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Abstract: In this article, I endeavor to recount the odd history of how we have come to 

perceive plants like we do, and illustrate how plants themselves perceive and sense the 

world and, most importantly, what they can tell us about Nature. Through examples of the 

ingenious ways plants have evolved to thrive, I engage the idea that our modern society is 

afflicted by a severe disorder known as plant blindness, a pervasive condition inherited 

from our forefather Aristotle and accountable for the current state of vegetal disregard and 

hence environmental dilapidation. I propose that the solution to this state of affairs rests in 

a radical change of perspective, one that brings the prevailing, yet defective, Aristotelian 

paradigm together with its expectations on how Nature should behave to an end. Enacted, 

such change releases us into a new experience of reality, where the coherent nature of 

Nature is revealed. 
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1. Sensing the World through Historical Deviations 

We have to remember that what we observe is not nature in itself, but nature exposed to our method  

of questioning. 

—Theoretical physicist and philosopher Werner Heisenberg [1] 

Everything any living organism knows about the world comes to it through its senses. Such a 

deceptively simple task bears the most crucial challenge all living organisms are confronted with—the 

requirement to evolve and use numerous signal-transduction systems (i.e., stimulus-response 

pathways; [2]) to sense the surrounding environment and ensure the most appropriate adaptive 

responses in order to survive and proliferate in a range of biological niches. By definition then, all 
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living organisms are intrinsically sensitive creatures and it would seem truly oxymoronic to define 

anything alive as insensitive. Yet, this is how vegetal life has been and generally still is regarded—

passive and insensitive. Clearly, this is very far from the truth, but the idea is so deeply rooted in our 

thought and taken as an unquestioned reality that it still misinforms our way of thinking about plants 

today. By revealing its historical origins, the complacent attitude we hold toward plants becomes 

undeniably challenged and no longer excusable.  

The earliest Greek philosophers such as Empedocles (495–435 BCE) and Anaxagoras (500–428 BCE) 

and later, Plato (427–347 BCE) believed that plants, like animals, were sensitive organisms [3,4]. It 

was Aristotle (384–322 BCE) who first positioned plants outside of the sensitive life domain and used 

plant insensitivity as the key criterion to differentiate between plants and animals [3,5]. Aristotle’s 

zoocentric perspective of the sensorial world and thus his ‘default position of plant exclusion’ ([6], p. 37) 

had a profound and long-lasting influence on virtually everyone who came after him, ultimately 

fathering the Western paradigm of modern science. Ironically, however, the Father of Science was no 

scientist himself as he was interested in postulating rather than experimentally testing his ideas. And 

specifically in regards to plants, we had to wait until the 17th century for experimental botanists to start 

recognizing some fallacy in his fundamental assumption.  

Aristotelian False Premises on the Enlightened Behavior of Plants: The Case of Phototropism 

Be like the flower, turn your faces to the sun.  

—Poet, artist and writer Kahlil Gibran (1883–1931) 

Plants are renowned for feasting on the radiant energy of the sun to photosynthesize, the process by 

which they convert light into food to nourish themselves and sustain life on Earth. This is so much so 

that to ensure that as much light as possible is captured for photosynthesis, plants move and orient their 

leaves and stems towards the light through a complex interaction of photoreceptors, hormones and 

signaling pathways. This purposeful solar-tracking behavior is phototropism. Plant phototropic 

behavior is so widespread and obvious that, of course, it had already been observed and recorded at the 

time of Aristotle by one of his own pupils, Theophrastus of Eresus (371–285 BCE). However and 

despite his own observations of the phototropic behavior in many different plant species, Theophrastus 

blindly subscribed to the Aristotelian belief of plant passivity and insensitivity; he described plant 

phototropism by implicating the activity of the sun as the physical external agent removing fluid from 

the illuminated side of the plant to cause such directional movement of leaves and stems.  

While such an explanation for the active behavior by which plants track light may cause some 

laughter today, the Aristotelian dogma was stubbornly maintained till the 17th century when plants 

were finally bestowed with some level of sensitivity. The experimental botanist Sir Thomas Browne 

(1605–1682) was amongst the first to note that shoots were attracted and grew toward the sun, hence 

providing the scientific basis for the establishment of a theory of plant sensitivity.  

