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Abstract: The effect of austenitizing temperature and aging treatment on the microstructure and
mechanical properties of two new cold-rolled automotive steel plates (20Mn2Cr and 20Mn2CrNb) was
investigated by using isothermal heat treatment, optical microscope, scanning electron microscope,
microhardness tester, and tensile testing machine. The results show that as the austenitizing
temperature increased, the original austenite grain sizes of both steels increased. The original austenite
grain size of 20Mn2CrNb was smaller than that of 20Mn2Cr. The microhardness of 20Mn2CrNb
gradually decreased with increasing aging temperature, while the hardness of 20Mn2Cr varied
irregularly. The mechanical properties of 20Mn2Cr were better than those of 20Mn2CrNb under the
same heat-treatment process. The effect of heat treatment on microstructure and mechanical properties
was related to the martensite content, dislocation density, and precipitation of second-phase particles.

Keywords: new automotive steel; heat treatment; microstructure; mechanical properties;
second-phase particles

1. Introduction

The development of automotive steel products with high-strength plasticity is one of the main
ways to produce lightweight parts, and is of great significance for energy saving and environmental
protection [1–8]. In recent years, there has been a large amount of domestic and international research
and development work on high-strength plasticity automotive steel. It has now developed into
the third generation, with the main forms being nano-bainite steel, delta transformation-induced
plasticity (δ-TRIP) steel, medium manganese steel, quench and partitioning (Q&P) steel, etc. [9–15].
Although each steel grade has its own performance advantages, there are also significant shortcomings.

Nano-bainitic steel is subjected to a low-temperature bainite phase transition region (125–300 ◦C)
for a long isothermal time (several or even tens of days), which is not conducive to large-scale
application in the actual production process, and it has a high carbon equivalent and poor welding
performance. In order to solve the welding problem, medium- and low-carbon bainitic steels have
many production processes and are difficult to implement in practical industrial production and
application [16,17].

δ-TRIP steel has a high Al content, which poses problems for smelting and casting, such as
clogging of spouts, and its tensile strength is low. Medium manganese steel in the 1000 MPa class
with a strength plasticity product of 30 GPa% or more requires a very long annealing time, which is a
major problem in actual industrial production in terms of energy consumption, efficiency, and cost.
In addition, the high Mn content in medium manganese steel is prone to segregation, the high C content
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is not conducive to welding, the Al element will lead to continuous casting problems and cracking in
the hot rolling process, and the addition of Si will cause difficulties with hot galvanizing and other
application problems. Therefore, there is a considerable gap between actual industrial production and
the application of middle manganese steels, especially those with ultra-high-strength [18,19].

For low-carbon or low-alloy content Q&P steel, its tensile strength is generally less than 1500 MPa
and maximum elongation is about 15%; increasing the carbon content or adding Nb, Cr, and other
elements can further improve strength, but the elongation does not show obvious improvement.
In the actual production process, for one-step production, it is often required to precisely control
the cold-rolling annealing process, which is bound to need the support of a special high-strength
steel production line, and the residual austenite of Q&P steel is generally only about 10% [20], less
than that required by high plasticity. If a two-step production method is used, it will obviously lead
to problems such as decreased productivity and increased cost and energy consumption in actual
industrial production.

At present, the composition design and process optimization of typical third-generation automotive
steels are centered on improving plasticity by regulating the residual austenite in the steel and fully
utilizing the TRIP effect. While good performance can be obtained with this option, it faces two
problems: first, this kind of steel cannot be used in hot forming and is difficult to use in cold forming
at higher strength; second, the alloy content is higher, the process is more complex, and the cost is
higher. Although third-generation automotive steel has undergone more than 10 years of research
and development, most of this steel still does not meet the basic conditions for industrial production
and application.

For the promotion and application of third-generation automotive steel, a new reinforced plastic
mechanism under ultra-high-strength conditions needs to be put forward through research of key
scientific issues and breakthroughs in key technologies. Our research group proposed the design of
high-strength plastification steel (PRM) from the interaction of second-phase particles (precipitation)
and dislocations (zero- and one-dimensional) and microstructure submicron (two-dimensional)
and multiphase (three-dimensional) refinement, breaking through the technical bottleneck of the
single mechanism of residual austenite plastification. Based on this idea, new low-alloy steels for
flexible applications with high strength plasticity for automobiles were designed and developed,
and preliminary cold-rolled steel sheets and hot-formed parts with relatively good mechanical
properties were obtained [21–23].

