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Abstract: The paper presents an algorithm for calculating the fatigue life of S355J0 steel specimens
subjected to cyclic bending, cyclic torsion, and a combination of bending and torsion using mean
stress values. The method of transforming cycle amplitudes with a non-zero mean value into fatigue
equivalent cycles with increased amplitude and zero mean value was used. Commonly known and
used transformation dependencies were used and a new model of the impact of the mean stress
value on the fatigue life of the material was proposed. The life calculated based on the proposed
algorithm was compared with the experimental life. It has been shown that the proposed model finds
the widest application in the load cases studied, giving good compliance of the calculation results
with the experimental results.
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1. Introduction

Algorithms for calculating fatigue life are built from a series of steps that determine how to
perform calculations to take into account many factors describing the load parameters of an element.
Numerous papers present the results of fatigue tests describing the behavior of the material and
experimental verification of the proposed models [1–8]. In the case of fatigue tests during bending and
torsion with the participation of the mean load value, such an algorithm is widely presented in [6,9–11]
and allows determining the fatigue life of tested specimens under various load conditions. The results
of such analyzes require accurate knowledge of the behavior of the tested material under various
loading conditions. It is necessary to have a wide spectrum of results of fatigue tests conducted in
different conditions, which take into account the influence of the average load value and different
specimen geometry [9–11]. Such tests are designed to understand the properties of the material and
allow verification of the proposed calculation algorithms in terms of compliance with the results
of the experiment. Kluger and Pawliczek [6] shows and discusses on the results of a comparison
involving mathematical models applied for fatigue life calculations where the mean load value is taken
into account. The specimens were subjected to bending, torsion and a combination of bending with
torsion with mean value of the load. Analysis of the calculation results show that the best fatigue life
estimations are obtained by using models that are sensitive to the changes of material behavior under
fatigue loading in relation to the specified number of cycles of the load. Branco et al. [9] described
studies the effect of different loading orientations on fatigue behavior in severely notched round
bars under pulsating in-phase combined bending-torsion loading. Fatigue life is predicted via the
Coffin-Manson model. The paper [11] presents results on the fatigue crack in specimens made of the
2017A-T4 alloy under bending. The specimens had different notch geometry. The tests were performed
by imposing a constant load amplitude value and different stress ratio R = −1.0 and R = 0. In [12] the
failure analysis of a coupled shaft from a shredder is presented, which was subjected to bending and
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torsion. The shaft failure occurred due to fatigue, on a perpendicular plane to the rotation axis, in the
place of the hole. The shaft fracture surface presents characteristics of fatigue due to torsion combined
with bending high loads.

The purpose of the tests described in the work is to learn about the behavior of specimens made
of typical structural steel under conditions of cyclic loads with different stress ratios. An approach
consisting of the reduction of the multiaxial (complex) load state to a simple load state (uniaxial
tension-compression) and prediction of fatigue life of elements using the linear Palmgren-Miner
damage hypothesis is presented. The results of calculations based on fatigue characteristics at uniaxial
tensile-compression are compared with the results of experimental tests of S355J0 steel specimens
subjected to cyclic bending, cyclic torsion and a combination of bending and torsion using non-zero
mean stress values.

2. Analyzed Fatigue Models

The models described below relate to stress amplitude change σa (τa) and mean stress value
σm (τm). Figure 1 shows the algorithm for calculating fatigue life under bending and torsion for
courses with different values of the stress ratio R. In the algorithm, the equivalent stress amplitude was
calculated using the Huber–Misess–Hencky hypothesis.
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Where
σag = Ma

Wx
cosα; σmg = Mm

Wx
cosα,

τas =
Ma
W0

sinα; τms =
Mm
W0

sinα,

where: σag, σmg—bending stress amplitude and stress mean value respectively, τas, τms—torsional stress
amplitude and stress mean value respectively, Ma, Mm—amplitude of the moment and mean value
of the load moment, respectively, Wx—bending indicator, W0—torsion indicator, α—angle between
bending and torsion moments.
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When transforming stress amplitudes, due to the non-zero mean stress values, commonly known
transformation relationships were used. These are equations [13–15]

Goodman : σaT = σa
1− σm

Rm
, (1)

Gerber : σaT = σa

1−( σm
Rm )

2 , (2)

Marin : σaT = σa√
1−( σm

Rm )
2
, (3)

where Rm—ultimate strength, σm—mean stress, σa—stress cycle amplitude with a mean value σm , 0,
σaT—fatigue equivalent stress cycle amplitude (about mean value σmT = 0).