“And large fields of Vegetables are able to maintain their verdure at the bottome and shady part of the Sea; 

yet the greatest number are not content without the actual rayes of the Sunne, but bend, incline and follow 

them; as large lists of solisequious or Sun-following plants” ([7], p. 106) 
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Because of his personal observations of a wide range of plant movements, Browne had no problem 

in accepting the concept of plant sensitivity, but he never proposed it openly in his scientific writings. 

We have to wait yet another century for the idea that plants sense light to receive wider acceptance, 

albeit plant movements are still described as purely mechanical consequences of growth [8]. 

Interestingly, Henri Dutrochet (1776–1843) had already proposed that phototropism was an 

endogenous response of plants to light [9], but it was not until the 19th century that Julius von Weisner 

(1838–1919) finally demonstrated the inductive nature of the response [10] and Charles Darwin 

(1809–1882) postulated that a substance produced in the shoot tip of a seedling must induce the 

curvature in the lower regions of the plant, such that the bending response occurs [11]. In the following 

century, the ‘substance’ Darwin thought was implicated in the phototropic response was eventually 

discovered by Frits Went (1863–1932) as the first plant hormone, auxin [12]. By the time World War 

II was over, we had learnt that plants were not only capable of detecting light, but also ‘seeing’ its 

different colors (through photoreceptors known as phytochromes; reviewed in [13]), and even measure 

how much light they received each day (i.e., photoperiodism; see [14]). 

It is astonishing to think that millennia have elapsed between the times of Aristotle and the present 

day and yet, plants are still generally considered to be passive and insensitive organisms, or, worse, 

simply not important. Even Nature, arguably the most prestigious of all scientific journals, forgot the 

plants when compiling a resource aimed at the wider general public and intended to explain the 

empirical evidence for the process of evolution by natural selection in 2009 (see [15]). I would argue 

that this exemplifies a widespread and very significant problem. As pointed out by Wandersee and 

Schussler [16] ‘the misguided, anthropocentric ranking of plants as inferior to animals, leading to the 

erroneous conclusion that they are unworthy of human consideration’ shapes a society that pays no 

attention to plants, whose fundamental role is to ensure continuity of life on Earth. How can any 

society recognize that plant conservation is one of humanity’s most crucial issues, when it literally 

cannot ‘see’ plants? To start treating this affliction known as plant blindness [17], the broken 

Aristotelian spectacles we are wearing must be removed and the worldview we are subscribing to must 

be re-considered. If anything, history has clearly demonstrated that our current plant-less view of the 

world is based on an ancient misconception—one that is plainly incorrect. This claim is no 

metaphysical conjecture; instead it is born out by the available evidence that plants, like all living 

organisms, are very sensitive and active, monitoring and integrating lots of parameters from their 

environment and using numerous signaling systems to sense, assess, respond and even facilitate each 

other by actively acquiring information from their surroundings. In the following paragraphs, I will 

offer examples illustrating how extraordinary the complexity of plant behaviour truly is and how this 

understanding makes it very easy for us to ‘see’ plants. 

2. A Plant’s Perspective of the World, and What It Has to Say about It! 

2.1. A Plant’s-Eye View of the World 

Think about this: plants see you. 

—From What a plant knows by Daniel Chamovitz [18] 
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Humans may fail to notice plants and overlook their importance to one’s daily life, yet plants see us 

very clearly. Naturally, plants (like animals) need to be aware of the visual environment around them 

in order to survive and light signals provide important information of ecological value for plants to 

strive within their communities. Here are some examples. 

Example 1. By detecting and monitoring changes in the amount of light available, its color and 

where it comes from within their environment, plants are able to direct their growth in response to 

neighbor competition. Indeed, their success within a community depends on their capacity to detect 

neighbors quickly and their ability to respond appropriately. Plants are able to detect specific light 

ratios reflected from or transmitted by their neighbors, primarily red: far-red ratios [19]. Because 

daylight contains approximately equal parts of red and far-red light and plants absorb red light (hence 

they look green to us), a drop in the red: far-red ratio is a reliable indicator of the proximity of a 

neighbor. By monitoring both the availability of direct sunlight in the environment and the shadows 

cast by others, a plant can determine if and who is growing next to it and direct its own growth to 

avoid being shaded (i.e., shade-avoidance syndrome, [20]).  

