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Abstract: Industries demand stringent requirements towards economical machining without hinder-
ing the surface quality while cutting high carbon high chromium (HcHcr) steel. Electrical discharge
machining (EDM) of HcHcr steel aims at reducing machining cost (i.e., maximize material removal
rate (MRR) and minimize tool wear rate (TWR)) with good surface quality (i.e., minimize surface
roughness (SR)). A comparative study was carried out on EDM of HcHcr D2 steel (DIN EN ISO
4957) by applying Taguchi L18 experimental design considering different electrode materials (copper,
graphite, and brass), dielectric fluids (distilled water and kerosene), peak current, and pulse-on-time.
The process performances were analyzed with respect to material removal rate, surface roughness,
and tool wear rate. Pareto analysis of variance was employed to estimate the significance of the
process variables and their optimal levels for achieving lower SR and TWR and higher MRR. Hy-
brid Taguchi-CRITIC-Utility and Taguchi-PCA-Utility methods were implemented to determine
the optimal EDM parameters. Higher MRR of 0.0632 g/min and lower SR of 1.68 µm and TWR
of 0.012 g/min was attained by graphite electrode in presence of distilled water as dielectric fluid
compared to the brass and copper. Additionally, a metallographic analysis was carried out to study
the surface integrity on the machined surfaces. Micrographic analysis of the optimal conditions
showed lower surface roughness and fewer imperfections (lesser impression, waviness surface, and
micro-cracks) compared to worst conditions.

Keywords: electrical discharge machining (EDM); maximize material removal rate (MRR); surface
roughness (SR); Taguchi-PCA-Utility approach; Taguchi-CRITIC-Utility approach

1. Introduction

High carbon high chromium (HcHcr) steels are widely used to prepare dies and tools
for applications in automobile and structural industries. HcHcr steels exhibit better dimen-
sional stability, abrasion, and wear resistance, high compressive strengths, hardenability,
and hot hardness properties [1]. These properties could help the materials to withstand the
cyclic application of compressive stresses imposed on the punch and die during operations.
Traditional machining of high carbon high chromium steels possesses difficulties due to
their work-hardened nature and tool-work contact behavior experiences a variable cutting
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force that could result in rapid tool wear, rough machined surface, and high tooling cost [2].
The generation of powdered chips (i.e., dust) generated during machining causes serious
environmental and health issues [3].

Non-traditional machining methods overcome the shortcomings of traditional ma-
chining methods in cutting high strength materials [4]. Thermal energy based on laser
beam machining results in large heat-affected zones, recast layer formation, and thickness
limitations (i.e., converging and diverging shape of beam profile) due to the taper produced
during machining [5]. Mechanical energy-based abrasive water jet machining does not
cut all thick-size materials, surface degradation, dimensional inaccuracies as a result of
taper (i.e., the jet exits the work surface at a different angle than it enters) produced while
making holes [6–8]. Higher tool wear of ultrasonic machining limits cutting hard materials
economically [9]. Electrochemical machining failed to cut sharp corners or a flat base
because the electrolyte tends to erode sharp profiles [10]. Therefore, the appropriate choice
of the machining process is essential for obtaining high-quality parts without affecting
the cost.

The electrical discharge machining (EDM) process has proven its effectiveness to
generate complex profiles even for hard and brittle materials with fewer heat-affected
zones and dimensional inaccuracies [11–14]. Performance characteristics (material removal
rate (MRR), tool wear rate (TWR), and surface roughness (SR)) are influenced significantly
by the variables, namely peak current, discharge energy, electrode material, dielectric fluid,
plus on time, and other process parameters [15,16]. Machining AISI D2 steel with different
electrode material and flushing pressure affects more on MRR and SR [17]. The Taguchi
method identified that peak current directly influences electrode wear, whereas pulse
duration affects the MRR [18]. Powdered metallurgy tool electrode is used to evaluate the
process parameters of EDM process (such as MRR, SR, and TWR) of hast alloy with the
change in current and voltage. Maximum MRR was observed at the mid-values of voltage,
minimum TWR at low values of current, and minimum SR was observed at the mid-values
of current and voltage [19]. EDM of AISI D2 steel is carried out under the influence of
kerosene with different proportions of Cu-W electrode material, flushing pressure, current,
and duty cycle on MRR and SR [20]. The electrode material was found to have the strongest
effect on both the responses.

In previous studies, experiments were conducted to examine the electrode materials
influence under kerosene oil as a dielectric fluid medium [21]. Electrode materials, gap
voltage, peak current, duty cycle, and pulse on-time influences are examined on the re-
sponses (MRR, TWR, and radial overcut, (ROC)) while machining Inconel 718 material [22].
The factor peak current contributes more towards MRR, pulse on time for TWR, and duty
cycle for ROC. The dielectric fluid emphasis on machined work material performances
(MRR, SR, and TWR) were discussed by different authors [23,24]. Dielectric fluid plays
a vital role during machining, namely insulation, ionization, debris removal, heat spark
cooling, and flushing to remove the possible arcing that generates abnormal processes
in machining performances. In the EDM process, hydrocarbon oils, water-based, and
gaseous-based dielectric fluids are used [25,26]. The comparative analysis of distilled water,
compound dielectric, and kerosene as a dielectric medium was investigated on titanium
alloy machining performances (MRR, TWR, and SR) [27]. Distilled water resulted in higher
MRR in the machining of Ti-6Al-4V alloy, compared to kerosene [28]. Machining Al-SiC
composites with kerosene dielectric medium resulted in a uniform surface finish [29]. Oxy-
gen gas produced better MRR compared to liquid dielectrics [30]. Although oxygen gas
performances are better, liquid dielectrics are preferred to obtain stable discharging [31].
Surface modification of titanium alloy was carried out by applying two methods such as
electric discharge coating and EDM processes subjected to Nb powder mixed in dielectric
fluid medium [32]. From the above literature, the electrode material, dielectric fluids, peak
current, and pulse-on-time are the major EDM parameters that influence the machining
performances (MRR, TWR, and SR). Although many studies aimed to determine the opti-
mal factor setting for individual outputs, the same condition results in poor performance
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(quality) for the other outputs. In addition, attempts are required to optimize the multiple
outputs for better quality in machining HcHcr steels.