In order to investigate the strong plasticizing mechanism and further improve the properties,
the influence of heat treatment on the microstructure, and the mechanical properties, the effects of
Nb on the microstructure and mechanical properties were studied to provide theoretical guidance for
obtaining better properties.

2. Materials and Methods

For the experiment, C-Mn-Cr series low-alloy steels were used, and their main chemical
composition is shown in Table 1. The steels were smelted by a 130 kg vacuum induction
furnace (Multi-VIM-200, SY-VAC Inc., Shenyang, China), cast into ingots, and forged into
250 mm × 150 mm × 40 mm billets at 1200 ◦C, then hot rolled into 4.4 mm thick steel plates. After the
hot rolling mill, they were kept at 650 ◦C for 1 h and cooled to room temperature, and finally, the hot
rolled plates were pickled and cold-rolled for 10 passes to 2 mm thickness.

Table 1. Chemical composition of new cold-rolled steels (wt%).

Composition C Mn Cr Nb Si Ti S P N Fe

20Mn2Cr 0.21 1.69 1.30 0.009 0.04 0.002 0.005 0.007 0.0098 balance
20Mn2CrNb 0.21 1.66 1.21 0.034 0.05 0.010 0.003 0.007 0.0120 balance
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The samples were taken from the billets and machined into several solid specimens of
Φ4 mm × 10 mm and hollow specimens of Φ4 mm× 10 mm×Φ0.5 mm for use in the continuous cooling
transform (CCT) curve measurement by thermal dilatometer (DIL805A/D, BAEHR Inc., HÜllhorst,
Germany). The specimens were heated to 980 ◦C at a heating rate of 10 ◦C/s, kept hot for 3 min,
and then cooled to room temperature at cooling rates of 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, and 60 ◦C/s.
Solid specimens were used when the cooling rate was 20 ◦C/s or less, and hollow specimens were used
when the cooling rate was more than 20 ◦C/s.

Heat treatment with different parameters was used for cold-rolled plates, as shown in Figure 1.
The heat-treated steel plates were cut into block specimens with dimensions of 15 mm × 15 mm × 2 mm
and tensile specimens 30 mm in gauge length and 10 mm × 2 mm in cross-section by wire-cutting,
as shown in Figure 2. Heat-treated block specimens were ground to 2000# by abrasive paper, then
polished to 0.5 µm with diamond abrasive paste, cleaned by anhydrous ethanol and dried with cold
air, and etched by 4% nitric acid alcohol or saturated bitter acid solution. Microhardness was tested
with the Vickers hardness tester (TH701, Beijing Time High Technology, Beijing, China) based on
Chinese standards (GB/T 4340.1-2009), and tensile tests were carried out on a tensile testing machine
(Zwick/Roell Z050, ZwickRoellInc, Ulm, Germany) at a strain rate of 10 MPa/s according to Chinese
standards (GB/T 228.1-2010 Method B). The tensile direction was parallel to the rolling direction of
the specimen.
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3. Result and Discussion

3.1. Microstructure Transformation Curves of New Cold-Rolled Automotive Steels

The CCT curves for the two steels by experimental measurements are shown in Figure 3. It can
be seen from the figure that the phase transition temperatures (Ac3 and Ac1) are 879 and 727 ◦C and
881 and 733 ◦C for 20Mn2Cr and 20Mn2CrNb, respectively. The difference between the two steels
is quite small. This is because, on the one hand, they have the same C content and little difference
between Mn and Si content; on the other hand, the addition of Nb does not have a significant effect
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on the phase transition temperature (although Nb can be solidly soluble to the Fe matrix, but the Nb
content is relatively low and the Nb atomic radius is large and the degree of solid solution in the Fe
matrix is small). In contrast, some differences in the CCT diagrams are observed. These may relate
to differences in previous austenite grain size. The previous austenite grain of 20Mn2CrNb steel is
finer than that of 20Mn2Cr due to the precipitation of second-phase particles, such as Nb(C,N) and Ti
(C,N), which can hinder the growth of austenite grains during heating. The fine grains bring more
grain boundaries in 20Mn2CrNb steel. There are more prior sites for nucleation of ferrite and pearlite.
Thus, ferrite–pearlite transformation of 20Mn2CrNb steel is promoted and martensite transformation
is delayed. Consequently, it can be seen that there is a higher Ac1 temperature of 20Mn2CrNb steel and
no Nb (20Mn2Cr) steel shows higher hardenability revealing.
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Figure 3. Continuous cooling transform (CCT) curves of (a) 20Mn2Cr and (b) 20Mn2CrNb steels.