Example 2. Plants, like animals, use light in terms of adaptive color change to attract pollinators [21]. 

Consider this: young and unrewarding animal-pollinated flowers and young and unripe fleshy fruits are 

usually green and cryptic. Specifically, flowers usually advertise their colors and become conspicuous 

only towards anthesis, the developmental stage when flowers open and offer nectar and pollen as 

rewards to pollinators. While many plants retain the conspicuous advertising colors of their flowers 

until these wilt, many others produce flowers that change color after they have been pollinated. A 

change in flower color that occurs during an inflorescence may reduce the flower’s advertising 

intensity, and thus its detectability by pollinators. On the other hand, retaining the coloration after 

pollination, or after such flowers turn unreceptive, may reduce pollinator visits to unpollinated flowers 

in the same plant, thus diminishing the plant’s overall reproductive success. By simultaneously 

reducing the reward after pollination and their attractiveness by changing their color, plants direct 

pollinators to their unpollinated flowers within the same inflorescence.  

Some plants even take the color change strategies a step further. In the creeper Quisqualis indica, 

for example, flowers opening at dusk are oriented horizontally and are white in color to attract night 

pollinators such as hawkmoths. As the new day approaches, their color turns to pink and later to red 

and simultaneously the flower orientation changes to become pendulous, to attract day pollinators such 

as honeybees, flies, and sunbirds [22]. Other plants like Pseudowintera colorata turn their leaf margins 

red to reduce predatory attacks by signaling to herbivorous insects the presence of increased chemical 

defenses [23]; this is one of numerous examples of aposematic or warning coloration in plants. Yet 

despite the recognized evolutionary importance of warning signals in shaping relationship between 

species [24], it took a long time for scientists to consider plant coloration in this context and sadly, a 

database search of “aposematism in plants” does not yield anything earlier than the year 2001 (see [25] 

for a review of the topic). 

2.2. Chemical Conversations 

What’s in a name? that which we call a rose by any other name would smell as sweet. 

—From Romeo and Juliet by William Shakespeare (1564–1616) 



Societies 2013, 3 151 

 

 

Plants have an arsenal of toxic repellents to defend themselves from unwelcomed visitors as well as 

irresistible cocktails of airborne fragrances to inebriate our noses and those of many other animals 

(e.g., pollinators), and often, it is the same chemical cocktail (or at least the same chemical precursors) 

that attract pollinators and deter herbivore [26]. Over the last two decades, however, important insights 

into our understanding of plant ecology have confirmed that plants use chemical signals to actively 

communicate with each other as well as the broader neighborhood [27]. The literature is now replete 

with studies demonstrating how plants encode and process chemical information about their neighbors both 

above- as well as below-ground [28,29] and then modify their growth patterns accordingly [30,31].  

Through the airborne plant-plant communication channel, for example, plants are able to signal to 

each other over approaching insect attacks and respond to chemical cues produced by injured 

neighbors before they are attacked or damaged themselves, thus allowing for pre-emptive defensive 

responses [32–34]. Similarly, when attacked, plants can produce volatiles that attract carnivorous 

enemies of the attacking herbivores, a syndrome known as “crying for help” [35]. Many plants also 

have extensive root grafting (that happens when trunks, branches or roots of two plants make contact 

and start growing together) which allows them to transmit signals between individuals and between 

species via their own anastomosed vascular system [36]. Moreover, through the release of chemical 

exudates in the ground and often with the facilitation of their fungal associates [37], plants can exchange 

information to recognize and even prevent costly competitive interactions with relatives [38,39], 

thereby facilitating kin selection processes such as cooperation and altruism [40], a process akin to that 

seen in animal social systems.  

2.3. A Philharmonic Orchestra in the Woods 

“O Tiger-lily,” said Alice, addressing herself to one that was waving gracefully about in the wind, “I wish 

you could talk!” 

