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Abstract: Minimum quantity lubricant (MQL) is an advanced technique in machining to achieve
sustainability, productivity, higher precision, economic benefits, and a reduction in carbon footprints.
The present research work aims to investigate the effect of the cutting process parameters of the end
milling of AA5005H34 material under dry and MQL cutting environments. The key performance
indicators of machining include the surface roughness profile, the material removal rate, and tool wear.
Surface roughness parameters are measured with the help of the Mitutoyo surface roughness tester,
and the cutting tool wear is measured according to the ISO 8688-2:1989 standard using a scanning
electron microscope (SEM). Sixteen experiments are designed based on the Taguchi orthogonal array
mixture design. Single responses are optimized based on signal to noise ratios, while for multi-
response optimization composite desirability function coupled with principal component analysis is
applied. Analysis of variance (ANOVA) results revealed that the feed rate followed by spindle speed,
axial depth of the cut, width of the cut, and cutting environment are the most significant factors
contributing to the surface roughness profile, material removal rate, and tool wear. The optimized
parameters are obtained as cutting speed of 3000 rev/min, feed rate of 350 mm/min, axial depth of
cut of 2 mm, and width of cut of 6 mm under an MQL environment.

Keywords: milling; minimum lubricant quantity (MQL); aluminum alloy; Taguchi orthogonal
array; signal to noise ratios; analysis of variance; principal component analysis (PCA); composite
desirability method

1. Introduction

Green manufacturing is a leading trend in sustainable production to produce ma-
chined jobs with the aim of substituting environment polluting processes. The objective can
be best achieved by adopting dry machining [1]. Dry machining is a sustainable method
that diminishes the problems associated with the machining of commercially used alloys
such as steel, aluminum, and cast iron [2]. Owing to the demands of future machining,
such as cost, health concerns, and mitigating ecological issues, dry machining is an optimal
choice to resolve these issues [3]. It is widely employed as a reference standard to measure
cutting fluids’ effectiveness and the interrelationships among tool wear, product quality,
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and temperature [4]. However, machining aluminum under dry conditions is extremely
difficult due to the higher chemical affinity [5]. This can be controlled by numerous cooling
techniques such as flooded coolant [6], oil-water [7], cryogenic cooling (carbon dioxide,
liquid nitrogen) [8], minimum quantity lubricant (MQL) [6], and nanofluids [9]. MQL is a
novel cooling technique in which coolant is sprayed at the tool–surface interface with the
aid of compressed air at a controlled pressure [10]. MQL reduces the total manufacturing
cost as well helping to obtain vital and desirous machining quality attributes, such as
excellent surface finish i.e., average roughness (Ra), root mean square (Rq), depth of peaks
and valleys on the surface (Rz) [11], greater tool life [12], higher material removal rate [13],
and enhanced dimensional accuracy [10]. In the MQL strategy, nearly 70% of heat is carried
away by chips [14]. The MQL method is the most suitable, as it successfully satisfies the
pre-requisites of sustainable eco-friendly machining [15].

In milling, the material removal rate (MRR) has vital importance, as it significantly
affects the production rate/productivity, energy consumption, cutting forces, and tool
life [16]. Surface roughness (SR) is an important criterion and a crucial indicator in achiev-
ing the desired quality and performance of the machined product. Hence, SR must be
controlled during machining to obtain the lowest possible values [17]. Abhang et al. [18]
demonstrated that SR governs the fatigue strength, friction properties, wear, and corrosion
resistance of machined surfaces. Tool life is the actual service length for which a tool
performs satisfactorily, provides a good surface finish, and provides a reasonable MRR
before replacement. A longer tool life reduces cost and improves productivity [19]. The
appropriate selection of critical parameters, especially cutting speed, feed rate, depth of cut,
and lubrication method, significantly impacts the job quality and process efficiency [20].
Vegetable oil [6,21], esters, and nanofluids [6,9,21] have substituted poisonous petroleum-
based oils due to their eco-friendly, biodegradable, non-toxic, and renewable nature.

Jebaraj et al. [22] studied the influence of the process parameters—namely feed rate,
spindle speed, and cooling environment (wet and cryogenic CO2 and LN2)—in the milling
of Al6082-T6 alloy using an uncoated carbide insert. The output responses were average
surface roughness, feed force, normal force, axial force, and cutting temperature. TOPSIS
(The technique for order of preference by similarity to ideal solution) was applied to
optimize the multi-responses. The analysis of variance (ANOVA) results showed that
cooling environment has a significant effect on all considered responses, followed by feed
rate and spindle speed. The optimal parameters obtained were wet cooling conditions,
cutting speed of 125 m/min, and feed rate of 0.02 mm/tooth. Raju et al. [23] developed a
model for surface roughness and optimized the cutting parameters of aluminum alloy 6061
with carbide and high-speed steel (HSS) in end milling under dry and wet environments.
The ANOVA results showed that for both dry and wet environments, feed rate followed
by spindle speed has a dominant effect on surface roughness; however, the depth of cut
was found to be the least contributing factor. A genetic algorithm (GA) was employed to
achieve optimum machining conditions. For the HSS tool without the use of a coolant,
the optimized parameters are a cutting speed of 1488 rpm, a feed rate of 200 m/min, a
depth of cut of 1.5 mm; however, with the use of a coolant, they are 1465 rpm, 200 m/min,
and 1.5 mm. For a coated carbide tool without the use of a coolant, they are 1500 rpm,
200 m/min, and 1.5 mm, while for with the use of a coolant they are 1477 rpm, 200 m/min,
and 1.5 mm.

