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Abstract: This study investigated the effect of post-weld processes including annealing and drawing
on the microstructure and mechanical properties of high-Mn steel pipes welded by gas tungsten
arc welding. The weld metal showed a solidified microstructure having coarse and elongated
grains due to coalescence of columnar dendrite into welding heat direction. After post-annealing,
the solidified microstructure changed into equiaxed grains due to recrystallization and grain growth.
Mn segregation occurred during welding solidification and caused lower stacking fault energy (SFE)
in the Mn-depleted region. Although e-martensite formation in the as-welded state and during
deformation was expected due to decreased SFE of the Mn-depleted zone, all regions showed a fully
austenitic phase. The annealing process decreased strength due to grain coarsening but increased
ductility. The drawing process increased strength of weld metal through work hardening. All pipes
showed decreasing strain rate sensitivity (SRS) with deformation and negative SRS after certain strain
levels. It was confirmed that negative SRS is related to less formation of mechanical twinning at a
higher strain rate. This work provides fundamental insights into manufacturing a high-Mn steel pipe
and manipulating its properties with annealing and drawing processes.

Keywords: high manganese steel; gas tungsten arc welding; annealing; drawing; microstructure

1. Introduction

High-manganese (high-Mn) steels have excellent tensile strength, ductility, formability, and low
temperature toughness [1-3]. This combination of high strength and ductility is caused by
twinning-induced plasticity (TWIP), which occurs during plastic deformation. When deformation
twins are formed by TWIP, a “dynamic Hall-Petch” effect occurs in a way that effective grain size
decreases by increasing deformation twin density. As the dynamic Hall-Petch effect occurs, twin
boundaries impede dislocation movement, so the mean free path of dislocation glide decreases,
and consequently the work-hardening rate increases. If plastic deformation continues, then multiple
slip and twinning systems operate and further increase the work-hardening rate [1,4,5]. This high
work-hardening rate of high-Mn steel is related to the deformation mechanism, which depends on
stacking fault energy (SFE). At room temperature, the TWIP effect activates at 20 < SFE < 50 mJ/m?,
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whereas deformation-induced epsilon martensite transformation is predominant at SFE < 20 m]J/m?.
In contrast, high SFE > 50 m]J/m? suppressed the TWIP effect and leads to dislocation glide [6-8].

High-Mn steel shows austenitic phase at low temperature due to high content of Mn and shows
excellent mechanical properties at cryogenic temperature [9-12]. High-Mn steel has thus recently
gained attention to be used as pipe material in cryogenic industries such as liquefied natrual gas (LNG)
ships and offshore plants. For this reason, several papers have reported the welding process and
properties of high-Mn steels [13-15].

Common issues found in high-Mn steel welding are as follows: (1) Mn content in the weld zone
may decrease during welding due to the high vapor pressure of liquid Mn; (2) Mn depletion zone may
be formed by Mn segregation during welding solidification; and (3) welding heat input may degrade
mechanical properties of the heat-affected zone (HAZ).

First, for the case of Min evaporation during welding, several studies have been reported that high
weld heat generally induces Mn evaporation during welding and may lead to undesirable phases such
as epsilon martensite in the as-welded microstructure [13,16,17]. Evaporation tended to be greater with
higher energy density, controlled by welding parameters like power and welding speed [17,18]. Mn
evaporation may cause a decrease of SFE and possibly leads to undesirable effects on the weld zone.
In other words, the resultant initial phase may contain brittle epsilon martensite, and the deformation
mechanism of the weld zone may be accompanied by epsilon martensite as well [3,19,20].

Second, Mn solubility of austenite is lower than the solubility of the liquid phase, and the
different solubilities between the phases causes Mn segregation during welding solidification [17,21].
Accordingly, the interdendritic region has higher Mn and C content than the dendrite [14,17,22].
The resultant SFE difference between the dendrite and interdendritic region may induce a difference
in deformation behaviors and could be attributed to initiation of microcracks in the weld zone [23].
Additionally, chemical inhomogeneity by Mn and C segregation may increase hot cracking
susceptibility [24].

