is a popular assessment of athletic performance with numerous
parameters proposed to quantify important aspects of the force–time curves generated during a CMJ.
However, debate continues regarding which of these parameters provides the best overall assessment of
athletic performance [1–6]. Discrete parameters derived from force–time data (e.g., peak force) reduce
the dimensionality of the measured waveform [7], facilitating analysis, but important information on
how athletes generate force during the jump cycle may be lost. It is invaluable for the practitioner to
understand how an athlete applies force and to be able to relate that force application to performance.
How the athlete applies force throughout the movement may be of importance for training exercise
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selection and how to further enhance athletic performance. For example, explosive jumpers are
characterized by the ability to jump high in a short amount of time and can be identified by the reactive
strength index modified (RSImod) parameter [8–10], which is the ratio of jump height over jump time.
However, the RSImod parameter does not provide information on how the athlete developed force
throughout the CMJ cycle, information that may help identify the unique jump strategy employed by
the athlete.

Movement strategies applied by the athlete are reflected in the ground reaction force-time curve
during the CMJ and analysis of force-time waveforms may elucidate information on movement
strategies and performance [11]. Greater jump heights are obtained by increasing velocity of the
jumper’s center-of-mass at take-off. This velocity is directly related to the vertical impulse force
generated between the jumper and the ground and is derived from the area under the force-time curve.
The same force impulse can be generated through a lower force applied over a longer time, or higher
force applied over a shorter time. The shape of the force-time curve may provide information on how
force is developed and utilized during the jump. The final phase of the CMJ prior to take-off, the
concentric phase, is most responsible for generating jump momentum at take-off. However, the jump
cycle is a continuum, and the concentric phase is strongly influenced by the strategy employed by the
athlete prior to entering the concentric phase. The ability to identify efficient and inefficient strategies
throughout the jump cycle would allow practitioners to identify specific points in the jump where
improvements can be made.

Quantitative analysis of waveforms is simplified through dimensionality reduction techniques
that extract waveform features for downstream analyses. Principal component analysis (PCA) has
been used to differentiate differences in the kinematic and kinetic waveforms of gait analysis [12,13].
PCA has also been applied to CMJ waveforms to distinguish the effect of training programs [14].
Floria et al. used PCA of force, velocity, and center of mass displacement waveforms to identify
differences associated with increased CMJ height following a training intervention for female basketball
players [14]. While PCA coefficients can be used in hypothesis testing to determine if differences
occurred in waveform shape between existing groups, clustering techniques of PCA coefficients can be
used to place athletes in groups based on the similarity of waveform shape [15].

Analysis of force-time waveforms during the CMJ may identify movement strategies employed
by athletes and provide a more complete profile of the athlete. This information could aid practitioners
in selecting training to enhance athletic performance. Relating movement strategies gleaned from
force-time waveforms to sport and performance parameters is a needed step in the realization of
this objective. The purpose of this study is to determine differences in jump strategies, using PCA
with K-means clustering of force plate data, for collegiate athletes at the National Collegiate Athletic
Association (NCAA) Division 1 and National Association of Intercollegiate Athletics (NAIA) levels
across multiple male and female sports. We hypothesized that linear dimensionality reduction and
clustering of force–time waveforms during the CMJ would elucidate differences in jumping strategies
for these athletes and that these differences would correlate to gross CMJ parameters. This information
could then be used to determine jump strategies of high performing athletes and guide training for
sport–specific requirements.

2. Materials and Methods

Project work (Figure 1) consisted of measuring vertical ground reaction forces (vGRF) for 394
collegiate athletes performing a counter movement jump (CMJ). Discrete CMJ parameters were
calculated for each athlete and a principle component analysis (PCA) performed on vGRF waveforms
from all athletes. A K-means clustering was used to cluster athletes based on their PCA scores and
CMJ parameters were compared between athletes in each cluster.
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Figure 1. Flow diagram of project. COM is the body center of mass.

2.1. Participants

Participants were from the midwestern region of the United States and were selected
based on participation in a collegiate athletic program. Participants (n = 394, age 18–23 years,
mass = 74.0 ± 14.3 kg) included NCAA Division 1 athletes (baseball (n = 38), men’s basketball (n = 12),
men’s swimming and diving (n = 26), softball (n = 21), women’s volleyball (n = 7), women’s basketball
(n = 11), women’s soccer (n = 20), women’s swimming and diving (n = 20), and wrestling (n = 24)) and
NAIA athletes (baseball (n = 15), cheer (n = 9), cross country (n = 17), men’s basketball (n = 13), men’s
golf (n = 13), men’s soccer (n = 22), men’s tennis (n = 13), softball (n = 16), track and field (n = 32),
women’s volleyball (n = 16), women’s basketball (n = 13), women’s golf (n = 9), women’s soccer (n = 19),
and women’s tennis (n = 8)). All subjects gave their informed consent prior to participation. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by our
Institutional Ethics Committee (Project # 2009420-QI). The inclusion criteria included participation in
collegiate athletics and the exclusion criteria included inability to safely perform a CMJ.