Elsen et al. [24] optimized the end milling process parameter (spindle speed, feed rate,
and depth of cut) for a stir-casted alumina-reinforced aluminum metal matrix composite
using response surface methodology (RSM) under a dry environment. The performance
parameters investigated were average surface roughness and machining time. The ANOVA
results revealed that cutting speed and depth of cut have a significant effect on surface
roughness, while for machining time the cutting speed and feed rate were the most influ-
encing parameters. Minimum surface roughness (1.514 micro) and machining time (18.4 s)
were obtained at optimized parameters—i.e., higher cutting speed of 1750 rev/min, lower
feed rate of 0.4 mm/rev, and depth of cut at 0.2 mm.
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Kumar et al. [25] studied the high-speed milling of BSL 168 aluminum composites
under wet conditions. The Box Behnkn array is designed for experimental runs comprised
of four factors—i.e., spindle speed, depth of cut, feed rate, and coolant. The output
responses were surface roughness and material removal rate, while the cutting operation
was performed on the flat end mill cutter. Responses are simultaneously optimized based
on composite desirability function. ANOVA results revealed that the depth of cut has a
significant effect on the surface roughness and material removal rate, followed by spindle
speed, feed rate, and coolant. Tsao [26] applied the Grey–Taguchi method to optimize
the end milling parameters of aluminum alloy A6061P-T651. The factors considered were
coating type, helix angle, primary relief angle, cutter diameter, depth of cutting, width of
cut, feed rate, and spindle speed. The type of cutter used was an end mill tungsten carbide
and the responses were flank wear and surface roughness. The ANOVA results showed
that the most influencing parameters affecting flank wear were cutter diameter followed
by coating type, helix angle, relief angle, depth of cutting, and width of cutting. For surface
roughness, feed rate followed by cutter diameter and coating were found to be significant.

Lmalghan et al. [27] optimized the face milling parameters of aluminum alloy AA6061
using the Response Surface Methodology and the Particle Swarm Optimization technique
under dry conditions. Experimental runs are planned based on the central composite
design (i.e., 20). The ANOVA results showed that the spindle speed was the most dominant
factor affecting all responses, followed by feed rate and depth of cut. The optimized param-
eters obtained based on PSO to achieve a minimum surface roughness (0.494 µm), cutting
force (166.85 N), and power consumption (0.265 kW) were spindle speed of 3000 rpm, feed
rate of 500 mm/min, and depth of cut of 3 mm. Rajeswari and Amirthagadeswaran [28]
investigated the machinability characteristics and optimization of the end milling of alu-
minum composites (7075 metal matrix) using RSM-based grey relational analysis. The
machining performance to be studied were surface roughness, material removal rate, tool
life, and power consumption. It was found that the spindle speed and weight percentage
of SiC were the most significant parameters for all responses. The optimized parameters
to achieve a higher material removal rate, low cutting force, minimum surface roughness,
and lower tool wear were spindle speed of 1000 rpm, feed rate of 0.03 mm/rev, depth of
cut of 1 mm, and 5% of SiC. Tosun and Pihtili [29] optimized the cutting process param-
eters (feed rate, spindle speed, tool material, and cooling technique) of the face milling
of 7075 aluminum alloy using grey relational analysis (GRA). The responses considered
were surface roughness and material removal rate. They concluded that feed rate is one
of the dominant factors among the considered factors that affect the surface roughness
and material removal rate in milling, followed by cutting speed, tool material, and cooling
technique. The optimized parameters obtained are the cooling environment of a flood
coolant, the tool material of a carbide tool, a spindle speed of 1330 rpm, and a feed rate of
80 mm/min.

The industry’s desire to improve quality, productivity, efficiency, and cost reduction is
strongly associated with the proper selection of cutting parameters at optimal levels [29].
The utmost objective of the machining sector is a higher MRR, admirable quality surface
finish, higher tool life, and cost reduction. However, achieving this objective is quite
difficult, as finding the optimal combination that simultaneously improves surface finish,
MRR, and diminishing tool wear rate requires the application of complex statistical methods
and resource consumption. High feed rate, cutting speed, and depth of cut promote
a higher MRR; however, this combination also causes intense heat production at the
cutting zone that significantly deteriorates the dimensional accuracy, tool life, and surface
finish [21,29]. Abas et al. [30] carried out experimental and statistical studies to optimize
the cutting parameters to minimize cutting forces and shape deviations in Al6026-T9. The
machining was performed with virgin olive oil and an uncoated tungsten carbide tool. The
experimental runs were planned based on Taguchi mixture orthogonal array design L16.
Their study concluded that feed rate was the most important factor for all components of
cutting forces and shape deviation. Waseem et al. [31] applied multi-response optimization
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to predict the tensile creep behavior of parts produced by means of additive manufacturing.
The work was accomplished using a categorical response surface methodology. Their
research work revealed that the most influencing factors for creep rate were layer height,
infill percentage, and infill patterns. In statistical evaluation and prediction, one of the
promising techniques is structural equation modeling (SEM). For example, Kamal et al. [32]
used SEM to perform a quantitative analysis of the sustainable use of construction materials.
Their results revealed that the components of supply chain integration were statistically
significant in terms of the construction industry performance.

Besides aluminum alloys, researchers have also explored the optimum surface rough-
ness parameters of hard-to-cut materials under different cutting conditions. For instance,
Markopoulos et al. [33] investigated the slot milling of hardened AISI O1 steel alloy and
evaluated the influence of cutting feed, speed, and depth of cut on the surface roughness.
Their work considered the sustainability assessment criterion for determining stable char-
acteristics for the eco-benign machining of hardened steel. Pimenov et al. [34] studied the
surface quality and energy consumption of AISI 1045 steel during face milling in terms of
costs and material removal rate. Abbas et al. [35] reported a detailed study on optimizing
the milling process parameters of high-strength grade-H steel by employing artificial neural
networks and the Edgeworth–Pareto method. Muhammad et al. [36] performed exper-
imental tests and statistical evaluations for the micro-milling of Inconel 718 to evaluate
the effect of the tool coating and cutting parameters on surface roughness. The ANOVA
results predicted that the coating was a significant parameter for both burr formation and
surface roughness. Sen et al. [37] investigated the wire electrical discharge machining
(WEDM) process parameters of an Inconel-800 superalloy. They applied a trapezoidal
interval type-2 fuzzy number integrated analytical hierarchy process-based additive ra-
tio assessment method. They evaluated the obtained results with existing multi-criteria
decision-making methods.

A local manufacturing sector is facing issues in controlling and optimizing machining
parameters to achieve the desired surface finish quality, higher productivity (in terms of
material removal rate), and low setup cost (in terms of low tool wear). Currently, the
setting of cutting parameters is attained by commonly employed traditional methods—
i.e., trial and error—which is cumbersome, error-based, and time-consuming. One of
the most reliable approaches to determine the optimum cutting parameters is numerical
simulation. Numerous reliable studies have shown that numerically predicted outcomes
closely conform with the experimental results. For instance, Waqas et al. [38] performed a
numerical modeling and analysis of Ti6Al4V alloy using Abaqus/Explicit and predicted
the cutting reaction forces and shearing zone temperature. The predicted results were close
to the experimental ones. A general summary of the related published studies is presented
in Table 1. The summary outlines the cutting conditions used in any particular machining
process, the research approaches adopted, and the machining characteristics studied.
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Table 1. A general summary of related published studies (cutting conditions and machining performance characteristics).