Third, grain coarsening and liquation cracking by welding heat input may degrade mechanical
properties in HAZ. Grains in HAZ do not melt during the welding process, but the grains are prone to
be coarser due to the heat input. Therefore, mechanical properties of HAZ with coarse grains may
degrade according to the “Hall-Petch” relation [2,15]. Moreover, segregation of Mn and C in HAZ
may induce liquation cracking during the welding process [25].

However, most of the previous works have mainly focused on fundamental welding properties
in the butt-welding process in which flat plates of high-Mn steels were joined together [15,17,25,26].
However, it is required to research welding processes not only on flat plate but also on pipe for
industrial applications. Furthermore, for wide application in those LNG-related industries, it is
necessary to diversify the diameters of the high-Mn steel pipe for its purpose. For this reason, it is
necessary to apply drawing processes on manipulating diameters of the welded high-Mn steel pipes,
but related research including drawing and accompanying heat treatment have rarely been conducted.

Therefore, the present study investigated the properties of high-Mn steel (Fe-24Mn-3.4Cr-0.44C
wt.%) pipe manufactured by gas tungsten arc welding (GTAW) and the properties of drawn weld
pipes manufactured by subsequent drawing processes and heat treatments. The present work is
novel in that it deals with properties of welded pipe itself, not butt-welded plate, and investigates
the effect of each step of conventional industrial processes for manufacturing drawn pipe. This study
mainly focused on the effect of those processes such as welding, drawing, and heat treatments on the
microstructure and mechanical properties of the pipe. In addition, effort was made on composition
analysis, SFE calculation, and phase analysis to clarify the aforementioned possibility of Mn depletion
and segregation, which may lead to a change in the deformation mechanism. Furthermore, strain rate
sensitivity was measured to suggest the fundamental feedback on the drawing process.
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2. Materials and Methods

2.1. Material and Manufacturing of Welded Steel Pipe

The steel composition used in this study is shown in Table 1. Whole manufacturing processes
of the steel pipe are summarized in Figure 1. Steel ingot was hot-rolled to a thickness of 5 mm, then
roll-bended to form a steel pipe that had an inner diameter of 84 mm. Key-hole welding was performed
as the root pass with plasma arc welding (PAW), and GTAW was performed as regular welding (Table 2)
without using welding wire. Because welded volume by PAW was much smaller (10% that of GTAW),
all characterizations on the weld metal and heat-affected zone (HAZ) were focused on the material
volume welded by GTAW. The steel was then pre-annealed at 1050 °C for 50 min to reduce internal
stress generated during roll forming, welding, and drawing (Table 3). Following this, the drawing
process (Table 4) was implemented to make a drawn steel pipe that had an inner diameter of 76.76 mm.
To control properties of the drawn steel pipe, post-annealing was performed at 1080 °C for 30 min
(Table 3). To understand the effect of each process on evolution of the microstructure and mechanical

properties, the specimens were taken from each of the manufacturing processes and were named as
shown in Table 5.
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Figure 1. Schematic diagrams of the pipe manufacturing process.

Table 1. Chemical composition of the present high-Mn steel sheet.

wt.% C Mn Si P S Cr Cu Fe
ASTM
A240XM-M 0.44 24.2 0.3 0.001 0.001 34 0.4 Bal.

Table 2. GTAW and plasma automatic welding process conditions.

Welding Speed Heat Input L.
Voltage (V)  Current (A) (cm/min) (J/em) Shielding Gas
Plasma 200 25 50 3.00 N

GTAW 150 18 50 3.24 N,
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Table 3. Pre-annealing and post-annealing process conditions.

Temperature (°C) Heating Time (min) Atmosphere Cooling Method

Pre-annealing 1050 50 N, Indirect water
Post-annealing 1080 30 H, Indirect water

Table 4. Drawing process conditions.

Drawing Power (ton) Die OD (mm) Plug ID (mm) Lubricant
50.0 86.0 76.76 Bonedelube

Table 5. Heat treatment and drawing process conditions of welding pipes.