In recent years, attempts were made to optimize multiple outputs simultaneously by
identifying single factor sets by utilizing gray relational analysis (GRA) [33], desirability
function approach (DFA) [34], and soft computing algorithms [35]. Although soft com-
puting tools offer near-optimal solutions at a quick time, they require a huge database,
time, and effort for precise results [36]. Such model developments for practicing engineers
in industries are often found difficult due to their large practical constraints. Although
optimization tools such as GRA, DFA, and technique for order performance by similarity
to ideal solution (TOPSIS) use simple mathematical steps, they require assigning weight
fractions for each output function. Improper choice of assigning or determining weights for
each output could result in unfeasible solutions for a process. Principal component analysis
(PCA) estimates weights for each response by performing complex computations involving
determining the eigenvalues and eigenvectors. Furthermore, no procedure is defined yet
for such a situation, wherein the eigenvalue > 1 for more than one principal component
(i.e., output) [37]. If the eigenvalue of the second principal component also resulted in close
to one, then the solutions might be unfeasible for a process. To overcome the said problems,
an alternate method of determining weights without the requirements of eigenvalues and
eigenvectors is highly desirable. To date, not much work reported has investigated the
multi-input variables and their effects on the performance characteristics. In addition,
optimal parameters and levels for all performance characteristics are not reported yet in
literature for HcHcr steel machining with the EDM process. The optimal weight for each
response is not determined effectively by applying different methods (CRITIC and PCA) in
the available literature.

The present work aims to evaluate the EDM machining of HcHcr steel by performing
analysis of process variables on performance characteristics (MRR, TWR, and SR). The
Taguchi method and Pareto ANOVA were employed to determine the optimal levels for
each of the studied responses. The practicality significance of peak current, electrode
materials (graphite, copper, and brass), dielectric fluids (distilled water and kerosene), and
pulse-on-time are tested on the performance characteristics. The utility concept was used
to determine optimal levels for all responses. PCA and criteria importance through criteria
inter-correlation (CRITIC) methods are utilized to estimate the weight factors necessary for
multi-objective optimization. The optimal conditions were further analyzed using optical
micrographs to study their surface characteristics. The proposed framework of the current
research is shown in Figure 1.
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2. Materials and Methods
2.1. Work Materials

HcHcr D2 steel (DIN EN ISO 4957) was used as a work material possessing a hardness
of about 62 HRC. For machining, the work material dimensions of 20 mm × 30 mm × 5 mm
are used. Table 1 presents the chemical elements of HcHcr steel measured by optical emission
spectrometer (Baird, USA) and properties of HcHcr steel. Table 2 presents the chemical elements
and properties of HcHcr steel.

Table 1. Chemical composition of high carbon high chromium (HcHcr) steel.

Elements % C % Si % Mn % Cr % Ni % Mo % Fe

Weight (%) 1.83 0.25 0.61 12.45 0.12 0.78 Bal

Table 2. Properties of HcHcr steel [38].

Properties Value

Density (kg/m3) 7700

Melting point (◦C) 1421

Hardness (HRC) 62

Poisson ratio 0.27–0.3

Elastic Modulus (GPa) 190–210

Thermal Expansion (/◦C) 10.4 × 10−6

Thermal Conductivity (W/m-K) 20

2.2. Dielectric Fluids and Electrodes Material

The function of dielectric fluids is to transfer the removed particles from the machining
zone, improve the energy density, cool the electrode, stabilize dielectric strength, and act
as electrically non-conducting until breakdown voltage occurs. In addition, the dielectric
fluid acts as an insulator between the electrode and cavity. The dielectric fluid performance
is reliant on the insulating property of a fluid. Furthermore, the performance (MRR, TWR,
and SR) of machining parts is dependent on the dielectric fluid properties. The low viscosity
of kerosene oil provides better flushing characteristics, but high volatility, low flash point,
odor, and skin reaction are major drawbacks [25]. Machining with distilled water results
in higher MRR and lower TWR but resulted in poor machining accuracy at a high energy
pulse rate [39,40]. Table 3 presents the dielectric fluid properties.

Table 3. Properties of dielectric fluids [41,42].

Properties Kerosene Distilled Water

Flash point, ◦C 81.0 100

Dielectric strength, MV/cm 160 229

Density (g/cm3) 0.80 1.00

Kinematic viscosity at 40 ◦C, cSt 2.71 8.01 × 106

Three different electrode materials performances on machined work samples are
tested. The work material performances are dependent primarily on electrical conductivity,
wear rate, melting point, and electrical resistance of electrode material. The electrode
material possessing which has a diameter of 20 mm was used for analysis and optimization.
Table 4 shows the details of the properties of the electrode material.
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Table 4. Details of electrode materials properties [43–45].