Machining Method/Cutting
Conditions Material and Characteristics Studied Investigation Approach

[2] Different cooling-lubrication Hardened steel, machining parameters Experimental invertigation

[5] Micro end-milling Tool wear FEA, numerical investigation

[7] Spray cutting fluids, high speed
milling Machining characteristics Experimental and numerical

investigation

[8] Cryogenic N2 assisted turning Ti-6Al-4V, tool life cycle assessment Multi-objective optimization

[10] Face milling, Al2O3 based MQL D2 Steel A comparative study

[11] Biodegradable oil-based MQL Hardened steel, machining
characteristics Experimental invertigation

[13] Nanofluid SQCL assisted face milling Aluminum, energy consumption,
surface quality Multi-objective optimization

[14] MQL grinding, vegetable oils Nickel-base alloy, grinding
temperature, energy ratio coefficient Experimental invertigation

[16] Milling MRR, computational accuracy Voxel-based analysis

[17] Dry, MQL milling AISI 4140, machining characteristics Taguchi design, ANOVA

[18] Milling En-31 steel alloy, machining
characteristics Multi performance optimization

[9,19–21] Vegetable oil-based fluids, lubricants Aluminum alloys and other materials Review

[24] End milling Aluminum metal matrix composite RSM

[26] Milling parameters Aluminum machining characteristics Grey–Taguchi method

[27] End milling AA6061, machining parameters RSM, particle swarm

[28] Milling Aluminum composites, machining
parameters

RSM based grey relational
analysis

[29] MQL milling 7075 Al alloy, machining parameters Grey relational analysis

[30] Turning under MQL Al6026-T9, cutting forces Statistical evaluation

[33] Slot milling AISI O1, machining parameters, surface
quality Regression analysis

[34] Face milling AISI 1045, surface quality, MRR Multi-layer regression analysis

[35] CNC Face milling high-strength grade-H steel, cutting
conditions Artificial Neural Network (ANN)

[36] Micro-milling Inconel 718, cutting parameters, surface
quality Statistical evaluation

[38] Milling under dry Ti6Al4V alloy, cutting forces and
temperature Numerical analysis

[39] MQL-assisted turning process 6026-T9, machining parameters Experimental invertigation

[40] Dry CNC turning 7075 Al composite, machining
parameters Experimental investigation

[41] Helical milling Al 7075 cutting forces Multivariate optimization

[42] Dry end milling Weighted principal component
analysis, Taguchi’s signal-to-noise ratio Multi-objective optimization

[43] Milling Multiple response characteristics Taguchi-Grey relational approach

[44] End milling Al/SiCp metal matrix composite,
surface roughness Predictive modeling

[45] Milling Aluminum, machining parameters Taguchi-Grey approach

[46,47] Milling, nano-fluids Tool wear, residual stress Experimental invertigation
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This article aims to identify, evaluate, and optimize the end milling cutting param-
eters on quality responses for AA5005H34 by employing a hybrid approach of principal
component analysis (PCA) coupled with the composite desirability function (CDF). Sixteen
experiments were conducted based on the L16 Taguchi orthogonal array (OA) mixture
design to assess the optimal cutting parameter combination for quality responses—namely,
surface roughness profile, material removal rate, and flank wear (Vb). It is reported re-
garding the authors’ best knowledge and literature survey that the optimization of the
end milling machining of AA5005H34 has not been reported yet. Therefore, this research
represents a worthwhile contribution in fulfilling the said gap.

Initially, this research presents materials and methods for selecting machining param-
eters. This is followed by the Taguchi orthogonal array (OA) mixture design. Then, the
statistical analysis and optimization of experimental results are analyzed by the Taguchi
SN ratios. In the last section, the achievement of multi-optimization and its validation
through confirmatory experiments is explained.

Applications of Research Work

It is believed that this research is the first reported study on the optimization of the
end milling machining of AA5005H34. The authors could not find published articles on
this study in renowned databases by applying different search strings and terms with
different Boolean operators. Therefore, this study would bridge the gap in this research
domain in the form of a worthwhile contribution. This research is beneficial for researchers
in advanced machining as it employs MQL cutting conditions. The presented study
proves that MQL produces promising results due to it offering a higher productivity,
improved surface texture, and extended tool life as compared to dry machining. The
experimental and statistically grounded research findings provide a comprehensive guide
to the manufacturing sector for improving the machinability of AA5005-H34.

2. Materials and Methods
2.1. Material

Aluminum alloy 5005 H34 (BOZHONG METAL GROUP, Shanghai, China)was ma-
chined using a computer numerical control (CNC) end milling machine, LG-500 HART-
FORD (Hartford machining centers, Shanghai, China). These alloys are widely used
because of their excellent atmospheric corrosion resistance capabilities, good strength, and
good weldability. The most common applications are in high strength foil, architectural
applications, and general sheet metal work [48]. Its chemical compositions are shown in
Table 2.

Table 2. Chemical composition of AA5005-H34.

Element Al Si Mg Fe Cr Cu Mn Zn Others

% by weight 97.63 0.30 1.10 0.07 0.10 0.20 0.20 0.25 0.15

2.2. Cutting Process Parameters

The selection of input cutting process parameters and levels was carried out through
a literature survey, manufacturer recommendations, machining experts, and machine
capabilities. Six influential parameters are taken in this research work—i.e., spindle speed
(S), feed rate (F), depth of cut (D), width of cut (W), and cutting conditions (namely, dry
and MQL).

