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1. Introduction and Scope

Although the design and performance of metallurgical processes are still carried out
on an experimental basis, numerical methods and simulation software—either commercial or
open-source—have developed into a standard for these processes. The applications of numerical tools
are as diverse as design, analysis, performance, improvements, or optimization. Thus, simulation technology
has evolved into an indispensable cornerstone and complementary approach to experimental work.
The numerical methods for metallurgical processes nowadays cover a wide domain of applications
such as multiphase flow, multi-physics processes, computational material engineering, optimization,
and process simulation. The detailed and vast amount of simulation data allows a thorough analysis of
the relevant processes and their interactions that reveal the underlying physics. A deep understanding
is of critical importance for process design and performance.

2. Contributions

A total of fourteen articles have been published in the Special Issue of Metals entitled “Advanced
Simulation Technologies of Metallurgical Processing”, addressing a variety of key research areas.
They cover a large range of both time and length scales, clearly emphasizing the multi-physics aspects
of metal processing. Consequently, contributions cover heat transfer processes that interact intensively
with the fluid dynamics during casting with its subsequent solidification behavior, evolving structures
on a micro-scale with their impact on material characteristics/performance and analyzing the operation
of various processes during metal processing for improved properties. Metallurgical processes generally
cover a wide range of tightly linked length scales which currently are not covered by computational
methods due to limiting computer power. Therefore, scale-up algorithms based on similarity theorems,
analyses through Bayesian networks or multivariable analytical models are of crucial importance.

Five articles address casting [1–5] and its inherently multi-physics aspects that involve a strong
interaction between thermodynamics, multiphase fluid dynamics and electromagnetic effects.

The latter was found to strongly influence solute transport through secondary electromagnetic
stirring in a linear and rotational mode [6]. Similarly, the importance of dynamic bath mixing was
emphasized through investigations of different gas blowing schemes [7]. Segregation during steel
casting is largely affected by heat transfer and may result in a rather non-uniform distribution of
solutes. The distribution of solutes strongly impacts global performance parameters such as hardness.

Equally or even more important are processes on a micro-scale in the rapidly growing field
of additive manufacturing, for which the modelling of process–structure–properties–performance
is a key loop [8]. Again, additive manufacturing underpins both the multi-physics behavior and
multi-scale aspects, because the grain structure after solidification determines the performance such as
mechanical strength to a large extent and depends heavily on process conditions such as laser speed,
power or hatch size [7–12]. Solidification was also addressed by a volume-averaged approach for

Metals 2020, 10, 829; doi:10.3390/met10060829 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://www.mdpi.com/2075-4701/10/6/829?type=check_update&version=1
http://dx.doi.org/10.3390/met10060829
http://www.mdpi.com/journal/metals


Metals 2020, 10, 829 2 of 3

multiphase flow during alloy solidification, indicating that a full 3D calculation with the multiphase
volume-averaged solidification will be available in the not too far future due to the development
in computer power. The Ruhrstahl–Heraeus (RH) treatment [13] involves also multi-phase flow for
distributing aluminum in oriented silicon steel for advanced magnetic properties and was investigated
under different super-heating conditions.

Since prediction of the fully coupled process in metallurgy is still not feasible due to limited
computer power and sometimes appropriate simulation software, an alternative is to describe the
global process on the most relevant length scales that aim at industrial applications. The latter were
addressed by investigation heat insulation for an electromagnetic induction-controlled steel-teeming
system. Carefully designed insulation contributes to the life time and endurance of induction coils for
the EICAST technology. Further contributions dealt with splashing effects in a 200 t converter caused
by an oxygen jet from a lance [14] and the open eye area in a gas-stirred ladle.

3. Conclusions and Outlook

Although numerical tools with their advanced simulation technologies have developed into a
daily routine for engineers, many phenomena in metallurgical processing are still far from being
completely understood. In particular, the multi-physics aspects spanning large time and length scales
pose a veritable challenge to the community [15]. Despite a tremendous growth in computational
resources and high-performance computing, the computational power of the biggest computers is
still not sufficient to cover length scales from a molecular level to the dimensions of work pieces,
not mentioning the equally large spectra of time scales. Therefore, the community has to resort to
the large research domain of multi-scaling [16]. Advanced and improved algorithms are required
that embed phenomena on smaller scales into larger scales. Similarly, the multi-physics character of
these and various other applications has to be addressed through cutting edge technologies in high
performance computing [17] by coupling different software modules, each representing a particular
physical aspect, and organizing a data exchange with a minimal communication overhead.
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