Properties Graphite Copper Brass

Density (g/cm3) 1.77 8.904 8.55

Melting point (◦C) 3350 1083 990

Electrical Resistivity (Ω. m) 60 × 10−5 1.96 × 10−8 4.7 × 10−8

Thermal conductivity (W/m.k) 160–230 388 159

Specific heat capacity (J/g◦C) 7.10 0.385 0.380

2.3. Experimental Details

HcHcr steel machining is performed on an EDM Machine (Model: T-3822, make
Electronica Hitech machine tools Pvt. Ltd., Pune, India) possessing a separate dielectric
tank and jet flushing for ease of dielectric flow towards work piece-electrode tool interface
as shown in Figure 2a. Figure 2b shows the electrode materials used for the present work.
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Figure 2. (a) Electrical discharge machining (EDM) experimental setup; (b) tools for experimentation.

The input-output model of EDM is shown in Figure 3. Prior to experimentation, the
work samples (20 mm × 30 mm × 5 mm) were ground to make them perfectly flat on
both sides (top and bottom) to avoid dimensional inaccuracy and impart a good machined
surface finish. Three electrode materials (graphite, copper, and brass) in cylindrical form
of diameter 20 mm were used during experimentation [46]. Taguchi L18 experimental
matrix was used for four input parameters operating at three levels (refer to Table 5).
During experimentation, few variables were set to a fixed value for performing analysis
and conducting optimization (refer Figure 3). All L18 orthogonal array experiments were
repeated thrice and the mean response values are considered for precise analysis (refer
to Table 6). These experiments are conducted to determine the influence of individual
factors on the performances (MRR, SR, and TWR).

Table 5. Machining inputs process parameter with their levels.

Input Parameters Symbol Units Levels (1, 2, and 3)

Dielectric fluids A - Distilled water and kerosene

Peak current (ampere) B A 3, 6, and 9

Pulse-on time (seconds) C µs 50, 75, and 100

Electrode materials D - Graphite, copper, and brass
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Response Measurements

The amount of material removed in unit time from the workpiece and tool during
machining refers to MRR and TWR. The digital weights balance records the weights of the
workpiece and electrode material before and after machining and stopwatch measures the
machining time (Tm) for each experimental run. After machining and prior to measurement
of the final weight of electrode, work materials were immersed in an acetone solution
to remove any unwanted materials. The MRR and TWR computation is done using
Equations (1) and (2).

MRR = (Wb−Wa)
Tm

=
Workpiece Wt. before machining − Workpiece Wt. after machining

Tm
= gm

min

(1)

TWR = (Eb−Ea)
Tm

=
Electrode Wt. before machining − Electrode Wt. after machining

Tm
= gm

min

(2)

The machined surface texture (i.e., centerline surface roughness, Ra) of all L18 exper-
imental trials were examined with Mitutoyo surface roughness tester (Model: Surftest
SJ-301). For each experimental trial, SR on the machined surface were recorded at different
locations and the mean of a total nine (3 replicates × 3 readings on each replicate) readings
were used for analysis and optimization.
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Table 6. L18 experimental matrix and output results of signal-to-noise (S/N) Ratio.

Exp. No

Input variables Outputs

Dielectric
Fluids

Peak
Current, A

Pulse on
Time, µs

Electrode
Materials MRR g/min SR µm TWR

g/min

1 Distilled water 3 50 Graphite 0.0452 6.89 0.030

2 Distilled water 3 75 Copper 0.0154 3.60 0.050

3 Distilled water 3 100 Brass 0.0077 5.96 0.012

4 Distilled water 6 50 Graphite 0.0365 4.76 0.025

5 Distilled water 6 75 Copper 0.0040 5.20 0.012

6 Distilled water 6 100 Brass 0.0153 4.59 0.010

7 Distilled water 9 50 Copper 0.0614 1.65 0.015

8 Distilled water 9 75 Brass 0.0170 4.48 0.010

9 Distilled water 9 100 Graphite 0.0450 2.90 0.014

10 Kerosene 3 50 Brass 0.0045 1.34 0.010

11 Kerosene 3 75 Graphite 0.0294 2.89 0.022

12 Kerosene 3 100 Copper 0.0026 3.87 0.045

13 Kerosene 6 50 Copper 0.0049 2.95 0.017

14 Kerosene 6 75 Brass 0.0146 2.98 0.019

15 Kerosene 6 100 Graphite 0.0153 4.59 0.016

16 Kerosene 9 50 Brass 0.0152 6.06 0.014

17 Kerosene 9 75 Graphite 0.0410 3.16 0.018

18 Kerosene 9 100 Copper 0.0015 3.89 0.021

2.4. Taguchi Method

Taguchi L18 (21 × 37) orthogonal array was selected for EDM experiments and to
perform statistical analysis. Taguchi-recommended signal-to-noise (S/N) ratio was used
for performing analysis and conducting optimization. The signal corresponds to mean
values and noise depicts the standard deviation for a response function. A higher S/N ratio
corresponding to three levels of response is treated as an optimal condition for machining
variables. The surface roughness of the machined part must be maintained at low values
for proper functioning during their service life, whereas for industrial perspectives, in
terms of economical machining, the maximum values of MRR and minimum TWR are
highly desirable [47]. Therefore, the S/N ratio (ηij) of higher-the-better (HTB) response
characteristics was employed for MRR and lower-the-better were used for SR and TWR.

2.5. Utility Concept

In this research, improving the surface finish of the machined parts was treated as
product quality, whereas reducing the machining cost can be accomplished with lower TWR
and higher MRR. To solve the said problem (determining a single optimal parameter setting
for all outputs), the quality characteristics of conflicting requirements must be combined to
form a composite index referred to as the utility concept [48]. In general, utility refers to
the product or process usefulness with reference to the level of customer expectations by
examining their performances based on several discrete objective functions. To improve
rational decision-making, a composite index (i.e., utility) is obtained by combining the
different evaluated or quality attributes. The sum of utilities of each attribute refers to
the composite utility of the product. According to utility theory, Xi refers to attribute
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(i.e., output), term i and n represents the number of objectives, then composite utility
function is expressed as follows [49–51].