Pre-Annealing Post-Annealing

Pipe Code (1050 °C, 50 min) Drawing (1080 °C, 30 min)
R x X X
10D o O x
10DH ® O ©

2.2. Microstructural and Mechanical Analysis

To observe the microstructure of the weld zone, specimens were mechanically polished, then
etched using 5% NHOj3; + ethanol for 50 s. X-ray diffraction (XRD) measurements were performed
using an X-ray diffractometer (ULTIMA4, Rigaku, Tokyo, Japan) with a Cu target, over a measurement
range of 30° < 26 < 110°. To determine how deformation affected equilibrium phase, orientation
of grains, grain size and twinning behavior, electron backscattered diffraction (EBSD, Nanoanalysis,
Oxford instrument, Oxford, UK) analysis were performed using a field emission scanning election
microscope (FE-SEM, JEOL 7200F, Tokyo, Japan). Here, average grain diameter was calculated from
grain area which is the sum of all pixels within the grain by using post-processing software (Channel 5,
version 5.12, Oxford instrument, Oxford, UK). Segregation of Mn was analyzed using energy-dispersive
X-ray spectroscopy (EDS, NanoAnalysis, Oxford instrument, Oxford, UK). According to ASTM E92-17,
a Vickers hardness test was conducted at a load of 2.94 N with an indentation spacing of 300 pm, which
is wider than 2.5 times the diagonal indentation length (Figure 2c). The uniaxial tensile test applied
strain rates ¢ = 1073 or 107! /s on a tensile specimen with a gauge length of 25 mm and a thickness of
3 mm (Figure 2b) and was prepared according to ASTM E8-Subsize.
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Figure 2. Schematic diagrams showing (a) location and direction of tensile specimens, (b) dimension of
ASTM E8 Subsize tensile specimen, (c) location of Vickers hardness test, and (d) sampling location of
tensile specimen.

2.3. Stacking Fault Energy Calculation

Thermodynamic calculation of stacking fault energy (SFE) was performed as in [27]. The stacking
fault can be modeled as two atomic layers of e-martensite within the dense planes [28]:

SFE = 2pAGY ¢ 4 207/¢, 1)

where AGY7¢ is the free molar enthalpy of transformation from austenite (y) to e-martensite (), p is
the molar surface density of atoms in the [29] plane, and ¢7/¢ is the interfacial energy per unit area of
the phase boundary. Various thermodynamic methods have been used to calculate AGY™¢ and in this
study two equations [29,30] were applied because they use different methods to calculate the chemical
contribution of alloy elements to phase transformation in AGY~¢. Dumay et al. [29] defined

—e )/_)5 )/45 )/—>8
AGT™" = AGpx +XCAGp Ly o T AGg @)

and Curtze et al. [30] defined

yoe _ AT ) TF y—¢€ y—¢€
AGY™¢ = ZixlAGi + ZU, X Q7+ MG +AGL 3)
where xCAG;;\)/an e and Zij XX ]-Ql.y]._w are empirical laws of carbon effect. AGL;(; 0 which is the bulk

and segregation contribution by N, was not considered.
3. Results and Discussion

3.1. Microstructure

The three samples of pipes R, 10D, and 10DH had distinct microstructures of base metal and
weld metal (Figure 3). Pipe R had an average grain size of 7.1 um in base metal and had hot-rolling
strips parallel to the rolling direction formed during the hot-rolling process. Welding heat induced
grain growth in the heat-affected zone to a maximum of 66.8 um. The weld metal had coarse dendrite
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heading to the heat source direction as marked as black arrows in Figure 3a. In pipe 10D, pre-annealing
at 1050 °C induced recrystallization in the base metal, and the average grain size increased to 33.8 um,
whereas no feasible recrystallization and grain growth were observed in the weld metal. This may have
occurred because the recrystallization temperature was lower in the base metal, due to accumulated
plastic strains during the roll-bending process, than in the weld metal. The following drawing process
induced deformation twins in all regions. In contrast to pipe 10D, pipe 10DH showed fully recrystallized
microstructures in the weld zone, in a way that columnar dendritic grains were clearly recrystallized
into equiaxed grains and showed an average grain size of 112.7 um. The base metal and HAZ also
had coarse grains due to grain growth driven by post-heat treatment. Additionally, the deformed
microstructure, such as deformation twins already observed in the pipe 10D, was removed by a
recovery process.