2.2. Counter Movement Jump Force Plate Data Collection

Following a standard dynamic warm-up, each participant performed two CMJs without an arm
swing [16] with each foot centered on two single-axis force plates (PS-2141, PASCO Scientific, Roseville,
CA, USA) sampling at 1000 Hz. The force plates were placed on a solid substrate 9 cm apart within a
foam surround, the same height as the force plates, for the purpose of ensuring the safety of the athlete
upon landing. Each force plate was calibrated prior to data collection and verified via a calibrated
mass. Participants were first instructed to stand motionless, with their arms akimbo, for at least two
seconds for the purpose of measuring body mass. Participants were then instructed to jump quickly
and as high as possible with their hands remaining on their hips. After landing, they returned to the
initial starting position with a foot centered on each plate and remained in a quiet standing position
prior to being instructed to jump again.
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2.3. Body Mass and Center of Mass Velocity

Custom MATLAB code (MATLAB R2019b, The MathWorks Inc., Natick, MA, USA) was used
to process the force plate data, identify CMJ phases, and calculate CMJ parameters. Forces from the
two force plates were summed to produce total vGRF. A 50 ms window of force data collected during
quiet standing was used as an initial estimate of body weight. To ensure the accuracy of body mass
measurements, the criteria for establishing body mass required the standard deviation of force during
a 1 s window be less than 0.1% of the initial estimate of body weight. Center of mass (COM) velocity
was determined from vGRF using the following relationships.

vGRF = m× accCOM + m× g (1)

where vGRF is the total vertical ground reaction force measured by the force plates, m is the body
mass of the athlete, and g is acceleration due to gravity. Acceleration of the body’s COM, accCOM,
can be determined from Equation (1). Velocity of the COM, velCOM, can be determined by integrating
accCOM. To reduce accumulated integration errors over the two jump cycles, velCOM was recalculated
for each jump starting at a point 0.2 s prior to the onset of CMJ motion.

2.4. Counter Movement Jump Phases and Parameters

Both velCOM and vGRF were used to determine phases of the CMJ cycle (Figure 2). The onset of
CMJ motion was defined as the point when the vGRF dropped below 2.5% of body weight following
motionless standing [3]. The take-off point of the CMJ was defined as the point when vGRF first
dropped below 20 N. Time to take-off was defined as the time from onset of CMJ motion to the time
at take-off. The start of the eccentric braking phase [17] was defined as the peak negative velCOM
between the onset of CMJ motion and the take-off point. The end of the eccentric braking phase (start
of concentric phase) was defined as the point when velCOM crossed zero following the start of the
eccentric phase. The eccentric braking and concentric phase times were determined for each CMJ
from the time points defining the start of the eccentric braking phase, the start of the concentric phase,
and take-off.
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Figure 2. Defined time points of the CMJ. (A): onset of motion (vGRF drops below 2.5% body weight),
(B): start of the eccentric braking phase (peak negative velCOM), (C): start of concentric phase (velCOM
crosses zero), (D): take-off (vGRF drips below 20 N).

Jump parameters calculated for each participant included jump height, eccentric braking phase
time, concentric phase time, time to take-off, reactive strength index modified (RSImod), eccentric
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braking rate of force development (RFD), eccentric braking phase net vertical impulse, concentric
phase net vertical impulse, mean eccentric braking power, mean concentric power, peak eccentric
braking power and peak concentric power.

Jump height was calculated using velCOM at take-off and changes in kinetic and potential energy
between take-off and the point when peak jump height is reached [18]. In this method, jump height
is the difference between the height of the COM at the point of take-off and the peak height reached
during the jump. The RSImod is a ratio of the jump height over total jump time and has been shown to
be a reliable indicator of jump performance [1,9]. RSImod was calculated using jump height divided by
time to take-off. The RFD is a measure of how fast the athlete can develop force and was determined
using vGRF at the start and end of the eccentric braking phase and the eccentric braking phase time.
The RFD was normalized to body mass. The net vertical impulse during the eccentric braking and
concentric phases was calculated using the vGRF time integral for each respective phase with body
weight excluded. The net force impulse values were normalized to body mass for each subject [6].
The mean and peak powers for each phase were calculated using vGRF and velCOM. Eccentric
braking power was reported as a negative value because vGRF and velCOM act in opposite directions.
All power values were normalized to body mass. Calculated jump parameters were averaged for each
subject over the two measured jumps.