U(X1, X2 , . . . . . . Xn) = f (U1 (X1), U2 (X2 ), . . . . . . , Un(Xn)) =
n

∑
i = 1

Ui(Xi) (3)

The term, Ui (Xi) be the utility of the ith attribute.
In utility theory, the multi-response S/N ratio is computed by employing the weight

fractions to each S/N ratio of a response corresponding to each experimental run of the
orthogonal array (refer to Table 6).

U(X1, X2 , . . . . . . Xn) = f (U1 (X1), U2 (X2 ), . . . . . . , Un(Xn)) =
n

∑
i = 1

WiUi(Xi) (4)

Term
n
∑

i=1
Wi = 1 and Wi are the weight fractions of output i. Note that, the sum of all

weights assigned to each output is kept fixed to 1. The higher the utility function value, the
better the quality characteristics of objective function requiring optimization [52].

The S/N ratio (ηij) computation for jth output of ith experimental runs (i = 1, 2, . . . m;
j = 1, 2, . . . p) for LTB and HTB quality characteristics is shown in Equations (5) and (6), the
S/N ratio for response corresponds to HTB quality characteristics is shown in Equation (5),

S/NMRR= ηi j= −10 log

 1
n

n

∑
i = 1

1(
yij

)2

 (5)

The term n corresponds to a number of experiments, yij is the actual experimental
value of response of ith trial. S/N ratio corresponds to LTB quality characteristics is
computed according to Equation (6).

S/NSR and TWR= ηi j= −10 log

(
1
n

n

∑
i = 1

(
yij

)2
)

(6)

2.6. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a mathematical tool employed to correlate huge
data in a more meaningful way by establishing a linear set of actual responses [53,54]. To
determine the weight of each output, the PCA is used. PCA method provides information
regarding the structure of variance-covariance by treating a linear set of individual response
characteristics. Steps involved in determining weights viz. PCA is described below [55–57],

Step 1: PCA initiates with development of multi-response array composed of n
quality characteristics corresponding to m experiments. The array of multiple quality
characteristics is constructed as follows,

Xi(j) =


X1(1) X1(2) . . . X1(n)
X2(1) X2(2) . . . X2(n)

. . . . . . . . . . . .
Xm(1) Xm(2) . . . Xm(n)

 (7)

For the present work, the term Xi (j) corresponds to the actual values of m experiments
(i.e., m = 18) and n quality characteristics (i.e., n = 3).
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Step 2: The computation of the correlation coefficient array is done by using Equation (8),

Rj l =

(
Cov(xi(j), xi(l))
σ(xi)

(j)×σ(xi)
(l)

)
=

(
Covariance sequences of xi(j), xi(l)

Product of standard deviation sequences of σ(xi)
(j) and σ(xi)

(l)

) (8)

Step 3: The defined correlation coefficient array was used to estimate the eigenvalues
and eigenvectors using Equation (9).

(R − λkIm)Vi k = 0 (9)

The term, λk depicts the Eigen values ∑n
k=1 λk k = n; k = 1, 2, 3, . . . n; Vi k = [bk1, bk2,

. . . , bkm]T be the eigen vectors associated to Eigen value λk.
Step 4: Estimate the principal components (Omk) according to Equation (10),

Om k =
n

∑
i = 1

xm(i)Vi k (10)

The present work comprises three responses and Om1, Om2, and Om3 represent the
first, second, and third principal components, respectively.

2.7. Criteria Importance through Criteria Inter-Correlation (CRITIC)

There are many solutions for multiple outputs with conflicting outputs (i.e., maximize:
MRR; and minimize: TWR and SR) and assigning equal importance may lead to dissatisfac-
tion among the customers and industrialists. This occurs because the industry personnel
are more concerned about the economical machining (i.e., low TWR and high MRR) which
may result in rough machined surface and therefore, customer dissatisfaction. The CRITIC
method was thus applied to determine weights for the objective functions (i.e., response).
The CRITIC method does not require human intervention for assessment involved in a
process that could result in ease of decision making [58,59]. This method estimates the
weight corresponding to contrast intensity and conflict assessment involved in the decision
problem [60,61]. The steps followed to determine weights viz. CRITIC method is described
below [58–62],

Step 1: Define the decision matrix (B) which includes the quality characteristics (n) of
the experimental design with respect to m evaluation criteria. Term bi j depicts the output
value of ith alternative corresponds to jth criteria.

B =
[
bi j
]

m × n =


b11 b12 . . . b1m
b21 b22 . . . b2m
. . . . . . . . . . . .
bn1 bn2 . . . bnm

(i = 1, 2, . . . . . . n; and j = 1, 2, . . . m) (11)

Step 2: Normalize the defined decision matrix to create all criteria that vary in the
ranges between 0 and 1. Normalization is essential to avoid numerical overflows between
very large and small values of different quality characteristics. Normalization of the
decision matrix is calculated using Equation (12). Term bi j is the normalized response
value of bi j, bworst

j , bbest
j represent the worst and the best value of response correspond to

jth criterion.

bi j =
bi j − bworst

j

bbest
j − bworst

j
(12)
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Step 3: The contrast intensity of the criterion is estimated using the calculated values
of standard deviation (σj) of each vector bj (refer to Equation (13)). Terms: m represents the
number of experiments and bj refers to the mean response values of the jth criterion.

σj =

√√√√√ m
∑

i = 1

(
bi j − bj

)2

m
(13)

Step 4: Develop the symmetric matrix (m × m) using rjk(i.e., linear correlation coeffi-
cient between the bj and bk vectors) (refer Equation (14)).

rjk =

m
∑

i = 1

(
bi j − bj

)(
bi k − bk

)
√

m
∑

i = 1

(
bi j − bj

)2 m
∑

i = 1

(
bi k − bk

)2
(14)

Step 5: The criterion information (Cj) is calculated by multiplicative formulae
of Equations (13) and (14).