Figure 1 shows the experimental setup, illustrating the machining of aluminum alloy
and also the cutting kinematics with the MQL setup. The selected parameter units and
levels are depicted in Table 3. The lubricant used was olive oil. It was proven to be effective
in the end milling of AISI 304 steel [49], the turning of 40 HRC hardened steel [11], the
turning of AISI 1060 steel [50], and the turning of aluminum Al 6026-T9 [37]. Olive oil is also
preferred because it is biodegradable and has environmentally friendly [11] characteristics.
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Its viscosity is 84 cp at 20 ◦C, its specific heat capacity is 1.97 J/(g ◦C), its specific gravity is
0.911 at 20 ◦C, and its boiling point is 700 ◦C.
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Figure 1. Experimental setup: (a) end milling of aluminum alloy, (b) schematic of cutting kinematics and MQL setup.

Table 3. Selected machining parameters and levels.

Factors Symbols Units
Levels

1 2 3 4

Spindle speed S rev/min 1000 2000 3000 4000
Feed rate F mm/min 250 350 450 550

Axial depth of cut D mm 1 1.5 2 2.5
Width of cut W mm 2 6 10 14

Cutting conditions C - Dry MQL - -

2.3. Responses Variables

The predominant quality characteristics that are considered in this research work are
the surface roughness profile, the material removal rate, and tool wear. Surface roughness
portrays the geometry and texture of the machined surface and greatly influences manu-
facturing costs. The three main surface roughness parameters depicted in standards are
average roughness height (Ra), root mean square height (Rq), and average of maximum
roughness (Rz) [39]. They were measured at three different locations and measurements
were repeated twice at each location on the machined surface with the help of a Mitutoyo
surface roughness tester (SJ-201,Mitutoyo Corporation, Kanagawa, Japan), as shown in
Figure 2. The average values of readings are depicted in Table 4.
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Table 4. Design matrix in coded and experimentation results.

Exp. No.

Parameters Responses

S F D W C S F D W C Ra
(µm)

Rq
(µm)

Rz
(µm)

MRR
(mm3/s)

Vb
(mm)

1 1 1 1 1 1 1000 250 1 2 Dry 1.55 3.16 4.51 450 152
2 1 2 2 2 1 1000 350 1.5 6 Dry 1.72 3.45 4.92 970 196
3 1 3 3 3 2 1000 450 2 10 MQL 1.98 3.98 5.69 1420 222
4 1 4 4 4 2 1000 550 2.5 14 MQL 2.35 4.38 6.25 2050 248
5 2 1 2 3 2 2000 250 1.5 10 MQL 1.53 3.07 4.39 1085 168
6 2 2 1 4 2 2000 350 1 14 MQL 1.64 3.28 4.69 1250 175
7 2 3 4 1 1 2000 450 2.5 2 Dry 1.92 3.88 5.52 1415 243
8 2 4 3 2 1 2000 550 2 6 Dry 2.13 4.26 6.09 1650 262
9 3 1 3 4 1 3000 250 2 14 Dry 1.6 3.22 4.61 1290 215

10 3 2 4 3 1 3000 350 2.5 10 Dry 1.89 3.78 5.41 1850 269
11 3 3 1 2 2 3000 450 1 6 MQL 1.82 3.62 5.18 1515 242
12 3 4 2 1 2 3000 550 1.5 2 MQL 1.86 3.68 5.27 1802 261
13 4 1 4 2 2 4000 250 2.5 6 MQL 1.45 2.62 3.75 1482 232
14 4 2 3 1 2 4000 350 2 2 MQL 1.61 3.12 4.48 1655 258
15 4 3 2 4 1 4000 450 1.5 14 Dry 1.92 3.88 5.55 2100 295

The weight loss method was used for measuring the material removal rate (MRR) and
it is expressed in Equation (1) [39].

MRR =
Wb − Wa

ρtm
(1)

where Wb is the weight of the sample before machining, Wa is the weight of the sample
after machining, ρ is the material density, and tm is the machining time.

In the presented study, tool life is measured as flank wear that occurs on the relief
or flank of the cutting tool [51]. The wear is measured according to the ISO 8688-2:1989
standard using a scanning electron microscope (SEM). According to this standard, the
tool life is said to be diminished completely when the average flank wear exceeds 300
µm. Figure 3 shows a SEM image of the average flank wear for machining experiment
number 1, as given in Table 4.
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Figure 3. SEM of flank wear (experiment number 1).

2.4. Experimentation

Experiments were designed based on the Taguchi mixture design. The Taguchi or-
thogonal array (OA) mixture design (L16) with 16 experimental runs was selected and
experiments were conducted on a vertical-type machining center, LG-500 HARTFORD
(Hartford machining centers, Shanghai, China). The machining of each sample was per-
formed with a new cutting tool. A 4 flute carbide flat end mill cutter was used, with a
diameter and length of 16 mm and 75 mm, respectively. The overhung length of 20 mm
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was maintained in order to avoid the influence of vibration and chatter. Experimental data
collected through the OA are presented in Table 4.

2.5. Optimization Methodology

Taguchi signal-to-noise (SN) ratio, which is a mono-objective optimization process, is
widely applied for identifying the optimal parameter settings of individual responses but
is not used simultaneously [52,53].

The expression for the larger-the-better (LTB) S/N ratio is shown in Equation (2):

S/N ratio LTB = η = (−10) × log10

(
1
m

) m

∑
i=1

1
z2

ij
. (2)

The expression for the smaller-the-better (STB) S/N ratio is shown in Equation (3):

S/N ratio STB = η = (−10) × log10

(
1
m

) m

∑
i=1

z2
ij, (3)

where m is the number of replications and zij is the collected experimental data.
Machining processes involve multiple responses, and machining quality heavily

depends on the simultaneous optimization of all quality responses [39]. Therefore, in
most practical scenarios researchers demand the simultaneous optimization of all quality
responses [54]. Thus, an attempt was made to complete the simultaneous optimization of
quality responses using PCA coupled with CDF. The multi-optimization concept is shown
in Figure 4.
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Figure 4. Conceptual framework for multi-objective optimization.

The composite desirability function is a sophisticated multi-optimization technique
that can be used for real-life problems and preserves the clashing of responses under harsh
conditions [55]. The procedure begins with the calculation of the desirability function
value. Depending upon the goal type of response optimization, the following are the three
categories (STB and LTB, as expressed in Equations (4) and (5), respectively) [39]:
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dir (min) =


0, yir ≤ minyir[

yir−maxyir
minyir−maxyir

]a
minyir ≤ yi ≤ maxyir

1, yir ≥ maxyir

, (4)

dir (max) =


0, yir ≤ minyir[

yir−minyir
minyir−maxyir

]a
minyir ≤ yi ≤ maxyir

1, yir ≥ maxyir

, (5)

where di is the desirability value of the quality response for the ith treatment and kth
quality response, Yir is the observed value of the response with the ith treatment, maxyir
and minyir are the maximum and minimum values of observed data at the kth response, T
is the required target value, and a is the assigned weight that varies from 0.1 to 10. This
determines the desirability function distribution on the interval between the upper and
lower target and limit.