“We can talk,” said the Tiger-lily: “when there's anybody worth talking to.” 

Alice was so astonished that she could not speak for a minute: it quite seemed to take her breath away. At 

length, as the Tiger-lily only went on waving about, she spoke again, in a timid voice—almost in a whisper. 

“And can all the flowers talk?” 

“As well as you can,” said the Tiger-lily. “And a great deal louder.” 

—From Through the Looking Glass by Lewis Carroll (1832–1898) 

Plants have evolved to detect and respond to sound waves or vibrations in their environment. In 

fact, the ability of plants to respond to vibrations is more widespread than we think and numerous 

species have evolved a range of adaptive strategies to exploit sound. For example, some 20,000 species 

use buzz pollination where the pollen is released from flowers only when they are vibrated at the 

correct sound frequency, a feat achieved by bees that have co-evolved to vibrate their flight muscles 

appropriately [41]. Despite the ecological and evolutionary significance of sound in plant-animal 

interactions and several studies over the last two decades pointing to the phenomenological importance 

of acoustic vibrations in plant physiology (see [42] for a review of the topic), no quantitative 

information on the ability of plants to detect and respond to sound, and modify their growth 

accordingly, was available until very recently [43]. Specifically, preliminary investigations of both 
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emission and detection of sound by plants clearly indicate that they have the ability to detect acoustic 

vibrations and exhibit frequency-selective sensitivity (i.e., plants respond to the same range of 

frequencies that they emit themselves) that generates behavioral modifications.  

Given the speed and ease with which it transmits through the environment, especially in dense 

substrates like soil, sound offers a particularly effective transmission channel for both short and long 

range signaling. For short range, it could possibly be involved in modulating the swarm behavior of 

growing roots [44]. For long range signaling, other functions related to resource finding, intra- and/or 

interspecific competition or cooperation, and growth orientation and coordination within the substrate 

can easily be envisaged. All of these potentially adaptive functions of sound in the life of plants are yet 

to be explored. One way to begin the exploration of acoustic communication in plants is to examine 

sound in plants at the proximate level—what are the mechanisms underlying how plants do all these 

feats? At this stage, this answer remains elusive, but ideas and proposals to explain how plants produce 

sound are starting to emerge [42,45]. Clearly, we are not expecting plants to possess the specialized 

morphological structures and/or organs that animals have evolved to produce sound; however, it is 

possible that the biophysical principles at the cellular and molecular level may not be so dissimilar 

across all eukaryotes. This would involve considering that sound waves are generated by objects that 

vibrate and cells and their components in all eukaryotes vibrate as a result of intracellular motions 

generated by cellular processes such as the activity of motor proteins and the cytoskeleton. Yet how 

can the nanovibration of a tiny cell translate into a sizable acoustic emission in a whole plant? Because 

cells are imbedded in a tissue and hence surrounded by other cells, individual cells are affected by the 

mechanical property of neighboring ones and this eventually builds up into a collective ‘in-tune’ mode 

(i.e., coherent excitation, [46]) and results in the amplification of the signal. Actually, nanomechanical 

oscillations of various components in the cytoskeleton within cells alone can generate a spectrum of 

coherent vibrations spanning from low KHz up to GHz [46,47].  

Coherent processes belong to a new way of looking at and understanding the reality of the world. 

This is largely the domain of quantum physics, but it seems that plants may provide an ideal starting 

model to develop an equivalent quantum domain in biology. In fact, the existence of coherent,  

non-localized phenomena has been previously reported in plants (e.g., quantum coherence in marine 

algae photosynthesis, [48]) and such an approach may be required and prove fruitful in understanding 

plant bioacoustics. Beyond its importance in plant biology and within the life sciences, I propose that 

coherence is a fundamental concept to assist us in rethinking the vegetal and reconnecting us to Nature. 

The paragraphs to follow explain and aim at exploring the significant shift in paradigms this concept 

calls for.  