3.2. Microstructure of Cold-Rolled Sheet and Aged Samples

The microstructure of 20Mn2Cr and 20Mn2CrNb steel samples in the cold-rolled state is shown in
Figure 4. It can be seen that the microstructure of both steels consists of ferrite and pearlite. There is
little difference in ferrite grain size between the two. Nb and Ti are strong carbide-forming elements;
second-phase particles such as Nb(C,N) and Ti(C,N) can be precipitated in the hot-rolling process
(in austenite) to hinder the growth of austenite grains, resulting in a reduction in the size of ferrite
grains after the phase change [24,25]. However, because of the slow cooling rate during the hot rolling
test, the grains have sufficient time to grow, and the phase deformation nucleation rate is low, the phase
particle precipitation nucleation rate is also low and the size is larger. Therefore, the effect of adding
Nb and Ti on grain size refinement of the steel sample is not significant.
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Figure 4. Metallurgical microstructure of two cold-rolled plates: (a) 20Mn2Cr and (b) 20Mn2CrNb.

Figure 5 shows the Scanning Electron Microscope (SEM) microstructure of the two steels after
being held at austenitizing temperatures of 800, 900, and 1000 ◦C for 2 min and then aged at 300 ◦C
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for 10 min. It can be seen that the higher the austenitizing temperature, the more pronounced the
martensitic lath characteristics and the larger the original austenite grain size. In addition, the original
austenite grain size of 20Mn2CrNb steel at 900 and 1000 ◦C austenitizing temperature (6.22 µm and
23.14 µm) was slightly smaller than that of the 20Mn2Cr steel (7.23 µm and 27.03 µm), as shown in
Figure 6. The CCT curves show that 800 ◦C is the two-phase zone temperature (Figure 2), so this
temperature holding treatment is partially austenitic, and the microstructure of samples consisted of
ferrite and martensite. The higher the temperature, the faster the rate of atomic diffusion, the faster the
rate of grain boundary migration, and the larger the grain size, as shown in Figure 6. Although there is
no significant difference in the grain size of the two steel samples of cold-rolled plate, because Nb is a
strong carbide-forming element, the carbide or carbon nitride will not be completely decomposed in
Nb-containing steel, so the growth of austenite grain can be hindered to some extent by the residual
second phase at a higher austenitizing temperature (900 or 1000 ◦C).

1 
 

  

  

  

 

(b-2) 

(a-3) (b-3) 

(a-1) 

(a-2) 

(b-1) 

Figure 5. Scanning Electron Microscope (SEM) morphology of (a) 20Mn2Cr and (b) 20Mn2CrNb
specimens aged at 300 ◦C for 10 min after being austenitized at (1) 800 ◦C, (2) 900 ◦C, and (3) 1000 ◦C.
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300 ◦C for 10 min after being austenitized at (1) 900 ◦C and (2) 1000 ◦C.

Figure 7 shows the SEM morphology of two steel samples (20Mn2Cr and 20Mn2CrNb) after heat
treatment at the same austenitizing temperature (900 ◦C) and different aging temperatures (300 and
360 ◦C). It can be seen that as the aging temperature increased, the tempered martensite microstructure
of both steels increased and became fine. The reason for this is the higher the aging temperature,
the faster the atomic diffusion rate, the more the martensite decomposition, and the higher the amount
of Cr, Nb carbide or carbonitrides.
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Figure 7. SEM morphology of (a) 20Mn2Cr and (b) 20Mn2CrNb specimens austenitized at 900 ◦C for
2 min aged at (1) 300 ◦C and (2) 360 ◦C for 10 min.
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3.3. Effect of Aging Temperature on Mechanical Properties of Auto Panels