When a = 1, the desirability function is linear and equal weights are assigned to
the target value and its lower and upper limits. When a < 1, the desirability function
will increase exponentially (concave down) and it imparts low importance to the target.
When a > 1, the desirability function will increase exponentially (concave upward). In this
research, “a” is set at 1, so that the desirability function is expected to increase linearly and
the values will vary between [0, 1]. If the observed value (yi) exceeds the stated criteria (i.e.,
LTB), the desirability value approaches 1 or near to 1. However, if the observed value (yi) is
less than the stated criteria, then the desirability value becomes 0 and is unacceptable [56].
The overall composite desirability (D) is obtained by combining the individual desirability
values of all responses [57] using Equation (6).

Di =
n

∏
r=1

dwr
r , (6)

where Di is the combined composite desirability value for the ith treatment, dwr
r is the

desirability value of the rth response, and w is the weight assigned to each response
when ∑n

r=1 wr = 1. The ith treatment that yields a higher D value—i.e., 1 or a closer
value—represents the best response, and the treatment setting is selected as an optimal
combination. Whereas, when the ith treatment yields D = 0 or a closer value, it represents
an unacceptable response [57]. Finally, the optimized milling parameters are calculated by
averaging the composite desirability values at identified levels for each parameter.

The reliability of multi-objective optimization mainly relies on the method employed
for determining the priority weights for each quality characteristic [58]. Usually, equal
importance is given to the responses in simple problems. However, weights may vary
for multi-criteria decision-making (MCDM), as effective decision-making requires appro-
priate weight assignment [59]. Unequal weights can be obtained from numerous weight
determination methods, such as principal component analysis (PCA), entropy [60], and the
standard deviation method [61]. PCA is a powerful method widely aimed at presenting cor-
related variables into uncorrelated principal components [62]. It is a multivariate statistical
method for multi-optimization that aims to minimize vagueness, correlation, dimensions
of information, and complexity [62]. PCA is a preferable method to entropy, GRA, and
the standard deviation method, as it preserves actual unique information to the maximum
possible extent. It focuses on conserving unique information by employing linear permu-
tations [63]. Accordingly, PCA translates multi-objective optimization to mono-objective
optimization without compromising the unique statistics [64]. Therefore, PCA is deployed
to determine the relative weights for each response, and the weights are integrated with
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CDF to perform multi-objective optimization. For multi-response optimization cases, such
as CDF, the respective weights of the responses are required for the computation of the
multi-performance index (MPI), called Di, which are computed by conducting PCA on
desirability values dir for each quality response [65]. The PCA method begins with the
data normalization of dir followed by the computation of the correlation coefficient matrix
(M), eigenvalues, and eigenvectors, and finishes with principal components (PCs) [62].

Step 01: Data Normalization: Data pre-processing: this involves the normalization of
observed quality responses between 0 and 1. The data are linearly normalized in between
zero and unity depending upon the criteria employed to evaluate the responses. STB
criteria are adopted for Ra, Rq, Rz, and Vb and LTB criteria are employed for MRR using
Equations (4) and (5), respectively.

Step 02: Development of the correlation coefficient matrix: Using computed composite
desirability values (dir), a multi-response array (G) is formulated, which is presented in
Equation (7).

G =


m1(1)m1(2)m1(3) . . . m1(r)
m2(1)m2(2)m2(3) . . . m2(r)

. . . . . . . . .

. . . . . . . . .
mi(1)mi(2)mi(3) . . . mi(r)

 (7)

The expression for the generation of a correlation coefficient matrix (M) using the
multi-response array (G) is shown in Equation (8).

Mr,l =

(
Cov (ma(b), ma(l)√

Var(ma(r))×
√

Var(ma(l))

)
, (8)

where a = 1, 2, . . . , i, b = 1, 2, . . . , r, l = 1, 2, . . . , r, and Cov (ma(b), ma(l)) is the covariance
of sequences ma(b) and ma(l).

Step 04: Eigenvalue and eigenvector evaluation: The eigenvalues (λr) and eigenvectors
(Vr) are generated using the Mr,l matrix, as per Equation (9):

(M − λr Ii ) × Vr = 0. (9)

Step 05: Find principal components and weights: The uncorrelated principal components
(Zar) are developed with Equation (10):

Zar =
n

∑
i=1

mi(a)× Vr. (10)

The computed principal components (PC’s), eigenvalues, and eigenvectors are ar-
ranged with respect to their corresponding variance contribution.

Figure 5 summarizes the research methodology deployed in the present study.
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Figure 5. Research methodology.

3. Results and Discussion
3.1. Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) was employed for analyzing the significance and
percentage contribution of parameters regarding the response variables and suitability
of experimental data for further analysis. ANOVA was conducted at a 95% confidence
interval and we obtained results for the surface roughness parameters (i.e., Ra, Rq, Rz),
MRR, and Vb. The ANOVA results are depicted in Table 5. A p-value less than or equal
to 0.05 shows the significance of the parameters. It is evident from Table 5 that feed rate
followed by spindle speed and axial depth of cut has a significant effect on the surface
roughness profile (Ra, Rq, and Rz), material removal rate (MRR), and tool flank wear (Vb),
while cutting conditions were found to be insignificant for all the considered responses.
The width of cut was found to be significant only for Ra and MRR. Further, the percentage
contribution of feed rate was relatively high for all the responses—i.e., Ra (68.27%), Rq
(66.32%), Rz (66.07%), MRR (44.68%), and Vb (42.98%)—thus making it one of the most
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significant contributing factors compared to spindle speed, axial depth of cut, width of
cut, and cutting conditions. These results are in line with the published literature reports,
which show the feed rate to be the most influential parameter for the surface roughness
profile [23,29,42], material removal rate [29], and tool wear [26,28].