In the next transformation dependencies used in the calculations, material constants characterizing
the fatigue properties of the material are used. These are the relationships [16–18]

Morrow : σaT = σa
1− σm

σ′ f

, (4)

Kliman : σaT = σa(
1− σm

σ′ f

) c+1
b+c+1

,
(5)

where σ′f—fatigue strength coefficient, b, c—fatigue strength and ductility exponent, respectively.
Material sensitivity to the effect of average load can be described by the material sensitivity factor

for the asymmetry of cycle [2,19]. As a result of developing and transforming dependencies based
on the mean loading value on Haigh diagram σa = f(σm) and τa = f (τm), their limit for stress level
corresponding to the unlimited life (fatigue limit) is indicated. It was indicated that material sensitivity
on mean loading is not a material constant and depends on the number of the cycles corresponding to
the failure of an element. The amplitude of the corresponding normal and shear stress components is
calculated as follows:

σa = σ−1 −ψσσm, (6)

τa = τ−1 −ψττm (7)

where σ−1—fatigue strength and ductility exponent, respectively fatigue limit at the oscillatory cycle,
ψσ, ψτ—material sensitivity factor for the asymmetry of cycle.

The material sensitivity factor for the asymmetry of cycle ψσ for bending is defined as

ψσ =
2σ−1 − σ0

σ0
, (8)

and for torsion
ψτ =

2τ−1 − τ0

τ0
, (9)

where σ0, τ0—fatigue limit at one-sided cycle for bending and torsion.
The value of the factor ψσ and ψτ determined by the relationships (8) and (9) is correct for the

fatigue limit. Determining the function of changing the value of the material sensitivity factor for the
asymmetry of cycle depending on the number of cycles N allows the assessment of the effect of the
mean stress value depending on the material life. By making the factor ψσ and ψτ dependent on the
number of cycles until failure N, in Formulas (8) and (9), stress amplitudes will appear depending on
the number of cycles:

for bending

ψσ(N) =
2σ−1(N) − σ0(N)

σ0(N)
, (10)
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and for torsion

ψτ(N) =
2τ−1(N) − τ0(N)

τ0(N)
, (11)

where σ−1(N), τ−1(N)—stress amplitude at oscillatory bending and torsion for a fixed number of N
cycles, σ0(N), τ0(N)—one-sided cycle stress amplitude under bending and torsion for a fixed number
of N cycles.

After transformation Formulas (6), (7) and taking into account Relationships (10) and (11), it is
possible to determine the equivalent stress amplitude at a symmetrical cycle for given values of stress
amplitude σa and τa and mean values of stress σm and τm with the assumed number of cycles N

σ−1(N) = σa +ψσ(N)σm, (12)

τ−1(N) = τa +ψτ(N)τm, (13)

Assuming the stress amplitude for the symmetrical cycle, determined in accordance with the
relationship (12) and (13), as the transformed amplitude and transforming the relationship (12), (13)
the model based on cycle asymmetry sensitivity factor (CASF model) may be written as:

σaT = σ−1(N) = σa

(
1 +ψσ(N)

1 + R
1−R

)
, (14)

τaT = τ−1(N) = τa

(
1 +ψτ(N)

1 + R
1−R

)
, (15)

The proposed criterion (13) and (14) allows to determine the equivalent stress amplitude in
a symmetrical cycle (R = −1) for the given amplitude values and the average stress value of the
asymmetrical cycle (R , −1) using the function of changing the material sensitivity factor for the
asymmetry of cycle.

Relations (6) to (15) have been developed for uniaxial loads and cannot be directly used for
multiaxial loads, when there is also uneven stress distribution in the tested specimens.