3.3.1. Effect of Aging Temperature on Tensile Properties

The room-temperature tensile properties of the two steel samples treated by holding at 850 ◦C
for 2 min then air-cooling to 300 ◦C for 10 min are shown in Table 2. It can be seen that the tensile
strength of the 20Mn2Cr sample after simple heat treatment was greater than 900 MPa, the elongation
was nearly 20%, and the mechanical properties were close to the comprehensive properties of QP980.
The yield strength (882 MPa), tensile strength (907 MPa), and elongation (18.1%) of the steel sample
containing Nb are all lower than those of the steel sample without Nb. Under this heat treatment
condition, the addition of Nb is not beneficial to the mechanical properties of the steel. This may
be due to several reasons. First, Nb carbonitride has a high precipitation temperature and does not
fully precipitate in the aging process at low temperatures [26,27], so the precipitation strengthening
effect is not significant. Second, Nb is a strong carbide-forming element. Precipitation of NbC or
Nb(C,N) consumes atoms, which inhibits the precipitation of Cr carbides in the aging process to some
extent, thus reduces the strengthening effect of the second phase. Third, under the conditions of this
experiment, Nb has no obvious effect on grain refinement of the microstructure, which contributes
little to the improvement of mechanical properties.

Table 2. Tensile properties of 20Mn2Cr and 20Mn2CrNb specimens aged at 300 ◦C for 10 min after
austenitized at 850 ◦C for 2 min.

Specimen Rp0.2/MPa Rm/MPa A/% Rm × A/GPa%

20Mn2Cr 920 971 19.6 19.01
20Mn2CrNb 882 907 18.1 16.42

3.3.2. Effect of Austenitizing and Aging Temperature on Microhardness

The effects of austenitizing and aging temperature on the microhardness of the two steel samples
are shown in Figure 8. As the aging temperature increased, the microhardness of both steels increased.
When austenitizing temperatures is lower than 900 ◦C, the hardness of 20Mn2Cr was higher than
that of 20Mn2CrNb, while, the value is lower at temperatures above 900 ◦C, as shown in Figure 8a.
The hardness of the 20Mn2CrNb sample gradually decreased as the aging temperature increased,
but the hardness of the 20Mn2Cr sample changed irregularly. Under the condition of short holding time,
the higher the austenitizing temperature, the higher the atomic diffusion rate, the more solid solution
of alloying elements in the steel, the more even the distribution, and the higher the austenitizing
degree. Therefore, the amount of residual austenite is less, the martensite content is more after
quenching, and the hardness of the sample is high. Although the differences in hardness between
both steels austenitizing at above 950 ◦C are small, it can be seen that the hardness of 20Mn2CrNb
steel is higher than that of 20Mn2Cr steel (insert of Figure 8a). There are two main reasons for it.
Firstly, the previous austenite grain size of 20Mn2CrNb was smaller than that of 20Mn2Cr at higher
austenitizing temperatures (950 and 1000 ◦C) (Figure 5a-3,b-3) due to the inhibition of grain growth by
second phase particles. The finer austenite grains leads to the formation of finer martensite structure,
which brings more difficulty of plastic deformation due to the impediment of dislocations sliding by
more grain boundaries. Secondly, the number of precipitated particles in 20Mn2CrNb was more than
that in 20Mn2Cr steel during the aging process. Precipitated particles can hinder dislocations moving
effectively and improve yield strength. As a result, 20Mn2CrNb was harder than 20Mn2Cr. The higher
the aging temperature, the lower the dislocation density, although the amount of second-phase particle
precipitation will also increase, but the C and Nb bonded first in 20Mn2CrNb, consuming part of the C
atoms, so that the amount of carbide precipitation of Cr did not change significantly with increasing
temperature [28]. Therefore, the hardness of the 20Mn2CrNb sample decreased with an increasing
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aging temperature. The hardness of the 20Mn2Cr sample varied irregularly with aging temperature,
which may be related to the more pronounced increase in the number of carbides of Cr.
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4. Conclusions

(1) The austenitizing temperature had an obvious effect on the microstructure of new cold-rolled
automotive steel sheets. As the austenitizing temperature increased, the original austenitic grain
size increased and the martensitic slat characteristics became obvious. The original austenite
grain size of 20Mn2CrNb with Nb was smaller than that of 20Mn2Cr without Nb at higher
austenitizing temperatures.

(2) As the aging temperature increased, the tempered martensite of both steels increased and the
microstructure became fine; but for 20Mn2CrNb steel, the higher the aging temperature, the lower
the microhardness.

(3) Under the same heat treatment parameters, the tensile mechanical properties of 20Mn2Cr were
better than those of 20Mn2CrNb.
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