Base metal

oo By

SN o Sl
Annealing twins = - Gl o
O MM 1127 pmipgten o Socgai Jad >0 KM

Figure 3. Optical micrographs of high-Mn steel pipes etched by 5% nital for 50 s: (a) R, (b) 10D,
and (c) 10DH. (*: Average grain size.)

Microsegregation occurs on solidification during welding and leads to Mn enrichment of the
liquid phase [17]. Moreover, Mn depletion may occur during welding because vapor pressure of Mn
increases significantly at high temperatures. In other words, Mn composition in the weld zone may
differ from the nominal composition of the present alloy. EDS analysis indicated that segregation of
Mn occurred in the interdendritic region of the weld metal and in hot-rolled strips of the base metal
(Figure 4). Mn segregation was more severe in the weld metal than in the base metal, and segregation
was decreased by heat treatment.

In the base metal of pipe R, the EDS result revealed that Mn content of the hot-rolling strip,
25.03 wt.%, was 2.61 wt.% higher than that of the matrix, 22.42 wt.%. After pre-annealing (pipe 10D),
the corresponding difference of Mn content between the matrix and hot-rolling strip diminished to 0.84
wt.%, caused by thermally driven Mn diffusion. Moreover, after further post-annealing (pipe 10DH),
the difference became smaller, 0.65 wt.% (Figure 4a). Likewise, Mn content of the dendrite and
interdendritic region in the weld metal showed a smaller difference after pre- and post-annealing.
The difference of Mn content in the weld metal of pipe R was 6.77 wt.% and was reduced to 1.66 wt.%
(pipe 10D) and 1.51 wt.% (pipe 10DH) through pre-annealing and post-annealing, respectively.

By successive heat treatments, Mn segregation in the base and the weld metal was weakened,
and compositional homogeneity of Mn was improved. However, Mn was not completely homogenized
after heat treatments, and the difference of Mn content in the weld metal was almost twice higher
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than that of the base metal regardless of heat treatments. It indicates that Mn-segregated regions in
the weld metal would have different SFE. It can be further inferred that the difference of SFE may
change the stable phase in the as-welded state and the mechanism during deformation. It is thus worth
calculating the effect of Mn segregation on SFE difference in the weld metal [1,3,19].

Wl Matrix
.Hot rolling strip

0.65 wt.%|

2.61 wt.

Mn contents [wt.%]

n
[N
T

20 b

R 10D 10DH
==l A Dendritic region
@ Inter-dendritic region
sl
2:p Y 151 we.
a§24 t 6.7 W% e
8 1.66 wt.% ]
l
200
R 10D 10DH

25 M  Magnification : X1000

Figure 4. EDS results of image map and quantitative analysis for Mn in each region: (a) base metal and
(b) weld metal.

Figure 5 shows the calculated SFE in Mn-enriched and depleted regions. SFE was calculated using
Dumay’s and Curtze’s models, and both models have been developed to account for all substitutional
alloying elements such as Fe, Mn, Cr, Nj, etc. in the high-Mn steel [29,30]. In this study, Mn content,
required from the models, was experimentally obtained by EDS analyzes and the contents of other
alloying elements remained fixed as depicted in Table 1.

Mn-enriched regions had higher SFE than SFE of Mn-depleted regions, and the difference of SFE
between those regions in the weld metal was higher than that of the base metal. The weld metal of pipe
R showed the highest difference of SFE between those regions, and the difference decreased through
successive pre- and post-annealing processes.