In this paper, it is assumed that the parameters describing the Wöhler curve in the area of limited
fatigue life for uniaxial loads and for the analyzed complex load cases are similar to each other,
i.e., the graphs are parallel. Therefore, a constant Ki coefficient is adopted, which allows to refer the
case of multiaxial loads to uniaxial tension-compression

Ki =
Zrc

Zi
, (16)

where Zrc—fatigue limit under cyclic tension-compression, Zi—fatigue limit expressed by the equivalent
stress amplitude for bending, torsion or a combination of bending and torsion for zero mean load,
determined using the Huber-Misess-Hencky hypothesis.

Equations (1)–(6) and (15) were modified to form

σaTi = σaT Ki, (17)

Computational fatigue life was determined from the relationship

log Ncal = B + A log σaTi, (18)

where A, B—regression coefficients of the fatigue characteristics of the material determined at
symmetrical tensile-compression.
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3. Material and Methods

The smooth specimens of S355J0 steel were subjected to fatigue testing (Figure 2). The starting
material was a drawn rod. The chemical composition of the material (obtained from the certificate
attached to the material) is presented in Table 1. Static and fatigue properties obtained under cyclic
tensile-compression are given in Table 2.
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Table 1. Chemical composition of experimental material (%).

C Mn Si P S Cr Ni Cu Fe

0.21 1.46 0.42 0.019 0.046 0.09 0.04 0.17 Bal.

Table 2. Static and fatigue properties of the material.

Re,
MPa

Rm,
MPa

A10,
%

Z,
%

E,
GPa

v σ′f ,
MPa

b c n′ K′

MPa

357 535 21 50 210 0.30 782 −0.118 −0.410 0.287 869

The tests were carried out on the fatigue test stand MZGS-100 [20,21]. The stand used in experiment
allows to perform cyclic of bending, torsion and both combined. The tests of cyclic bending and
torsion were conducted within the range of low and high number of cycles with controlled force (in the
considered case, the moment amplitude was controlled). The loads were of a sinusoidal nature with a
frequency of about 25–29 Hz. The amplitudes and the mean value of the load were changed according
to the test requirements. The nominal stress amplitude and nominal mean stress value were used
in calculations.

The tests included three load states of the samples determined by the angle α determining
the combination of bending and torsion (Figure 3). It is easy to find, that for α = 0 we have
Mgα(t) = M(t)—the specimen is subjected to bending. When α = 90◦, we have Mgα(t) = M(t)—the
specimen is subjected to torsion. The combined bending with torsion is applied to specimen for every
value of the angle in range 0 < α < 90◦. For combined bending with torsion, torsion moment Mgα(t) is
proportional to bending moment Mgα(t), where proportion is equal to tgα.Metals 2019, 9, x FOR PEER REVIEW 6 of 14 
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For test three values of the angleαwere used:

α = 0 (rad), (0◦) (bending),
α = 1.107 (rad), (63.5◦) (combined bending with torsion),
Msα = 2Mgα; σα(t) = τα(t),
α = π/2 (rad), (90◦) (torsion).

Experimental studies were conducted at a constant value of the stress ratio R = −1, −0.5, 0 by
changing the moment amplitude value Mag and the mean moment value Mmg for bending and Mas

and Mms respectively for torsion. The tests were performed for 4–5 levels of stress amplitudes, for each
combination of load at least two or three specimens were used. As a result, for the given load levels,
the corresponding fatigue life was obtained. Obtaining fracture of specimen was adopted as the failure
criterion for the sample.

Standard fatigue characteristics for cyclic tension–compression are described by equation [22]

log Ncal = B + A log σa = 24.32− 7.91logσa, (19)

where the limits of confidence intervals with a probability of 0.95 for individual parameters are as
follows: −6.16 ≤ A ≤ n − 9.67; 20.04 ≤ B ≤ 28.60. The fatigue limit obtained is Zrc = 204 MPa and
correspond her N0 = 1.12 × 106 cycles.