Table 5. ANOVA for individual quality responses.

Source DF Adj SS Adj MS F-Value p-Value % Contribution

Ra

S 1 0.08 0.08 14.11 0.00 9.04
F 1 0.58 0.58 107.30 0.00 68.74
D 1 0.09 0.09 16.23 0.00 10.40
W 1 0.04 0.04 7.43 0.02 4.76
C 1 0.01 0.01 1.03 0.33 0.66

Error 10 0.05 0.01
Total 15 0.85

Rq

S 1 0.38 0.38 12.20 0.01 11.48
F 1 2.18 2.18 70.51 0.00 66.32
D 1 0.16 0.16 5.11 0.05 4.81
W 1 0.13 0.13 4.18 0.07 3.93
C 1 0.13 0.13 4.30 0.07 4.04

Error 10 0.31 0.03
Total 15 3.29

Rz

S 1 0.75 0.74 11.09 0.01 11.19
F 1 4.40 4.40 65.47 0.00 66.07
D 1 0.33 0.33 4.88 0.05 4.92
W 1 0.26 0.26 3.94 0.08 3.97
C 1 0.25 0.25 3.72 0.08 3.75

Error 10 0.67 0.07
Total 15 6.66

MRR

S 1 731,149 731,149 58.95 0.00 26.88
F 1 1,215,245 1,215,245 97.98 0.00 44.68
D 1 345,056 345,056 27.82 0.00 12.69
W 1 275,186 275,186 22.19 0.00 10.12
C 1 29,241 29,241 2.36 0.16 1.08

Error 10 124,029 12,403
Total 15 2,719,906

Vb

S 1 9159.20 9159.20 57.10 0.00 36.26
F 1 10,857.80 10,857.80 67.69 0.00 42.98
D 1 3001.30 3001.30 18.71 0.00 11.88
W 1 39.20 39.20 0.24 0.63 0.16
C 1 600.30 600.30 3.74 0.08 2.38

Error 10 1604.00 160.40
Total 15 25,261.80

DF (degree sof freedom), Adj SS (adjusted sum of square), Adj MS (adjusted mean square), F-value (Fisher test value), p-value
(probability value).

The reliability and adequacy of the ANOVA results were analyzed by analyzing
residual (error) plots, as shown in Figures 6 and 7. These plots display the data visually
between residual and fitted values so that the reliability of the assumptions can be checked
efficiently. The assumptions need to be satisfied for adequate ANOVA—i.e., the residuals
are normally distributed and have constant variance [63,66]. It is quite evident from the
normality plot of the residuals (shown in Figure 6) that most data points lie close to the
fitted line at a 95% confidence interval (CI) for each response plot, thus confirming that the
residuals are normally distributed. Further, the normality assumption was checked by the
Anderson Darling (AD) test at a 95% CI. The AD test is an extremely powerful and widely
used statistical tool [67]. The null hypothesis of the AD test claims that the data follow a
normal distribution—i.e., p > 0.05—whereas the alternative hypothesis denies the claim
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stated in the null hypothesis—i.e., p ≤ 0.05. The p-value of the responses shown in Figure 6
is greater than 0.05, thus confirming the normal distribution of the residuals. The versus fit
plots shown in Figure 7 verify the assumption of constant variance, depicting that the data
are completely randomized on both sides of the fitted line and no patterns are identified
(curvilinear and uneven spreading) [66]. Thus, the constant variance assumption is also
satisfied. Based upon the satisfaction of the assumptions, normality plots, and versus plots,
the data were fit for further analysis and optimization [39].
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3.2. Main Effects Plots of Means for Individual Responses

Figure 8 presents the main effects of cutting parameters on the surface roughness
profile (i.e., Ra, Rq, Rz), MRR, and Vb. As shown in Figure 8a–c, a decreasing trend for
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surface roughness profile is observed with the rise in spindle speed and under MQL condi-
tions. However, an increase in the surface roughness profile is observed with an increase
in the feed rate, axial depth of cut, and width of cut. The decrease in surface roughness
with an increase in cutting speed is attributed to the thermal softening of aluminum alloys,
elimination of built-up edges (BUE), decrease in chip fracture, and increase in plastic
behavior [20,43]. Compared to dry machining, MQL tends to reduce the thermal distortion
of the machined work piece and also flushes away the machined chips [43]. The increase
in surface roughness profile with an increase in feed rate and depth of cut (both axial
and width) occurs due to vibration, an increase in cutting forces, the kinematic-geometric
mapping of the cutting edge in the workpiece, and heat generation at the tool and work
piece interface [44,45]. Figure 8d shows a remarkable rise in MRR with the increase in
spindle speed, feed rate, axial depth of cut, and width of cut under MQL conditions. This
may be attributed to an increase in the plastic behavior of aluminum alloy and the fact that
the application of MQL reduces the formation of longer chips and facilitates the movement
of the chips away from the tool’s surface, therefore improving the MRR [68,69]. A rigorous
increase in flank wear is noticed with an increase in spindle speed, feed rate, axial depth
of cut, and width of cut. This effect decreases under the MQL environment, which is
depicted in Figure 8e. This is attributed to a rise in cutting temperature that generates
high residual stresses in the machined surface layer, thermal distortion at the tooltip, and
the sticking of work material to the tooltip, therefore accelerating the flank wear [46,47].
However, using MQL provides better control over the machining temperature and reduces
the accumulation of material on the cutting surface [47,70].
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3.3. Single Objective Optimization

Taguchi-based S/N ratios were employed for the individual optimization of responses.
In this research work, responses involve contradictory objective functions for single-
objective optimization—i.e., the minimization of the surface roughness profile and flank
wear and the maximization of MRR. Therefore, the-smaller-the-better criteria were used
for the surface roughness profile and flank wear using Equation (3), whereas the-larger-the-
better criteria were used for MRR using Equation (2).
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It is quite evident from Table 6 and the main effect plots for the SN ratios of response
variables (shown in Figure 9) that the optimal settings for parameters involve significant
inconsistency among the quality responses. Therefore, the application of multi-objective
optimization techniques is needed to obtain an optimal setting that satisfies all the responses
simultaneously. For instance, as shown in Table 6 at experimental level 13 and Figure 9a–c,
the optimized process parameters to achieve the lower surface roughness profile are cutting
speed at a high level; feed rate, axial depth of cut, and width of cut at a low level; and an
MQL environment. However, the optimized setting for MRR is high cutting speed, feed
rate, axial depth of cut, and width of cut and MQL condition, as depicted in Table 6 at
experimental run 15 and Figure 9d. Conversely, lower tool wear supports a lower cutting
speed, feed rate, axial depth of cut, and width of cut under an MQL environment. This is
depicted in Table 6 at experimental run 1 and Figure 9e.