2.5. Normalized Ground Reaction Force Waveforms

The analyzed vGRF waveform included both the eccentric braking and concentric phases.
The vGRF time series for each jump was truncated to the start of the eccentric braking phase and
to the end of the concentric phase (take-off). Each vGRF waveform was normalized in magnitude
to body mass and then time normalized by fitting it to a cubic spline that consisted of 101 points.
Each participant performed two CMJs and the two normalized waveforms were averaged [19].

2.6. Principal Component Analysis and K-Means Clustering

PCA is an orthogonal decomposition technique that reduces large data sets into independent
variables representing unique characteristics of the original waveforms called principal components
(PCs). PCA reduces the data by extracting PCs that capture the maximum variance in the original
waveforms. Typically, only a few PCs are needed to adequately reproduce the original waveform.
The PC scores, coefficients that provide the contribution of each PC for an individual subject,
are independent and suitable for downstream analyses such as cluster analysis and hypothesis testing
of waveform differences. For this study, PCA was conducted on a 394 × 101 matrix (394 participants,
101-point vGRF waveform) in MATLAB. The PCA generated 101 eigenvectors (PC loading vectors) and
for each athlete a PC score was generated for every PC loading vector (394× 101 matrix). The normalized
force-time curve for each participant can be reconstructed using Equation (2).

x̂i = x +
n∑

j=1

PC scorei ( j) × PC loading vector( j) (2)

where x̂i is the reconstructed normalized vGRF waveform for athlete i, n is the number of PCs used in
the reconstruction, x is the mean normalized vGRF, PC scorei ( j) represents the principal component
scores for athlete i, and PC loading vector( j) represents the loading vectors. If all PCs (n = 101) are
used in Equation (2), then x̂i will be an exact reproduction of the original normalized vGRF waveform.
Typically, all components are not needed and only the first few PCs are required to adequately
reconstruct the original force–time waveform. Parallel analysis was used to determine the number
of PCs to retain [13,20] and based on this analysis, four PCs were retained for our PCA. The first
four PCs accounted for 97.6% of the variance in the vGRF waveforms (PC1 = 66.5%, PC2 = 18.5%,
PC3 = 8.8%, and PC4 = 3.8%). K-means clustering is a method used to partition observations into k
clusters and when performed on PC scores, K-means clustering can identify groups that have similar
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waveform shapes. K-means clustering has previously been found to be suitable for clustering vGRF
waveforms [15]. For this study, a K-means clustering algorithm was run on the four PC scores retained
for each athlete using multiple values of k. Silhouette analysis was used to evaluate the separation
distance between clusters resulting in three clusters being chosen.

2.7. Statistical Analysis

K-means clustering grouped athletes into three clusters based on their first four PC scores.
MATLAB R2019b was used for statistical analysis calculations. Descriptive statistics, including the
mean and standard deviation, of body mass, jump height, eccentric braking phase time, concentric
phase time, time to take-off, RSImod, eccentric braking RFD, eccentric braking impulse force, concentric
impulse force, mean eccentric braking power, mean concentric power, peak eccentric braking power,
and peak concentric power were calculated for athletes in each of the three clusters. Descriptive statistics
of PC scores for the four PCs retained were also calculated for each cluster. In addition, the mean and
standard deviation of the normalized vGRF waveforms for each cluster were calculated. To examine
the differences in means for each cluster, the 95% confidence interval of body mass, CMJ parameters,
and PC scores for athletes in each cluster were calculated. Alternatively, a single factor ANOVA was
used to determine if there were statistically significant differences (statistical significance level set at
p ≤ 0.05) across cluster means for body mass, CMJ parameters, and PC scores. Where statistically
significant differences occurred, Tukey’s Honest Significant Difference (HSD) post hoc analysis was
performed to detect differences between individual clusters. In addition, the magnitude of Cohen’s d
effect size between individual clusters was calculated for all CMJ parameters and PC scores that had
statistically significant differences across clusters (PC1, PC2, and PC3). To determine the distribution
of athletes in each cluster by sport, the frequency of athletes in each cluster was recorded for each
team in a contingency table. A Pearson’s chi-squared test for independence was used to determine if
the team cluster distributions occurred by chance or if there was a statistically significant difference
between observed distribution and an expected distribution of no relationship between cluster and
sport. Pearson residuals were used to determine the extent of the difference between the expected and
actual cluster distribution for each team. Pearson residuals greater than 3 indicate that a team had a
high concentration of athletes in that cluster.