4. Results and Discussion

The results of bending fatigue tests were approximated by the regression equation in the form
(in the case of torsion, the equation contains τa)

log Nexp = B + Alogσa, (20)

Figure 4 show the results of tests on bending, torsion and combination of bending with torsion as
well as fatigue characteristics determined based on Equation (20).

Table 3 contains the values of the parameters of the regression equation and the correlation
coefficient r values of logN and logσa (logτa), while Table 4 contains the fatigue limits for individual
load combinations.

Table 3. Parameters of the regression equation.

R
Bending Torsion Bending and Torsion

B A r B A r B A r

−1 23.93 −7.19 −0.97 32.81 −11.82 −0.94 29.73 −10.62 −0.98
−0.5 23.71 −7.40 −0.96 27.60 −10.01 −0.93 36.73 −14.67 −0.99

0 31.40 −10.73 −0.96 59.76 −25.25 −0.95 31.62 −12.42 −0.94

Table 4. Fatigue limits.

Moment and Stress
Bending Bending and Torsion Torsion

α = 0◦ α = 63.5◦ α = 90◦

Ma (N·m) 13.59 16.82 17.53
σ−1 (τ−1) (MPa) σ−1 = 271 σ−1 = τ−1 = 152 τ−1 = 175

Analyzing the graphs in Figure 4 and the parameters contained in Table 3, it can be concluded
that the values of the coefficient A for bending are similar in all cases except R = 0 (A = −10.73).
During torsion for R = −1 and −0.5, the values of coefficient A are close to each other, while for R = 0
its value clearly differs from the others. In the case of a combination bending with torsion, the values
of the coefficient A are similar for R from −1 to 0.
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Increasing the value of the stress ratio R from−1 to 0 causes a significant decrease in the permissible
(acceptable) amplitudes. In the case of bending, R = −0.5 allowable amplitudes are about 20% lower
than for R = −1 (at σm = 0) and for R = 0 they are 35% lower. During torsion for R = −0.5, the allowable
stress amplitudes are about 19% smaller compared to the stress amplitudes for R = −1, while for R = 0
this decrease is from 40% for a small number of cycles and up to 27% for a large number of cycles.
For the combination bending with torsion under R = −0.5 the stress amplitudes are reduced by 35% for
a small number of cycles and to 27% for a large number of cycles, while for R = 0 the allowable stress
amplitudes are reduced for a small and a large number of cycles respectively 37% and 32%.

Figure 5 show the impact of the mean value of bending stress σm and torsional stress τm on the
change in allowable stress amplitudes σa and τa. Lines in Figure 5 present the interpolation of the data
on the graph.
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In the case of bending (Figure 5a) for a lifetime of 104 cycles, an increase in the mean stress value
σm in relation to σm = 0 causes a decrease in the stress amplitude σa to varying degrees, e.g., for R = 0.5
by 22% and for R = 0 by 39%. For durability N = 105 cycles, the decreases in σa are 20% and 30% for
R = −0.5 and 0, respectively. These differences for all R values are no longer as large as for N = 104

cycles. However, in the case of durability at the level of 106 cycles, there is a decrease in the value of
stress amplitude σa by an average of 23% in relation to σm = 0, while for R = −0.5 and 0 the value of
allowable stress amplitude practically does not depend on the value of the mean stress.

During torsion (Figure 5b), for life N = 104 cycles, a significant decrease in stress τa due to the
increase in value τm is also visible, e.g., in relation to loads τm = 0 the decrease is 17% and for R =

−0.5 and about 40% for R = 0. At durability level N = 105 cycles these decreases are 20% and 34%
respectively. For a large number of cycles, this difference virtually disappears and the decrease in the
permissible amplitude values is very similar (23% and 27%).

For the combination of bending with torsion (Figure 5c) and durability N = 104 cycles, it can be
seen that with an increase in average stress, there is a large decrease in the allowable stress amplitudes
(about 35%) for both R = −0.5 and R = 0. Similarly, for N = 105 cycles- the decrease in the allowable
stress amplitudes are 31% and 34% for R = −0.5 and R = 0, respectively. For N = 106 cycles, an increase
in the mean stress value reduces the stress amplitude by 32% for R = −0.5 and 27% for R = 0 compared
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to the case σm = τm = 0. The small influence of the mean stress value from the durability level N = 105

cycles is characteristic. A further increase in mean stress practically does not cause major changes in
the values of allowable stress amplitudes.