Cj= σj

m

∑
k = 1

1 − rj k (15)

Step 6: Calculate the weights (i.e., criterion importance) of individual output viz.
normalizing with the help of Cj as shown below (Equation (16)),

Wj =
Cj

n
∑

j = 1
Cj

(16)

3. Results and Discussions

The results of the analysis of the collected experimental data were analyzed and
optimized conditions determined for the EDM process are discussed in this section.

3.1. Taguchi Method and Analysis

The L18 experimental matrix was selected for four input variables, wherein two levels
were considered for one factor (i.e., dielectric fluids) and three levels for the remaining
factors (peak current, electrode materials, pulse on time) for modeling and analysis of
EDM process. The average response values (MRR, SR, TWR) of three replicates for each
experimental trial of L18 is recorded for precise analysis and detail the process insights
(refer to Table 6).

For MRR, S/N ratio computation is done using Equation (5), whereas, for TWR and
SR, the S/N ratio computation is done using Equation (6). Table 7 presents the S/N ratio
values of MRR, SR, and TWR.

Table 7. S/N ratio for various objectives.

Exp.
No.

S/N Ratio Value

MRR (dB) SR (dB) TWR (dB)

1 −26.90 −16.76 30.46

2 −36.25 −11.13 26.02

3 −42.27 −15.50 38.42
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Table 7. Cont.

Exp.
No.

S/N Ratio Value

MRR (dB) SR (dB) TWR (dB)

4 −28.75 −13.55 32.04

5 −47.96 −14.32 38.42

6 −36.31 −13.24 40.00

7 −24.24 −4.35 36.48

8 −35.39 −13.03 40.00

9 −26.94 −9.25 37.08

10 −46.94 −2.54 40.00

11 −30.63 −9.22 33.15

12 −51.70 −11.75 26.94

13 −46.20 −9.40 35.39

14 −36.71 −9.48 34.42

15 −36.31 −13.24 35.92

16 −36.36 −15.65 37.08

17 −27.74 −9.99 34.89

18 −56.48 −11.80 33.56

3.2. Analysis of EDM Process Variables on Different Responses

Pareto ANOVA was constructed based on the computed values of the S/N ratio of
MRR, SR, and TWR. From the analysis, the percent contribution of each factor and optimal
levels were determined separately for each output (refer to Tables 8–10).

Table 8. Pareto ANOVA results for material removal rate (MRR).

Factors Levels A B C D Total

Sum at factor levels (SFL)

1 −305.00 −234.69 −209.38 −177.27

−674.072 −369.07 −232.23 −214.69 −262.82

3 −207.15 −250.00 −233.98

Sum of squares of differences (SSD) 4105.05 1393.59 2924.26 11,366.29 19,789.19

Percent contribution (PC) 20.74 7.04 14.78 57.44 100.00

Optimal levels (OL) A1B3C1D1 (Not the combination of L18 experiments)

Table 9. Pareto ANOVA results for surface roughness (SR).

Figure Levels A B C D Total

SFL

1 −111.13 −66.91 −62.25 −72.01

−204.202 −93.07 −73.23 −67.17 −62.75

3 −64.07 −74.78 −69.44

SSD 325.93 131.89 238.93 137.33 834.08

PC 39.08 15.81 28.65 16.47 100.00

OL A2B3C1D2 (Not the combination of L18 experiments)
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Table 10. Pareto ANOVA results for tool wear rate (TWR).

Factors Levels A B C D Total

SFL

1 318.91 194.98 211.45 203.54

630.262 311.35 216.19 206.91 196.80

3 219.08 211.90 229.92

SSD 57.14 1039.07 45.75 1838.32 2980.28

PC 1.92 34.86 1.53 61.68 100.00

OL A1B3C3D3 (Not the combination of L18 experiments)

3.2.1. Response: MRR

Pareto ANOVA presents the results in terms of sum at factor levels, percent contri-
bution, and optimal levels corresponding to response (i.e., MRR) are presented in Table 8.
The graphical representation (Figure 4a) shows that among the other electrode materials,
graphite (electrode material: level 1) yields highest MRR. This is due the fact that graphite
has greater thermal conductivity, density, and hardness values compared to brass and cop-
per, and resulted in the highest spark during the EDM machining of HcHcr tool steel [63].
Peak current trends show negligible impact (i.e., 7.04% contribution) compared to the rest
of the variables (see percent contribution in Table 8). MRR increases with peak current
after crossing the mid-values of their respective levels shown in Figure 4a. This occurs
due to high peak current producing the maximum amount of spark discharge energy
coupled with higher impulse force in the spark gap, which tends to heat the workpiece,
which causes melting and vaporization that results in high MRR. An increase in pulse-
on-time proportionately increases the spark or thermal energy amount of heat transfer
to the workpiece increases which causes the melting of material results in higher MRR.
However, MRR decreases after crossing mid-values of pulse-on time (i.e., 75 µs) are due to
the reduced energy density in electrical discharge spots instantaneously after the discharge
time, as a result, the plasma channel expands continuously with pulse-on-time. Similarly,
distilled water provides better MRR compared to the kerosene due to the issue of ther-
mal conductivities of dielectric that may result in higher cooling rate and more surface
cracks [64]. Note that electrode material (57.54%) followed by dielectric fluid (20.74%)
and pulse-on-time (14.78%) resulted in the highest percent contribution towards MRR.
A1B3C1D1 is the optimal factor levels for higher MRR. The determined optimal levels are
not the set of L18 experimental matrix of Table 8 but might occur due to the multi-factor
nature among the possible combination (34 = levels factors) of 81 experiments. Confirmation
experiments for the results of the optimal level in high material removal rate were found
equal to 0.0624 g/min.