3. Results

K-means clustering of the vGRF waveform PC scores grouped 171 athletes into Cluster 1,
165 athletes into Cluster 2, and 58 athletes into Cluster 3. The average vGRF waveforms of athletes in
each cluster produced three distinct waveform shapes (Figure 3). Athletes in Cluster 1 generated lower
normalized vGRFs throughout the eccentric braking and concentric phases. The shape of the Cluster 1
average waveform is characterized by a plateau at the start of the concentric phase and then a peak
just prior to the rapid decrease in vGRF at the end of the concentric phase. The shape of the Cluster 2
average waveform is characterized by two peaks of approximately equal magnitude, one occurring
at the start of the concentric phase and the second peak occurring at just prior to the rapid decrease
in vGRF at the end of the concentric phase. Athletes in Cluster 3 generated the greatest vGRF, with
the waveform shape being a single hump peaking approximately at 1/3 of the way through the time
in the concentric cycle. The Cluster 3 peak occurred at roughly the same time as the trough between
concentric peaks for Cluster 2 athletes and at the end of the concentric plateau for Cluster 1 athletes.

Athletes in Cluster 3 jumped significantly higher than athletes in Cluster 1 and on average jumped
higher than athletes in Cluster 2, although this difference was not significant. Athletes in Cluster 3
jumped in less time than athletes in Clusters 1 and 2 (Table 1), with shorter time to take-off and less time
spent in both the eccentric braking and concentric phases. Athletes in Cluster 1 had the lowest jump
heights and longest jump times. Cluster 3 athletes had higher RSImod and higher eccentric braking
RFD than Cluster 1 and 2 athletes, with Cluster 1 athletes having the lowest values. Cluster 2 athletes
generated the greatest net vertical force impulse during the eccentric braking phase, with Cluster 1
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athletes generating the lowest force impulse. Cluster 3 athletes generated the greatest net vertical force
impulse during the concentric phase, with Cluster 1 athletes generating the lowest. Cluster 2 and 3
athletes generated similar mean and peak power during eccentric braking, with Cluster 1 athletes
producing lower power. Cluster 3 athletes generated the greatest mean and peak power during the
concentric phase and Cluster 1 athletes generated the lowest power.

Differences in body mass across the three clusters were not statistically significant (Table 1).
There were statistically significant differences across clusters for every evaluated jump parameter.
Post hoc analysis showed statistically significant differences between groups with the exception of
jump height, net concentric impulse, mean eccentric braking power and peak eccentric braking power
between Clusters 2 and 3. All differences in jump parameters between Clusters 1 and 2 and between
Clusters 1 and 3 were statistically significant. In addition, Cohen’s d effect size between Cluster 1 and
Cluster 3 was large (>0.8) for all measured jump parameters. The largest effects sizes occurred for
eccentric braking RFD, where effect sizes where greater than 2.1 for all cluster comparisons and for
eccentric braking time where all effect sizes were greater than 1.6 for all cluster comparisons.

There were statistically significant differences across clusters for PC scores 1, 2, and 3 (Table 2).
PC score differences between clusters were significant with the exception of PC2 between Clusters
1 and 3, and PC3 between Clusters 1 and 2 and between Clusters 1 and 3. PC1 explains 66.5% of
the vGRF waveform variance and PC1 scores are significantly different across and between the three
clusters. In addition, the Cohen’s d effect sizes between clusters for PC1 were extremely large with all
values greater than 2.6. To better understand the contribution of PC1 to the vGRF waveform shape,
the waveform was reconstructed (Equation (2)) using only PC1. Three waveforms were reconstructed
using PC1 scores at the 5th, 50th, and 95th percentile of PC1 (Figure 4). The resulting waveform shapes
are similar to the averaged waveforms of Clusters 1, 2, and 3 (Figure 3).
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 <0.01 * 

0.58 

<0.01 * 

0.83 

0.12 

0.33 

Mean Ecc Brak Power 

(W/kg) 

−7.81 ± 1.66 

[−8.06, −7.56] 

−10.77 ± 2.16 

[−11.10, −10.44] 

−10.81 ± 2.77 

[−11.51, −10.09] 
<0.01 * 

<0.01 * 

1.54 

<0.01 * 

1.50 

0.99 

0.01 

Mean Con Power (W/kg) 
22.58 ± 4.76 

[21.87, 23.29] 

27.01 ± 4.00 

[26.40, 27.62] 

32.68 ± 5.27 

[31.32, 34.03] 
<0.01 * 

<0.01 * 

1.01 

<0.01 * 

2.06 

<0.01 * 

1.30 

Peak ECC Brak Power 

(W/kg) 

−10.11 ± 2.21 

[−10.44, −9.78] 

−14.24 ± 3.15 

[−14.72, −13.76] 

−14.45 ± 4.07 

[−15.49, −13.40] 
<0.01 * 

<0.01 * 

1.53 

<0.01 * 

1.55 

0.89 

0.06 

Peak Con Power (W/kg) 
45.22 ± 9.68 

[43.76, 46.67] 

50.29 ± 8.16 

[49.05, 51.54] 