Using the relationships (10) and (11) on the basis of fatigue tests, the value of the ψ coefficient
was determined in terms of life N = (5·× 104

− 2.5 × 106) cycles. The change of the value of the factor
ψ depending on the number of cycles N is shown in Figure 6. For bending, this relationship was
described by the function ψσ(N) = 3.1621N−0.164. There is a visible decrease in the value of the factor
in terms of durability N = (5·× 104

− 7.5·× 105) cycles. In the case of torsion, the function has the
form ψτ(N) = 2.897N−0.131, while the nature of the curve is similar to that for bending. In the case
of a combination of bending and torsion, the function takes the form ψτ(N) = ψσ(N) = 0.854N−0.044.
From this function one can notice a milder course than for bending and torsion, with the largest
decreases in the coefficient value also occurring in the durability range N = (5·× 104

− 7.5·× 105) cycles.Metals 2019, 9, x FOR PEER REVIEW 10 of 14 
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In the algorithm of calculating fatigue life for bending, torsion and combination of bending with
torsion with the participation of mean stress values, the transformation relationships described by
Equations (1)–(5) and (14), (15) modified to form (17), were used.

The values of Ki (16) coefficients were determined assuming the fatigue limits of individual types
of loads at σm = τm = 0 (Table 4) respectively:

for bending

Kg =
Zrc

σ−1
; σ−1 = 271 MPa, (21)

for torsion

Ks =
Zrc
√

3·τ−1
; τ−1 = 152 MPa, (22)

for bending and torsion

Kgs =
Zrc√

σ2
−1 + 3 · τ2

−1

; σ−1 = τ−1 = 175 MPa. (23)
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Stress amplitudes σaTi were determined from Equation (17), computational stability Ncal
according to Equation (18), which is the fatigue characteristics of the tested steel under uniaxial
tension-compression (where there is an even distribution of stress across the specimen cross-section).

Figure 7 shows the results of calculations for bending, torsion and a combination of bending and
torsion with zero mean value of the load course. Figures 8–10 show a comparison of the design fatigue
life with the experimentally obtained life for bending, torsion and combination of bending and torsion
for non-zero mean stress values. The solid line means the perfect match between the computational
stability Ncal and the experimental Nexp, while the dashed lines represent the scatter bands of results
with the coefficients Ncal/Nexp = 3 (1/3).Metals 2019, 9, x FOR PEER REVIEW 11 of 14 
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Figure 10. Comparison of the computational life Ncal with the experimental Nexp under bending and
torsion for: (a) R = −0.5, (b) R = −0.

Figure 7 shows that the computational life are mostly in the result spread band regardless of the
type of load and its value. The exception is torsion for a large number of cycles. This allows to state
that the assumption adopted in Formula (16) gives satisfactory results of calculations for zero-mean
loads and allows to believe that it will be used for other load cases.

The analysis of Figure 8a shows that in the case of bending for R = −0.5, the best agreement was
obtained thanks to the Morrow transform dependence and the model described by Equation (14).
Satisfactory results were also obtained for the remaining relationships. However, their dispersion is
greater than for the previously indicated.

At bending loads for R = 0 (Figure 8b), correct results of fatigue life calculations were obtained
using Gerber, Marin and CASF model (Equation (14)). The calculation results are in the scatter band
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with the Ncal/Nexp = 3 (1/3) coefficient for all three cases. It should be noted, however, that this model
underestimates computational durability compared to experimental. The remaining transformation
formulas clearly underestimate the calculated fatigue life; the calculation results are outside the scatter
band Ncal/Nexp = 3 (1/3).