Based on Dumay’s model, SFE of the matrix and the hot-rolling strip in base metal were 15.627
and 19.811 mJ/m?, respectively, as shown in Figure 5. The difference of SFE between both regions was
4.184 mJ/m?. With pre- and post-annealing processes, the difference of SFE decreased to 1.045 m]/m?.
Similarly, Curtze’s model also predicted higher SFE in the hot-rolling strip than in the matrix. On the
other hand, the weld metal showed a larger difference in SFE between the Mn-enriched region and
Mn-depleted region than that of the base metal. Based on Dumay’s model, SFE of dendrite and
interdendritic region were 13.234 and 23.852 m]/m?, respectively, and the difference between both
regions was 10.618 mJ/m?. This is the largest SFE difference in the Mn-enriched and depleted region
among all specimens. The difference was reduced by Mn diffusion through pre- and post-annealing,
but the difference in SFE of the weld metal was about twice that of the base metal. Likewise, Curtze’s
model predicted higher SFEs of the Mn-enriched regions in the weld metal than those of the base
metal due to stronger Mn segregation during the welding process as already shown in EDS analyzes.
It can be inferred from both models” predictions that lower SFE in the depleted region may induce
e-martensite during deformation, so phase analysis was required.
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Figure 5. Stacking fault energy calculation in the (a) base metal and (b) weld metal of each pipe.
The models were suggested by Dumay et al. [29] and Curtze et al. [30].

To identify formation of «’- or e-martensite in the as-welded state and during deformation,
XRD and EBSD analysis were performed, as shown in Figure 6. The base and weld metal in pipe R
showed a full austenite single phase. The austenite phase remained unchanged with pre-annealing
and drawing processes (pipe 10D) and the post-annealing process (10DH), as depicted in Figure 6a.
To identify deformation-induced phase transformation, all pipes were deformed to 0.25 e with strain
rates of 1073 and 107! /s, and the EBSD phase analyzes revealed that no feasible phase transformation
happened during deformation. These results were well matched with previous reports, which
showed e-martensite was not formed during deformation in high-Mn steels of 0.4C-22Mn [31] and
0.4C-25Mn [32]. Due to the aforementioned SFE decrease in the Mn-depleted zone, as shown in
Figure 5, formation of e-martensite during welding or deformation was a concern, but all pipes showed
a full austenite single phase. It means that the presently employed welding process was properly
chosen to avoid feasible Mn depletion for harmful e-martensite formation in the weld metal.
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Figure 6. Phase analysis of high-Mn steel pipes before and after deformation: (a) XRD pattern of
as-welded pipes. (b) EBSD analysis results of phase map deformed by 0.25 true strain at strain rates of
1073 and 107! /s, respectively.

3.2. Mechanical Tests

Figure 7 shows Vickers hardness profiles measured along the base, HAZ, and weld metal. In pipe
R, the hardness was found to be highest, 305 Hv, in the base metal and was attributed to its smallest
grain size as shown in Figure 3a. The hardness was then decreased to 295 Hv in HAZ due to
coarsened grains that were grown by welding heat affection. The weld metal showed lowest hardness,
260 Hv, owing to its largest grains that formed during solidification. In pipe 10D, on the other hand,
the hardness was increased to about 300 Hv due to work-hardened grains formed by the drawing
process. After post-heat treatment, the hardness in all regions reduced under 200 Hv because of stress
relieving by recrystallization and grain coarsening, as depicted in Figure 3c.