57.43 ± 9.61 

[54.64, 59.90] 
<0.01 * 

<0.01 * 

0.57 

<0.01 * 

1.26 

<0.01 * 

0.83 

Figure 3. Average vGRF waveforms (eccentric braking and concentric phases) for each cluster.
The average transition point, from eccentric braking to the concentric phase, is also shown for each
cluster as a vertical line.
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Table 1. The number and percentage of participants in each cluster along with the mean and standard
deviations of body mass and CMJ parameters. Also included are the single factor ANOVA p-values
of body mass and CMJ parameters across all three clusters as well as the Tukey’s HSD post hoc test
p-values between clusters. Body mass was the only variable that did not show statistically significant
differences across the means of the three clusters. * Significant difference (p ≤ 0.05).

Parameter

Avg ± Std Tukey’s HSD

95% CI [ ] Cohen’s d Effect Size

Cluster 1 Cluster 2 Cluster 3 ANOVA 1 vs. 2 1 vs. 3 2 vs. 3

Number of Participants 171 (43%) 165 (42%) 58 (15%) n/a n/a n/a n/a

Body Mass (kg) 72.8 ± 15.5
[70.5, 75.1]

74.0 ± 13.2
[72.0, 76.0]

77.3 ± 13.7
[73.8, 80.8] 0.19 n/a n/a n/a

Jump Height (m) 0.29 ± 0.09
[0.274, 0.300]

0.34 ± 0.08
[0.324, 0.348]

0.37 ± 0.09
[0.343, 0.390] <0.01 * <0.01 *

0.58
<0.01 *

0.89
0.05
0.36

Eccentric Braking Time (s) 0.25 ± 0.05
[0.238, 0.253]

0.18 ± 0.02
[0.177, 0.184]

0.14 ± 0.02
[0.137, 0.148] <0.01 * <0.01 *

1.65
<0.01 *

2.31
<0.01 *

1.70

Concentric Time (s) 0.30 ± 0.04
[0.299, 0.310]

0.27 ± 0.03
[0.269, 0.277]

0.22 ± 0.03
[0.212, 0.226] <0.01 * <0.01 *

1.00
<0.01 *

2.51
<0.01 *

1.98

Time to Take-Off (s) 0.96 ± 0.11
[0.940, 0.973]

0.82 ± 0.09
[0.811, 0.837]

0.73 ± 0.09
[0.710, 0.755] <0.01 * <0.01 *

1.35
<0.01 *

2.15
<0.01 *

1.06

RSImod (ratio) 0.30 ± 0.10
[0.290, 0.319]

0.41 ± 0.09
[0.395, 0.422]

0.51 ± 0.09
[0.472, 0.543] <0.01 * <0.01 *

1.13
<0.01 *

1.89
<0.01 *

0.96

Ecc Brak RFD (N/s)/kg 36.66 ± 10.29
[35.1, 38.2]

67.02 ± 13.84
[64.9, 69.1]

109.65 ± 31.17
[101.6, 117.7] <0.01 * <0.01 *

2.50
<0.01 *

4.06
<0.01 *

2.15

Net Ecc Brak Impulse
(N-s/kg)

0.92 ± 0.17
[0.892, 0.942]

1.13 ± 0.19
[1.105, 1.162]

1.07 ± 0.21
[1.011, 1.121] <0.01 * <0.01 *

1.23
<0.01 *

0.83
0.04*
0.35

Net Con Impulse (N-s/kg) 2.33 ± 0.38
[2.28, 2.39]

2.53 ± 0.31
[2.49, 2.58]

2.64 ± 0.34
[2.55, 2.72] <0.01 * <0.01 *

0.58
<0.01 *

0.83
0.12
0.33

Mean Ecc Brak Power (W/kg) −7.81 ± 1.66
[−8.06, −7.56]

−10.77 ± 2.16
[−11.10, −10.44]

−10.81 ± 2.77
[−11.51, −10.09] <0.01 * <0.01 *

1.54
<0.01 *

1.50
0.99
0.01

Mean Con Power (W/kg) 22.58 ± 4.76
[21.87, 23.29]

27.01 ± 4.00
[26.40, 27.62]

32.68 ± 5.27
[31.32, 34.03] <0.01 * <0.01 *

1.01
<0.01 *

2.06
<0.01 *

1.30

Peak ECC Brak Power (W/kg) −10.11 ± 2.21
[−10.44, −9.78]

−14.24 ± 3.15
[−14.72, −13.76]

−14.45 ± 4.07
[−15.49, −13.40] <0.01 * <0.01 *

1.53
<0.01 *

1.55
0.89
0.06

Peak Con Power (W/kg) 45.22 ± 9.68
[43.76, 46.67]

50.29 ± 8.16
[49.05, 51.54]

57.43 ± 9.61
[54.64, 59.90] <0.01 * <0.01 *

0.57
<0.01 *

1.26
<0.01 *

0.83

Table 2. The mean and standard deviations of principal component (PC) scores for each cluster along
with the single factor ANOVA p-values across all three clusters and Tukey’s HSD post hoc test p-values
between clusters. * Significant difference (p ≤ 0.05).