Table 6. S/N ratios of responses.

Exp. No.
S/N Ratio of Responses

Ra Rq Rz MRR Vb

1 −3.81 −9.99 −13.08 53.06 −43.64 *
2 −4.71 −10.76 −13.84 59.74 −45.85
3 −5.93 −12.00 −15.10 63.05 −46.93
4 −7.42 −12.83 −15.92 66.24 −47.89
5 −3.69 −9.74 −12.85 60.71 −44.51
6 −4.30 −10.32 −13.42 61.94 −44.86
7 −5.67 −11.78 −14.84 63.02 −47.71
8 −6.57 −12.59 −15.69 64.35 −48.37
9 −4.08 −10.16 −13.27 62.21 −46.65

10 −5.53 −11.55 −14.66 65.34 −48.60
11 −5.20 −11.17 −14.29 63.61 −47.68
12 −5.39 −11.32 −14.44 65.12 −48.33
13 −3.23 * −8.37 * −11.48 * 63.42 −47.31
14 −4.14 −9.88 −13.03 64.38 −48.23
15 −5.67 −11.78 −14.89 66.44 * −49.40
16 −5.15 −11.08 −14.13 65.34 −48.69

Optimum S4F1D4W2C2 S4F1D4W2 C2 S4F1D4W2 C2 S4F3D2W4C1 S1F1D1W1 C1

* Optimized setting for mono-optimization.
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Optimum S4F1D4W2C2 S4F1D4W2 C2 S4F1D4W2 C2 S4F3D2W4C1 S1F1D1W1 C1 

* Optimized setting for mono-optimization. 
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3.4. Multi-Objective Optimization

The multi-optimization begins with the computation of normalized values of SN
ratios by employing the desirability function criteria as per Equations (4) and (5). The
reliability of multi-objective optimization mainly relies on the method used for determining
the relative importance (weights) for each quality characteristic [58]. Table 7 presents the
composite desirability values.

Table 7. Calculation of the composite desirability values.

Exp. No. Composite Desirability Values

Ra Rq Rz MRR Vb

1 0.889 0.693 0.696 0.000 1.000
2 0.700 0.528 0.532 0.315 0.692
3 0.411 0.227 0.224 0.588 0.510
4 0.000 0.000 0.000 0.970 0.329
5 0.911 0.744 0.744 0.385 0.888
6 0.789 0.625 0.624 0.485 0.839
7 0.478 0.284 0.292 0.585 0.364
8 0.244 0.068 0.064 0.727 0.231
9 0.833 0.659 0.656 0.509 0.559

10 0.511 0.341 0.336 0.848 0.182
11 0.589 0.432 0.428 0.645 0.371
12 0.544 0.398 0.392 0.819 0.238
13 1.000 1.000 1.000 0.625 0.441
14 0.822 0.716 0.708 0.730 0.259
15 0.478 0.284 0.280 1.000 0.000
16 0.600 0.455 0.464 0.848 0.161

Therefore, PCA was utilized to compute the relative weights, which were integrated
with the complicated multi-optimization technique applied in research—i.e., CDF for the
extraction of the optimal solution [62]. The eigenvalues and eigenvectors were calculated as
per Equation (9) and the PCs computed as per Equation (10), and the results are presented
in Table 8. The percentage of total variation provided by PCA was used as a priority weight
value [65]. Owing to this, the eigenvalue associated with the first principal component (PC)
accounts for 77% of the variation in five quality responses; therefore, the eigenvector for the
first PC was used in the computation of the relative weights for the quality response [62].

Table 8. Principal component analysis.

Component PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalue 3.852 1.027 0.0993 0.0216 0.0001
Variation (%) 0.77 0.205 0.02 0.004 0

Cumulative (%) 0.77 0.976 0.996 1 1

Eigenvector

0.484 −0.271 −0.281 0.783 −0.013
0.475 −0.351 0.155 −0.347 0.712
0.476 −0.346 0.149 −0.372 −0.702
−0.404 −0.564 0.659 0.291 −0.01
0.388 0.605 0.664 0.207 −0.004

The eigenvectors of the first PCs were squared for the computation of the relative
weights of each performance index [56]. The weights 0.2343, 0.2256, 0.2266, 0.1632, and
0.1505 were assigned to Ra, Rq, Rz, MRR, and Vb, respectively, as shown in Table 9.
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Table 9. Variance contribution of quality responses for PC 1.

Response Variable Contribution

Ra 0.2343
Rq 0.2256
Rz 0.2266

MRR 0.1632
Vb 0.1505

The weighted composite desirability values for quality characteristics were computed
by assigning respective priority weights as exponents to the composite desirability values
(as per Figure 4). Using Equation (6), the product of the weighted composite resulted in
overall desirability. This is illustrated in Table 10. The optimal settings were obtained by
averaging the Di values at the respective levels of each parameter, as illustrated in Table 11.

Table 10. Weighted and overall composite desirability.

Exp. No. Weighted Composite Desirability Values Overall
Desirability (Di)

Rank
Ra Rq Rz MRR Vb

1 0.97 0.92 0.92 0.00 1.00 0.0000 14
2 0.92 0.87 0.87 0.83 0.95 0.5402 6
3 0.81 0.72 0.71 0.92 0.90 0.3443 12
4 0.00 0.00 0.00 0.99 0.85 0.0000 14
5 0.98 0.94 0.94 0.86 0.98 0.7196 2
6 0.95 0.90 0.90 0.89 0.97 0.6619 3
7 0.84 0.75 0.76 0.92 0.86 0.3746 11
8 0.72 0.55 0.54 0.95 0.80 0.1625 13
9 0.96 0.91 0.91 0.90 0.92 0.6513 4

10 0.85 0.78 0.78 0.97 0.77 0.3956 10
11 0.88 0.83 0.83 0.93 0.86 0.4845 7
12 0.87 0.81 0.81 0.97 0.81 0.4457 9
13 1.00 1.00 1.00 0.93 0.88 0.8187 1
14 0.96 0.93 0.92 0.95 0.82 0.6365 5
15 0.84 0.75 0.75 1.00 0.00 0.0000 14
16 0.89 0.84 0.84 0.97 0.76 0.4593 8

Table 11. Response table for multi-optimization.