3.2.2. Response: Surface Roughness

SR of the machined parts is of paramount importance, as it affects not only the
aesthetic appearance but also their service life. The four process variables (i.e., electrode
materials, peak current, pulse-on-time, and dielectric fluids) effects on the SR variations are
presented in Figure 4b. Copper electrode produced a better surface finish than graphite and
brass. Erosion of work material and wear occurring at the corners of graphite and brass
material are observed after the mid-values of peak current and pulse-on-time. Therefore,
the generated sparks are concentrated at the middle of the machined area which causes the
arcing and short-circuiting. The arc sputtering of electrode materials by brass and graphite
electrodes generates rough surface parts. Lower SR is the result of interaction effects of
high peak current and low pulse on time. The intensity of spark energy increases with
pulse-on-time, which results in large craters and recast layer formation on the machined
surface tends to increase the SR. Kerosene produced a better surface finish than that of
distilled water, possibly due to slow oxidation rate and fine surface morphology. Distilled
water results in higher MRR with more cracks on the machined surfaces leading to higher
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values of SR. Peak current was found to have the least significant effect, whereas the
highest contribution was found to be for dielectric fluid followed by electrode materials
and pulse-on-time. The determined optimal levels for surface roughness are A2B3C1D2,
which is not the combination of L18 experiments of Table 9. Confirmation experiments for
the optimal levels result in desired low surface roughness values equal to 1.2 µm.
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3.2.3. Response: Tool Wear Rate

The machined parts’ dimensional accuracy is reliant on the electrode TWR. The
electrical erosion resistance of the tools is related to the properties of thermo-physical and
mechanical characteristics. The combination of higher peak current and pulse-on-time
under kerosene dielectric medium with copper as electrode tool material (i.e., A1B3C3D3)
results in a low tool wear ratio (refer to Table 10 and Figure 4c). This occurs because
at higher peak current and pulse-on-time both the copper and brass electrodes tend to
increases (rate of heat energy increases for both the electrodes causes an increased rate
of melting and evaporation) the MRR, and therefore tool wear rate also increases. It is
also true that the higher the MRR, the greater the tool wear. Compared to distill water,
kerosene resulted in lesser TWR. This is because the inherent properties of kerosene tend to
decompose with an increase in temperature [65], thus generating carbon particles that act
as a protective blanket to the tool. The significance of carbon particles adhered to the tool
limit to rapid wear of a tool. However, distilled water does not generate carbon particles
and hence no such protective carbon deposition appear on tool surface which results in
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less tool wear. Electrode materials showed a maximum contribution of 61.68%, followed
by peak current of 34.86%, dielectric fluid of 1.92%, and pulse-on-time of 1.53% towards
tool wear rate (refer to Table 10). For the determined optimal conditions, TWR resulted
experimentally with the low values equal to 0.009 g/min.

3.3. Weight Determination for Each Response: PCA and CRITIC

To solve multi-objective optimization, assigning weights for each output is mandatory
and determining weights through try-error method and experts’ suggestions results in
vagueness [37,66]. Therefore, in actual practice, weights are determined by direct explica-
tion, also referring to prior weights and indirect explication (i.e., posterior weights) [67,68].
Direct explication implies the estimation of the weight based on the expert’s or engineer’s
suggestion and surveys (results in uncertainty for decision-making process), where weights
are estimated before the data collection of each alternative. The weights being determined
based on the collected data is referred to as indirect explication. The present work uses the
posterior methods in determining weights namely, PCA and CRITIC methods.

3.3.1. Principal Component Analysis:

The actual experimental values are used to determine weights by employing PCA.
PCA uses actual experimental values to transform to a set of uncorrelated PCs and to
select the particular PC (i.e., there are three principal components due to three responses
that require optimal conditions for the present work), the eigenvalue must be greater
than 1. PCA method possesses two major drawbacks, namely 1) universally acceptable
methods are not derived yet to choose weights and getting the best solutions when the
estimated eigenvalues > 1 for more than 1 PCs (output). The multi-performance index
could not justify substituting the multi-response when the selected PC resulted with less
variation (i.e., percent variation) compared to total explained variation. Table 11 shows
the eigenvalues determined based on the correlation coefficient matrix of experimental
output data. Note that the eigenvalues of the first principal components are greater than
1, and the second principal component (PC2) was found close to unity and the resulted
explained variation of the corresponding principal components is less than 50% of the
total explained variation (100%) (refer to Table 11). Since there are no standard procedures
defined for the resulted eigenvalues greater than one for one response and close to unity
for the other response (i.e., principal components) and less explained variations, authors
followed the said literature [61–66]. Table 11 presents the eigenvectors calculated based
on the eigenvalues. It is important to note that the explained variation corresponds to the
highest eigenvalue (i.e., 1.15) of the first principal component (PC1) is 38.3%. The squares
correspond to the eigenvector of PC1 (since the highest explained variation and eigenvalue
compared to rest) represents the weight contribution of three quality characteristics (i.e.,
MRR, SR, TWR). The PCA-determined weight fraction for TWR, SR, and MRR is 0.1163,
0.4651 and 0.4173, respectively.

Table 11. Principle component analysis (PCA) analysis for weight determination.