Vickers hardness of pipes 10D and 10DH remained almost the same along the base, HAZ, and weld
zone, while those of pipe R showed monotonic decrease of hardness along the direction. Despite the
distinct grain size difference in the base, HAZ, and the weld zone in pipe 10D, as shown in Figure 3,
hardness maintained almost the same because of work-hardening effects during the drawing process.
In high-manganese steel, it is known that twinning stress decreases with increasing grain size, so the
larger the grain size, the more work hardening may occur [2]. In pipe 10D, work hardening occurred
during the drawing process, and the weld metal showed a higher work-hardening rate than that of the
base metal, as shown in Figure 9. Therefore, the weld metal in pipe 10D showed similar hardness with
the base metal due to work hardening by deformation twinning. In pipe 10DH, on the other hand,
recrystallization and grain coarsening occurred due to post-annealing, leading to a similar grain size
in the base, HAZ, and weld zone, as shown in Figure 3 (insets in bottom-left indicating grain size).
Therefore, 10DH showed the lowest hardness, and the weld metal showed similar hardness to the base
and HAZ due to the similar grain size.
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Figure 7. Vickers hardness profiles of high-Mn steel pipes ranging over welded joint regions: (a) R,
(b) 10D, and (c) 10DH.

Figure 8 shows engineering stress—strain curves of uniaxial tensile test performed at two different
strain rates of 1073 and 107! /s. At the strain rate of 10~3 /s, the base metal of pipe R showed a higher
tensile strength of 1015 MPa than pipe 10D that went through pre-annealing and drawing. Pipe 10DH
that was annealed after drawing showed a significant reduction of strength to 784 MPa. This tendency
was not changed with a higher strain rate of 107! /s. Grain coarsening that happened during pre- and
post-annealing can explain this decrease of strength in pipes 10D and 10DH. In the weld metal, on the
other hand, tensile strength was found to be highest in pipe 10D. As shown in Figure 3, the grains
of 10D remained as coarse as those of pipe R, but they were work hardened by the drawing process,
which led to a higher strength than pipe R. Post-annealing after drawing-induced stress relieving and
recrystallization meant that the lowest tensile strength was obtained in pipe 10DH. With a higher strain
rate of 107! /s, this trend remained unchanged.
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Figure 8. Engineering stress—strain curves and mechanical properties diagram of the (a) base metal
and (b) weld metal. All specimens were strained along the welding direction.

Figure 9 shows true stress—true strain curves and strain rate sensitivity (SRS) in the base metal
and weld metal of the pipes. SRS parameters (m) were calculated from stress—strain curves of two
independent uniaxial tensile tests performed at strain rates of 1073 and 107! /s, respectively; m is
equated as follows [33]:

log(02/01)
m=—°2~=""2/

B log(éz/él)

where &1 and ¢ are the strain rates, and 01 and o7 are the flow stresses of the corresponding strain rate.

(4)
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As the strain rate increased from 1072 to 107! /s, all pipes showed decreasing m during plastic
deformation, which means a work-hardening rate of the faster strain rate, 1071 /s, which was smaller
than that of the slower strain rate, 1073 /s. Additionally, m was positive at initial plastic deformation
in most of pipes, except for pipe R, but this changed to negative at a certain strain level due to the
aforementioned decrease of m.

Generally, an austenitic alloy like Al and Cu alloys showed positive SRS, which increases
mechanical properties as the strain rate increases [2,34,35]. The negative SRS of the present alloy
is related to mechanical twinning, and the possible mechanisms for negative SRS are as follows:
first, the effect of dynamic strain aging (DSA) on mechanical twinning; second, negative strain rate
dependence of twin nucleation and twin growth. DSA effect is the main contributor to negative SRS on
high-Mn steel. The DSA effect impedes trailing partial dislocations while it aids twinning nucleation,
but this effect is suppressed in deformation as the strain rate increases [36-38]. Accordingly, with
increasing strain rate, twinning nucleation sites are limited, and the average energy for twinning
nucleation increases [39,40].

From this viewpoint, EBSD analysis was performed to investigate the strain rate effect on twinning
behavior, as shown in Figure 10. All specimens were deformed by 0.25 true strain at strain rates of
1073 and 107! /s. In the base metal, SRS parameters of the base and the weld metal of the pipe R were
—0.008 and 0.002, respectively. As depicted in Figure 10b, the base metals of negative SRS showed less
formation of mechanical twinning at a higher strain rate, in comparison to the weld metal which had
nearly zero m where no clear effect of strain rate on twin density was found. This observation could
be well explained by the above-mentioned mechanisms in which negative SRS is strongly related to
limited formation of mechanical twins.