Figure 9 shows the results of calculations for torsion. In the case of R = −0.5 (Figure 9a), the best
results are obtained by the relationship between Goodman and Kliman and the calculation of fatigue
life using Equation (15), satisfactory results were obtained for the Morrow relationship. Gerber and
Marina’s transformation dependencies significantly overstate the results of calculations compared
to the results obtained experimentally. For the stress ratio R = 0 cycle (Figure 9b), the best results of
fatigue life calculations were obtained for Morrow’s formula and calculated according to Equation (15).

In the case of a combination of bending and torsion for R = 0.5 (Figure 10), the best results of
fatigue life assessment were obtained for Goodman and Kliman relationships. Calculations using
Equation (14) overstate the computational life for a small number of cycles. For R = 0 when bending
with torsion (Figure 10b), the best compatibility is given by the assessment of durability using the
model defined by Equation (14) and the Morrow and Gerber relationships.

5. Conclusions

The following conclusions can be drawn from the tests performed on S355J0 steel specimens at
proportional bending with torsion loads for different values of the R:

1. In the case when R = −1 satisfactory results of the fatigue life assessment for bending, torsion and
a combination of bending and torsion were obtained using the Ki coefficient, which is the ratio of
the fatigue limit at cyclic tension-compression to the fatigue limit, calculated in accordance with
the Huber–Misess–Hencky hypothesis for analyzed loads.

2. For loads with a non-zero mean value, it was found that:

• satisfactory results of the fatigue life assessment for bending were obtained using the Gerber
transformation dependence and the CASF model described by Equation (14),

• in the case of torsion, the best compatibility of computational fatigue life with experimental
life is obtained by using Equation (15) and Morrow’s formula,

• for the combination of bending and torsion for both R = −0.5 and R = 0, the CASF model
gives the best results of fatigue life assessment.

3. The CASF model described by Equations (14) and (15), including the effect of the mean stress
value on fatigue life using the material sensitivity factor for the asymmetry of cycle, gives good
results for predicting fatigue life for all tested load cases.
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8. Prażmowski, M.; Rozumek, D.; Paul, H. Static and fatigue tests of bimetal Zr-steel made by explosive
welding. Eng. Fail. Anal. 2017, 75, 71–81. [CrossRef]

9. Branco, R.; Costa, J.D.; Berto, F.; Antunes, F.V. Effect of loading orientation on fatigue behaviour in severely
notched round bars under non-zero mean stress bending-torsion. Theor. Appl. Fract. Mech. 2017, 92, 185–197.
[CrossRef]

10. Carpinteri, A.; Kurek, M.; Łagoda, T.; Vantadori, S. Estimation of fatigue life under multiaxial loading by
varying the critical plane orientation. Int. J. Fatigue 2017, 100, 512–520. [CrossRef]

11. Rozumek, D.; Faszynka, S. Influence of the notch radius on fatigue crack propagation in beam specimens of
2017A-T4 alloy. Mater Sci. 2017, 53, 417–423. [CrossRef]

12. Vicente, C.M.S.; Sardinha, M.; Reis, L. Failure analysis of a coupled shaft from a shredder. Eng. Fail. Anal.
2019, 103, 384–391. [CrossRef]

13. Marin, J. Interpretation of fatigue strengths for combined stresses. In Proceedings of the International
Conference on Fatigue of Metals, London, UK, 10–14 September 1956; pp. 184–194.

14. Goodman, J. Mechanics Applied to Engineering, 9th ed.; Longmans, Green and Co.: New York, NY, USA, 1954.
15. Gerber, W. Determination of permissible stresses in iron constructions. Zeitschrift des Bayerischen Architekten-

und Ingenieur-Vereins 1974, 6, 101–110. (In German)
16. Pawliczek, R.; Kluger, K. Influence of irregularity coefficient of loading on calculated fatigue life. J. Theor.

Appl. Mech. Lett. 2013, 51, 4.
17. Morrow, J. Fatigue Design Handbook, Advances in Engineering; Society of Automotive Engineers: Warrendale,

PA, USA, 1968; Volume 4, p. 29.
18. Kliman, V. Prediction of Random Load Fatigue Life Distribution. In Fatigue Design, ESIS 16; Mechanical

Engineering Publications: London, UK, 1993; pp. 241–255.
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