Eigen Value 1.1500 0.9840 0.8659

Principal components First principal component
(PC1)

Second principal component
(PC2)

Third principal component
(PC3)

Explained variation (%) 38.30 32.80 28.90

Cumulative proportion (%) 38.30 71.10 100.0

Eigenvectors
(MRR, SR, TWR) −0.646, 0.682, 0.341 0.360, −0.121, −0.925 0.673, 0.721, −0.168
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3.3.2. Criteria Importance through Criteria Inter-Correlation (CRITIC)

As an alternative to PCA, the CRITIC method also determines the weight fraction
for each output. Considering all three responses, MRR is treated as beneficial criteria
(towards achieving economical machining for reduced machining cost associated with
industries) with high values. Conversely, SR and TWR are treated as non-beneficial criteria
(achieving a target of aesthetic appearance and economical machining) with desired low
values. Taguchi L18 experiments are treated as alternatives for decision-making (refer
to Table 6). Table 12 shows the computed normalized output values using Equation (12), of
all L18 experiments. Table 12 also presents the standard deviation values associated with
each quality characteristic estimated using Equation (13). The correlation coefficient of each
criterion is determined using Equation (14). Table 13 presents the correlation coefficient
values associated with different responses. Table 13 values correspond to (m × m) matrix
subtracted with one and the summation of different responses are presented in Table 13.
The criterion information (Cj) values of each response are calculated using Equation (15).
The weights of each output are determined using the Equation (16). Table 13 shows the
criterion information and the corresponding weights of each output. The CRITIC method
determined the weights for MRR, SR, and TWR, found to be 0.3470, 0.3067, and 0.3463,
respectively (Table 13).

Table 12. Normalized values of responses—criteria importance through criteria inter-correlation
(CRITIC) method.

Exp. No.
Outputs

MRR, gm/min SR, µm TWR, gm/min

1 0.730 0.000 0.500

2 0.232 0.593 0.000

3 0.104 0.168 0.950

4 0.584 0.384 0.625

5 0.042 0.305 0.950

6 0.230 0.414 1.000

7 1.000 0.944 0.875

8 0.259 0.434 1.000

9 0.726 0.719 0.900

10 0.050 1.000 1.000

11 0.466 0.721 0.700

12 0.018 0.544 0.125

13 0.057 0.710 0.825

14 0.219 0.705 0.775

15 0.230 0.414 0.850

16 0.229 0.150 0.900

17 0.659 0.672 0.800

18 0.000 0.541 0.725

SD 0.2978 0.2675 0.2851
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Table 13. Correlation coefficient, summation, and weights of different responses.

Correlation Coefficient of Different
Responses Summation of Different Responses Weights of Different

Responses

MRR SR TWR MRR SR TWR Summation Cj Wj

MRR 1 0.1305 0.0233 0 0.8695 0.9767 1.8462 0.5498 0.3470

SR 0.1305 1 0.0529 0.8695 0 0.9471 1.8166 0.4859 0.3067

TWR 0.0233 0.0529 1 0.9767 0.9471 0 1.9238 0.5485 0.3463

3.3.3. Utility Approach

The utility approach was utilized to determine the overall utility values (i.e., multiple
outputs) in terms of determining the multi-objective S/N ratio (η) using Equation (17).

η = η1w1 + η2w2 + η3w3 (17)

Terms η1w1, η2w2, η3w3 are the S/N ratio of objectives and associated weight fractions
of MRR, SR, and TWR. The weight fractions determined by PCA and CRITIC methods are
presented in Table 14.

Table 14. Weight fractions of different responses: PCA and CRITIC.

Criteria PCA CRITIC

MRR, W1 0.4173 0.3470

SR, W2 0.4651 0.3067

TWR, W3 0.1163 0.3463

Table 15 presents the values of S/N ratio of multiple responses calculated based on
Equation (17). In the present work, PCA and CRITIC methods determine the weights and
therefore two multiple S/N ratios (i.e., overall utility values according to Equation (17)) are
determined (refer to Table 15).

Table 15. Multi-response S/N ratio of hybrid approaches.

Exp. No. Multi-Response S/N Ratio
(Taguchi-PCA-Utility Approach)

Multi-Response S/N Ratio
(Taguchi-CRITIC-Utility Approach)

1 −15.47 −3.93

2 −17.27 −6.98

3 −20.37 −6.12

4 −14.56 −3.04

5 −22.19 −7.73

6 −16.65 −2.81

7 −7.88 2.89

8 −16.16 −2.42

9 −11.22 0.66

10 −16.11 −3.22

11 −13.20 −1.98
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Table 15. Cont.

Exp. No. Multi-Response S/N Ratio
(Taguchi-PCA-Utility Approach)

Multi-Response S/N Ratio
(Taguchi-CRITIC-Utility Approach)

12 −23.90 −12.21

13 −19.52 −6.66

14 −15.71 −3.73

15 −17.12 −4.22

16 −18.13 −4.58

17 −12.15 −0.61

18 −25.14 −11.60

3.3.4. Multi-Objective Optimization Taguchi-PCA-Utility and Taguchi-CRITIC-Utility Approach

Two hybrid methods (Taguchi-PCA-Utility Approach and Taguchi-CRITIC-Utility
Approach) were used to analyze the factor influence and determine optimal levels viz.
Pareto analysis of variance. It is interesting to note that although the weights of each
response determined by PCA and CRITIC were found to be different, the optimal lev-
els determined by both methods are found to be identical as A1B3C1D1 (refer Figure 5a,
Tables 16 and 17). The difference in weightage determined for each response by two meth-
ods could result in different percent contribution of input variables towards multi-response
S/N ratio. Eigenvalues of two principal components resulting from their value greater than
1 for PC1 and close to unity for PC2 and explained variation of those principal components
being less than 50% are the two major drawbacks observed in the present work with PCA.
Hence, for further analysis and determine optimal conditions the Taguchi-CRITIC-Utility
approach is used. The optimal levels of a factor towards all outputs (multi-response S/N
ratio) are found equal to A1B3C1D1 (refer Figure 5b). The percent contribution of each factor
determined through Pareto ANOVA is found equal to 48.11% for electrode material, 19.96%
for peak current, 18.35% for pulse-on-time, and 13.59% for dielectric fluids, respectively.
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Table 16. Pareto ANOVA for the multi-response—Taguchi-PCA-Utility approach.