On the other hand, the effect of post-weld processes applied to pipes was also investigated.
As depicted in Figure 9a, in the base metal, m showed an increasing tendency along with pre-annealing,
drawing (10D), and post-annealing (10DH). This was attributed to increasing grain size of the base
metal due to annealing processes, as shown in Figure 3. Several papers have reported that twinning
nucleation stress and growth stress in face-centered cubic alloys [34] and TWIP steels [41-43] decreases
with increasing grain size. Therefore, it is regarded that reduction of twinning stress and twin nucleation
stress due to grain coarsening increases the SRS parameter, promoting work hardening by deformation
twins at a higher strain rate.

However, in the weld metal (Figure 9a), the effect of the processes on SRS was not as evident as the
base metal. By comparing pipes R and 10DH of similar m, comparable density of mechanical twinning
was also found, as shown in Figure 10b. The relationship between m and twin formation could be thus
understood in terms of twin density, likely as the base metal. However, the weaker effect of post-weld
processes on twin density shown in the weld metal could hardly be explained by grain size effect on
twin formation. As shown in Figure 3, the grain size of pipe R was larger than pipe 10DH on average,
and it was expected that twinning formation would be more pronounced in pipe R than pipe 10DH.
However, it was shown that similar densities of mechanical twins were found in both pipes, and it
could be postulated that differences other than grain size could be affecting twin formation. There was
indeed differences in both pipes in a way that grain shape and orientation of the as-solidified pipe R
was more anisotropic than pipe 10DH. Accordingly, it is regarded that this difference possibly affected
twin formation and caused an obsecured relationship between grain size and twin density.
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Figure 9. True stress—strain curves and strain rate sensitivity of the (a) base metal and (b) weld metal.
Strain rate sensitivity parameters were calculated from the true stress-strain curves (strain rate of 1073
and 1071 /s).
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Figure 10. RD invers pole figure (RD-IPF) maps of the base metal and weld metal in pipes R and 10DH:
(a) RD-IPF map and (b) twin boundary maps.

4. Conclusions

In this study, the effects of heat treatment and drawing processes for manufacturing a high-Mn
steel pipe were investigated by analyzing the microstructure and mechanical properties. The results
are summarized as followings:
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(a) Compared to the base metal having equiaxed grains, the weld zone had coarse and elongated
grains by coalescence of columnar dendrite during welding solidification. Application of the
post-annealing process induced recrystallization and grain growth, resulting in equaxed grains
in the weld zone. Due to accumulated strain energy during the hot-rolling process prior to welding,
the base metal was recrystallized in the pre-annealing process, while the weld metal was recrystallized
in the post-annealing process.

(b) Microsegregation of Mn occurred during welding solidification, and as a result the stacking
fault energy (SFE) differed between the dendritic region and the interdendritic region. Microsegregation
also occurred in the base metal as a result of hot-rolling, so SFE differed between the matrix and
hot-rolling strips. Formation of e-martensite in the as-welded state and during deformation was a
concern due to decreased SFE in Mn-depleted regions, but all regions showed a fully austenitic phase
in all conditions considered in the present work.

(c) The effect of processes applied to the as-welded pipe R mainly led to decrease of strength in
both the base and weld metal. This was attributed to grain coarsening due to pre- and post-annealing
processes. Pipe 10D, in particular, showed higher strength in the weld metal and was explained by
work hardening during cold drawing process after pre-annealing.

(d) As strain rate increased, all pipes showed decreasing strain rate sensitivity (SRS) with plastic
deformation. The negative SRS was eventually observed and strongly related to less density of
mechanical twinnings at a higher strain rate, as confirmed by EBSD analysis. In the base metal,
the effect of annealing processes was clearly reflected on SRS behaviors in a way that the coarser grains
formed by the annealing process promoted mechanical twins and increased SRS. In the weld metal,
however, the process of the effect on SRS was not clearly understood only by grain size, and this is
because other factors such as grain shape and orientation may affect twin formation.
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