3. Taking Plants Seriously: Lessons on the Nature of All Things  

With its glorious nonhuman past and its uncertain but provocative future, this life, our life, is embedded now, 

as it always has been, in the rest of Earth’s sentient symphony. 

—From What is life? by Lynn Margulis and Dorion Sagan [49] 

The concept of coherence is used in a variety of contexts and has been widely adopted by 

disciplines as diverse as linguistics, philosophy, economics, cognitive science, mathematics and 

physics. In physics, for example, coherence refers to a fundamental principle of a quantum field, a 
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domain within which atoms and molecules are in sync with each others moving exactly together in 

space and time; in linguistics, it describes the cohesive links within a sentence that hold the text 

together and give it meaning. Evidently no matter the context, coherence is a term that implies some 

form of collective association within systems and among systems (as well as across systems or 

subsystems) in which individual units interact by connecting closely together (from the Latin word 

cohaereō—to cling together, to be closely connected with, to be in harmony).  

In plants, we have now learnt that collective associations are indeed an ecologically common state 

of affairs. It has become increasingly recognised that facilitative interactions amongst plants are 

ubiquitous [50] and the influence of facilitation is an important element in regulating the composition 

and diversity of whole plant communities [51–53]. Indeed, many plants literally ‘help’ each other [54,55] 

by improving growth [56], fixing nitrogen [57], nurse cropping [58], controlling pests [59] or attracting 

beneficial organisms such as insects [60] or mycorrhizae [61,62]. Similarly but at the deeper level of 

function, coherent processes in plants underpin the capacity for photosynthesis [48] and possibly sound 

production [42]. Moreover, a closer look into the nature of all things reveals that such collective ‘in 

tune’ behaviour is in fact an essential aspect of life in general and so ubiquitous that it is found at all 

levels of biological organization from the assembly of eukaryotic cell that relies on the symbiotic 

cooperation of its internal organelles [63] to the evolution of multicellular organisms [64] and 

ultimately organismal colonies and societies as we know them for many animal species including 

humans [65]. Interestingly, the best insights into the process of how single-celled organisms may have 

evolved into simple (e.g., colonial) and then later more complex multicellular forms through 

communication and collaborative effort amongst cells have, in fact, been offered by plant phylogenies, 

where the emergence of multicellularity in the three major clades has occurred, at least, six separate 

times [66]. So it seems that cooperation, the process of acting and working together in a coherent 

mode, is far from being a rare trait and despite the general idea that biological evolution is the outcome 

of fierce competition among selfish parties, the evidence indicates that, paradoxically, the very 

competitive evolutionary process of natural selection involves cooperation [67]. It is becoming clearer 

that the complex web of life is a system built on minimal conflict and instead substantial cooperation 

among lower-level units to evolve into higher-level units; in fact, it is through the evolution of new 

levels of organization, when the competing units at the lower level begin to work together, that 

cooperation allows specialization and promotes biological diversity [65].  

From our well-established view of the Aristotelian world of false dichotomies, the idea that two 

mutually exclusive possibilities, like cooperation and competition, can coexist and, most importantly, 

make sense in the light of evolution may seem, indeed, paradoxical. This myopia is reinforced by the 

misuse of concepts like ‘survival of the fittest’ as a synonym for the process of natural selection 

through competition. And in fact, the notion that neighbouring species negatively impact on one 

another through competitive interactions has long been the key component of many classic ecological 

theories and is still a prevailing view in plant ecology, in particular. However this is not exactly what 

we actually see occurring in Nature and there is little evidence supporting the idea that competition has 

been the driving force in the evolution of species [68]. This brief exploration into the world of plants 

aimed at offering this ‘alternative’ perspective on the nature of plants (which clearly are anything but 

insensitive) as well as the nature of Nature (coherence and cooperative interactions amongst apparently 

competing parts—whether microbial, vegetal or animal—make Nature’s fabrics). As demonstrated 
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here, plants are a most precious source of insights about the way Nature works and offer the most 

exquisite examples of coherence in Nature, from the finer and mostly invisible details of 

photosynthetic processes stretching out to the ecological and evolutionary processes at the macro 

scales. It is clear, then, that our blindness towards these organisms is no longer excusable. 
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