Principal
Component

Avg ± Std
ANOVA

Tukey’s HSD

95% CI [ ] Cohen’s d Effect Size

Cluster 1 Cluster 2 Cluster 3 1 vs. 2 1 vs. 3 2 vs. 3

PC1 −18.87 ± 10.45
[−20.44, −17.31]

6.59 ± 8.46
[5.30, 7.88]

36.90 ± 16.31
[32.70, 41.09] <0.01 * <0.01 *

2.67
<0.01 *

4.58
<0.01 *

2.75

PC2 2.63 ± 10.69
[1.02, 4.23]

−4.03 ± 10.85
[−5.69, −2.38]

3.73 ± 13.15
[0.35, 7.12] <0.01 * <0.01 *

0.62
0.79
0.10

<0.01 *
0.68

PC3 −0.66 ± 7.01
[−1.71, 0.39]

1.90 ± 7.83
[0.71, 3.10]

−3.47 ± 9.82
[−5.99, −0.94] <0.01 * 0.01 *

0.35
0.05
0.36

<0.01 *
0.64

PC4 0.46 ± 5.81
[−0.41, 1.33]

−0.59 ± 4.50
[−1.28, 0.10]

0.31 ± 5.67
[−1.15, 1.77] 0.17 n/a n/a n/a

There was a statistically significant relationship between sport and cluster frequency (Pearson’s
chi-squared test p-value < 0.01). Sports that had a high distribution of athletes in Cluster 1 were
NAIA cross country, D1 women’s soccer, NAIA softball, and NAIA women’s golf (Table 3). Sports
with a high distribution of athletes in Cluster 2 were D1 men’s swimming, NAIA men’s basketball,
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and NAIA men’s tennis. Sport with a high distribution of athletes in Cluster 3 were D1 men’s basketball,
D1 wrestling, D1 women’s basketball, and D1 men’s swimming.Sports 2020, 8, x FOR PEER REVIEW 9 of 13 
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Table 3. Contingency table of the number of athletes in each cluster by sport with expected values in
parentheses. Also shown are the Pearson residuals for each cluster by sport.

Contingency Table Pearson Residuals

Cluster Cluster

Team 1 2 3 Total 1 2 3

D1 Baseball 17 (16.5) 16 (15.9) 5 (5.6) 38 0.51 0.09 −0.59

D1 Men’s Basketball 1 (5.2) 2 (5.0) 9 (1.8) 12 −4.21 −3.03 7.23

D1 Men’s Swimming 0 (11.3) 19 (10.9) 7 (3.8) 26 −11.28 8.11 3.17

D1 Softball 12 (9.1) 7 (8.8) 2 (3.1) 21 2.89 −1.79 −1.09

D1 Women’s Volleyball 2 (3.0) 2 (2.9) 3 (1.0) 7 −1.04 −0.93 1.97

D1 Women’s Basketball 0 (4.8) 6 (4.6) 5 (1.6) 11 −4.77 1.39 3.38

D1 Women’s Soccer 13 (8.7) 6 (8.4) 1 (2.9) 20 4.32 −2.38 −1.94

D1 Women’s Swimming 9 (8.7) 10 (8.4) 1 (2.9) 20 0.32 1.62 −1.94

D1 Wrestling 11 (10.4) 6 (10.1) 7 (3.5) 24 0.58 −4.05 3.47

NAIA Baseball 5 (6.5) 9 (6.3) 1 (2.2) 15 −1.51 2.72 −1.21

NAIA Cheer 6 (3.9) 3 (3.8) 0 (1.3) 9 2.09 −0.77 −1.32

NAIA Cross Country 12 (7.4) 5 (7.1) 0 (2.5) 17 4.62 −2.12 −2.50
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Table 3. Cont.