Cutting Parameters
Mean of Di

Delta Rank
1 2 3 4

Cutting speed 0.221 0.480 0.494 * 0.478 0.2731 2
Feed rate 0.547 0.558 * 0.301 0.269 0.2917 1

Depth of cut 0.401 0.426 0.448 * 0.397 0.0514 5
Width of Cut 0.364 0.501 * 0.479 0.328 0.1732 4

Cutting conditions 0.329 0.513 * - - 0.1910 3
* Optimal levels of multi-optimization.

4. Confirmatory Experiment

The reproducibility of the results, model adequacy, and validation of the optimal
combination of machining parameters identified in Table 12 were verified by conducting
three confirmatory experiments. The results of the confirmatory experiments show quite
significant and pronounced improvements compared to the initial conditions, as shown in
Table 12.
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Table 12. Comparative summary of confirmatory experiments.

Responses Initial Condition
S2F3D4W1C1

PCA-CDF % Improvement
from Initial Condition

Ra 1.92 1.51 21
Rq 3.88 3.02 23
Rz 5.52 4.52 18

MRR 1415 1851 30
Vb 243 198 22

Optimal Condition - S3F2D3W2C2 -
Di 0.375 0.460 22

5. Conclusions

This paper represents an informative contribution to our understanding of machining
parameters. Lubrication methods were investigated and optimized for the milling of
AA5005-H34 by applying a Taguchi orthogonal array (OA) mixture design (L16), SN ratios,
ANOVA, PCA, and CDF. The obtained results are in good agreement with the published
literature reports. For example, for surface roughness profile results closely conforms with
that of Raju et al. [23] and Tosun et al. [29]. For the material removal rate, the results closely
match those of Tosun et al. [29] and Costa et al. [42]. For tool wear, the obtained results are
in line with those of Tsao et al. [26] and Rajeswari et al. [28]. The results of the statistical
analysis performed on experimental values are summarized as follows:

• The PCA-CDF method found S3F2D3W2C2 to be the optimal setting for the milling
machining of aluminum 5005 H34.

• In terms of % contribution, the ANOVA revealed that the feed rate is the most influen-
tial machining parameter for the SR profile. For example, the % contributions of Ra,
Rq, and Rz for feed rate are 68.74, 66.32, and 66.07, respectively.

• The Taguchi S/N ratio identified that the optimal cutting parameter for the minimiza-
tion of SR (Ra, Rq, Rz) was S4F1D4W2C2T1—i.e., a spindle speed of 4000 rev/min, a
feed rate of 250 mm/min, a depth of cut of 2.5 mm, a width of cut of 6 mm, and cutting
conditions using MQL. The maximum MRR was achieved at S4F3D2W4 C1—i.e., spin-
dle speed of 4000 rev/min, feed rate of 450 mm/min, depth of cut of 1.5 mm, width
of cut of 14 mm, and dry cutting conditions. For the minimization of Vb, the optimal
levels identified were S1F1D1W1C1—i.e., spindle speed of 1000 rev/min, feed rate of
250 mm/min, depth of cut of 1 mm, width of cut of 2 mm, and dry cutting conditions.
The maximum MRR obtained under dry and MQL conditions was 2100 mm3/s and
2050 mm3/s, respectively.

• The contribution of the response variables in the principal component analysis in
descending order was Ra at 23.43%, Rz at 22.66%, Rq at 22.56%, MRR at 16.32%, and
Vb at 15.05%, respectively.

• The optimal machining parameters identified by the integrated approach of the PCA-
CDF were spindle speed of 3000 rev/min, feed rate of 350 mm/min, depth of cut of
2 mm, width of cut of 6 mm, and MQL conditions.

• Finally, confirmatory experiments based on PCA-CDF list a significant diminishing of
21% in Ra, 23% in Rq, 18% in Rz, and 22% in Vb and an improvement of 30% in MRR.
Therefore, the applied technique proved to be quite effective for multi-optimization.

• The application of MQL proved to be more efficient in comparison with dry machining
due to its higher productivity, improved surface texture, and extended tool life.

• The experimental statistically optimized research findings can be offered as guidelines
for the manufacturing sector. Additionally, these optimal machining conditions can
be used as a baseline for improving the machinability of AA5005-H34.

• For future research work, the scope of the investigation could be enhanced by incorpo-
rating additional machining parameters to study their effect on quality responses. For
example, the influence of the cutting reaction force, machining-induced stress, and
nano-cutting fluids could be investigated.



Metals 2021, 11, 235 21 of 24

Author Contributions: Conceptualization, M.I.Q.; experimentation and formal analysis, M.A.;
methodology and statistical analysis, R.K.; supervision and improving the manuscript, W.S. and C.I.P.;
data analysis, M.O. All authors have read and agreed to the published version of the manuscript.

Funding: The research work received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MQL minimum quantity lubricant
SEM scanning electron microscope
PCA principal component analysis
Ra average roughness
Rq root mean square
Rz depth of peaks on the surface
MRR material removal rate
SR surface roughness
RSM response surface methodology
PCA principal component analysis
CDF composite desirability function
Vb flank wear
S spindle speed
F feed rate
D depth of cut
W width of cut
C cutting condition
Wb weight of the sample before machining
Wa weight of the sample after machining
ρ material density
tm machining time
SN Taguchi signal-to-noise (
LTB larger-the-better (LTB) S/N ratio
STB smaller-the-better (STB) S/N ratio
M number of replications
zij experimental data.
di desirability value of quality response
Yir observed value of the response
yir observed data at the kth response
T target value
a assigned weight (varies 0.1–10)
Di combined composite desirability
dwr

r desirability value of the rth response
w assigned weight to each response
MCDM multi-criteria decision making
MPI multi-performance index (MPI)
M coefficient matrix
G multi-response array
λr eigenvalues
Vr eigenvectors
BUE built-up edges (BUE)
PC principal component
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