Contingency Table Pearson Residuals

Cluster Cluster

Team 1 2 3 Total 1 2 3

NAIA Men’s Basketball 1 (5.6) 10 (5.4) 2 (1.9) 13 −4.64 4.56 0.09

NAIA Men’s Golf 8 (5.6) 4 (5.4) 1 (1.9) 13 2.36 −1.44 −0.91

NAIA Men’s Soccer 10 (9.5) 8 (9.2) 4 (3.2) 22 0.45 −1.21 0.76

NAIA Men’s Tennis 3 (5.6) 9 (5.4) 1 (1.90 13 −2.64 3.56 −0.91

NAIA Softball 11 (6.9) 5 (6.7) 0 (2.4) 16 4.06 −1.70 −2.36

NAIA Track and Field 15 (13.9) 13 (13.4) 4 (4.7) 32 1.11 −0.40 −0.71

NAIA Women’s Volleyball 6 (6.9) 9 (6.7) 1 (2.4) 16 −0.94 2.30 −1.36

NAIA Women’s Basketball 7 (5.6) 5 (5.4) 1 (1.9) 13 1.36 −0.44 −0.91

NAIA Women’s Golf 7 (3.9) 1 (3.8) 1 (1.3) 9 3.09 −2.77 −0.32

NAIA Women’s Soccer 11 (8.2) 7 (8.0) 1 (2.8) 19 2.75 −0.96 −1.80

NAIA Women’s Tennis 4 (3.5) 3 (3.4) 1 (1.2) 8 0.53 −0.35 −0.18

Total 171 165 58 394 - - -

Note: Teams with the greatest deviation from expected cluster frequencies are highlighted in green for a high
distribution of Cluster 3 athletes, in red for a high distribution of Cluster 1 athletes, and in blue for a high distribution
of Cluster 2 athletes.

4. Discussion

The purpose of this study was to relate the shape of CMJ vGRF waveforms to discrete jump
parameters and determine if waveform shape could enhance CMJ analysis. In this study, collegiate
athletes were clustered into three groups based on the shape of their vertical ground reaction force–time
waveform recorded with a force plate during akimbo counter-movement jumping. Specifically,
K-means clustering was performed on PC scores resulting from PCA of vGRF waveforms consisting of
the eccentric braking and concentric phases of CMJs. There were statistically significant differences in
every calculated jump parameter across the three vGRF shape-based clusters. Athletes clustered into
Cluster 3 were high performing athletes characterized by high jump heights, short jump durations,
high rate of force development and high jump power. Athletes in Cluster 1 were lower performing
jumpers with lower jump heights and longer jump duration.

The transition from eccentric braking to the concentric phase occurs at the point of lowest
displacement of body COM. The small region around this transition is often referred to as the
amortization phase of the CMJ [3]. Cluster 1 athletes have a plateau in vGRF following amortization,
while Cluster 2 athletes have a peak in vGRF at amortization. Cluster 3 athletes continue developing
force through the amortization phase with a peak in vGRF towards the middle of the concentric phase
(Figure 3). The vGRF shape of Cluster 3 athletes may indicate better utilization of the muscle tendon
unit stretch-shortening cycle and a more efficient jump strategy [21]. Cluster 3 athletes exhibit greater
RFD which has been associated with muscle tendon properties [22]. RFD during the eccentric braking
phase will also influence concentric phase performance [23]. Cluster 3 athletes enter the concentric
phase with higher vGRF which allows them to produce net vertical force impulse at a higher rate
and shorter amount of time. Force impulse is directly related to a change in velocity through the
impulse–momentum relationship with a higher force impulse resulting in increased velCOM and
greater jump height.

The eccentric braking and concentric phases of the CMJ produce positive net impulse and the
waveforms during these phases were chosen for analysis. The unloading and eccentric yielding
phases (also collectively called the unweighting phase [17,23]) of the CMJ were not included in the
vGRF waveforms of this study. The unloading and eccentric yielding phases include onset of motion
(point A, Figure 2) to the start of eccentric braking and can provide information on how athletes
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enter the eccentric braking phase [23]. Although not explicitly included in our PCA, the CMJ strategy
of the three clusters during the unloading and eccentric yielding phases (unweighting phase) can
be inferred from the eccentric braking and concentric vGRF waveform shapes. The slope of vGRF,
or rate of force development, is greatest for the Cluster 3 athletes and smallest for Cluster 1 athletes.
This would infer that in order to achieve the higher slope in vGRF throughout eccentric braking,
Cluster 3 athletes achieved greater reductions in vGRF during unweighting with an associated increase
in COM displacement (towards the ground) and increase in peak negative velCOM. Future studies
would benefit from including the entire CMJ cycle in PCA waveforms as unweighting influences vGRF
behavior in the eccentric braking phase which in turn influences vGRF and jump performance in the
concentric phase.

Cluster 3 athletes produced similar (differences not statistically significant) jump heights as
Cluster 2 athletes, but did so with reduced time to take-off and reduced time in the eccentric braking
and concentric phases (Table 3). Cluster 2 and 3 athletes have similar net vGRF impulse during the
concentric phase, but Cluster 2 athletes have greater eccentric braking net vGRF impulse. Cluster 2
and 3 athletes generate similar power during eccentric braking, but Cluster 3 athletes produce more
power during the concentric phase. Cluster 3 athletes had greater RSImod values as well as greater
eccentric braking RFD. Although the jump heights are similar, the Cluster 3 vGRF waveforms result in
more explosive, quicker jumpers.

Cluster 1 athletes have a vGRF waveform shape associated with the lowest jump heights and the
longest jump times. While the vGRF waveform shape of Cluster 3 athletes is characterized by a single
hump during the concentric phase, Cluster 1 athletes are characterized by a plateau in vGRF at the
start of the concentric phase followed by an increase in vGRF that peaks just before the rapid decrease
in vGRF prior to take-off. The Cluster 1 vGRF waveform results in an inefficient CMJ. PC1 explains
66.5% of the variance in vGRF waveform shape and PC1 scores are significantly different between
Cluster 1 and Cluster 3. The shape of the PC1 loading vector is characterized by a large hump that
peaks at around 55% of the way through the vGRF waveform, consisting of the eccentric braking and
concentric phases. PC1 also has a peak in the opposite direction at around 95% of the way through this
waveform. A high positive PC1 score produces a waveform similar to the higher performing Cluster 3
athletes and a high negative PC1 score produces a waveform similar to the lower performing Cluster 1
athletes. Qualitative inspection of the CMJ waveform shape could determine whether an athlete is
an explosive jumper or a worse performing jumper. Compared to discrete CMJ parameters, analysis
of the force–time curve may provide practitioners with a more complete picture of how the athlete
generates force during ballistic movement. The shape of the vGRF waveform during CMJs reveals the
jump strategy used by individual athletes, information that the practitioner could use to tailor training
exercises to enhance desired performance.

Two distinct force-time waveform shapes, consisting of either one peak (unimodal) or two peaks
(bimodal), have been observed during the CMJ [24–26]. In their analysis of force–time waveforms for
33 athletes, Kennedy and Drake [26] concluded that a bimodal force-time curve was not an optimal
shape for jump performance. In a similar study on 100 athletes, McHugh et al. [25] determined that a
peak force occurring at the low position of the COM (amortization phase) was a better indicator of jump
performance, as determined by jump height and reactive strength index, than whether the waveform
shape was unimodal or bimodal. The findings of the current study are generally in agreement with
the conclusions of both Kennedy and Drake and McHugh et al., but may offer more insight into
the relationship between waveform shape and jump performance. In the current study, the lowest
performing jumpers, Cluster 1 athletes, had a bimodal shape with the second peak larger than the first
peak. Cluster 2 athletes where characterized by a bimodal shape, with a large first peak occurring at
amortization. The highest performing jumpers, Cluster 3 athletes, had a unimodal waveform with a
peak that, on average, occurred after amortization (Figure 3).

Cluster 3 athletes were concentrated in the D1 sports of men’s and women’s basketball, men’s
swimming, and wrestling. These are highly competitive sports where athletes would benefit from
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explosive movement. The sports of D1 women’s soccer, NAIA cross country, NAIA softball, and NAIA
women’s golf had the highest concentrations of Cluster 1 athletes and are sports where explosive
movement may not be as important. The sports of D1 men’s swimming, NAIA men’s basketball, and
NAIA men’s tennis had high concentrations of Cluster 2 athletes. The cluster distribution of D1 and
NAIA men’s basketball highlights differences in athletes at different competition levels. NAIA men’s
basketball athletes were predominately in Cluster 2, while D1 basketball players were predominately
in Cluster 3, indicating that while jump heights were similar, D1 athletes were more explosive jumpers.

Due to time constraints of the athletes, we were limited to two CMJs per athlete. Using three
or more CMJ trials for analysis is common [3,11], and two trials may not be sufficient to capture
intrasubject variability. To address this, our PCA was repeated using only the first CMJ for each
athlete. All athletes were placed in the same cluster regardless of whether one or two jumps were used.
The sport for each measured athlete was known and this study includes the distribution of athletes in
each cluster by sport. A limitation of the work is that cluster distributions for different positions within
each team (e.g., distance swimmer versus sprint swimmer) were not determined. Sex was also not
considered in this study. Previous studies have found significant differences in jump height between
males and females [27], as well as sex differences in jump strategy [28].

5. Conclusions

K-means clustering of PCA scores of CMJ vGRF waveforms placed athletes into clusters
characterized by distinct force–time waveform patterns. There were significant differences in all
twelve calculated jump parameters across clusters. Athletes with a unimodal shape were the highest
performing jumpers with respect to jump height and jump time. Athletes with a bimodal shape
characterized by a larger second peak were the poorest performing jumpers with respect to jump
height and jump time. Analysis of force–time waveform shape provides insight into CMJ strategies
of collegiate athletes that maximize jump performance. Additionally, waveform shape can provide
practitioners with a qualitative means for CMJ evaluation.
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