Factors Levels A B C D Total

SFL

1 −141.77 −106.32 −91.67 −83.72

−302.752 −160.98 −105.75 −96.68 −115.90

3 −90.68 −114.40 −103.13

SSD 369.02 472.04 855.75 1575.37 3272.19

PC 11.28 14.43 26.15 48.14 100.00

OL A1B3C1D1 (Not the combination of L18)

Table 17. Pareto ANOVA for the multi-response—Taguchi-CRITIC-Utility approach.

Factors Levels A B C D Total

SFL

1 −29.48 −34.44 −18.54 −13.12

−78.292 −48.81 −28.19 −23.45 −42.29

3 −15.66 −36.30 −22.88

SSD 373.65 548.75 504.65 1322.89 2749.94

PC 13.59 19.96 18.35 48.11 100.00

OL A1B3C1D1 (Not the combination of L18)

3.4. Confirmation Experiments

The optimal conditions determined viz. hybrid Taguchi-CRITIC-Utility approach and
Taguchi-PCA-Utility approach are validated by conducting practical experiments. Table 18
shows the average output values correspond to three replicates of optimal conditions.
Note that the values of multiple S/N ratios obtained for an optimal condition resulted
better than L18 experiments. This signifies both the hybrid methods are equally capable
of providing better results in responses (i.e., high MRR, low values of SR and TWR). Due
to the drawbacks of PCA, the Taguchi-CRITIC-Utility approach analysis and optimal
levels are considered. The signal-to-noise ratio corresponds to optimal conditions for
multiple responses are 3.60 dB for Taguchi-CRITIC-Utility, and −7.63 dB for Taguchi-
PCA-Utility, which are comparatively higher than the multi-response S/N ratio values
presented in Table 18. Therefore, the Taguchi-CRITIC-Utility approach is considered the
best optimization tool for multi-response optimization.

The Taguchi method determined separate optimal conditions (A1B3C1D1 for MRR;
A2B3C1D2 for SR; A1B3C3D3 for TWR) for individual responses resulted with an MRR of
0.0624 g/min, SR of 1.24 µm, and TWR of 0.009 g/min. Although the Taguchi method
determined optimal condition for single output, it may not produce better performance
on other performances or output of a product [14,33,37,48]. This is because of differences
in nature of influence of factor effects on multiple outputs [6,14]. However, compared to
the Taguchi method, the hybrid optimization methods (Taguchi-PCA-Utility and Taguchi-
CRITIC-Utility) determined single optimal conditions resulted with higher MRR, with the
compromising solutions of SR and TWR (refer Table 18). Machining industries are more
interested in optimizing the multiple outputs simultaneously, as higher MRR and low
TWR reduce production time and cost, whereas lower SR could reduce the dependency of
secondary finishing process [69].

Additionally, SEM analysis was performed to validate the optimal conditions (Table 18;
A1B3C1D1: dielectric fluid: distilled water, peak current: 9 A, pulse-on-time: 50 µs, and
electrode material: graphite) of CRITIC and PCA-utility method with worse conditions
(refer Exp. No. 18 of Table 6; A2B3C3D2: dielectric fluid: kerosene, peak current: 9 A,
pulse-on-time: 100 µs, and electrode material: copper) in terms of surface integrity on the
machined surface. The worst condition was decided based on the lowest values obtained
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for multiple S/N ratios of Table 15 (refer Exp. No. 18). Both worst and optimal conditions
SEM images are shown in Figure 6a,b.

Table 18. Confirmatory experiments for the optimized EDM conditions.

Models and Weights for
Output

Optimal Conditions
Multi-Response S/N

Ratio (dB)Levels Input Variables Output Variables and S/N
Ratio

Taguchi-PCA-Utility
MRR, W1 = 0.4173

SR, W2 = 0.4651
TWR, W3 = 0.1163

A1B3C1D1 A: DW
B: 9 A

C: 50 µs
D: Graphite

MRR: 0.0632 gm/min
SR: 1.68 µm

TWR: 0.012 gm/min
−7.63

Taguchi-CRITIC-Utility
MRR, W1 = 0.3470

SR, W2 = 0.3067
TWR, W3 = 0.3463

A1B3C1D1

MRR: −23.986 dB
SR: −4.506 dB
TWR: 38.42 dB

3.60
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From the SEM images in Figure 6, it was observed that the worst-case condition
(Figure 6a) has many imperfections such as dark hard impression, more waviness surface,
white layer with a higher thickness and deep micro-cracks, etc. The generation of higher
white layer and deeper micro-cracks are mainly due to the use of higher pulse on time and
peak current in EDM. Similarly, the presence of some dark spots and waviness of the surface
is due to the use of hydrocarbon kerosene with a higher level of peak current and pulse on
time [70]. Comparing Figure 6a (worst condition) to Figure 6b (optimal condition), white
layer formation was observed a bit lower with less waviness of surface [68,70]. Similarly,
very lesser micro-cracks and a hard impression due to use of lesser pulse on time and use of
distilled water were observed. It is concluded that kerosene generates greater composition
of carbon particles and thus deposits on the machined surface with relatively higher crack,
whereas distilled water results in better surface finish and higher MRR [66]. Since Figure 6b
shows a smaller number of damages and found to be smooth and uniform surface in EDM
which justifies the optimal setting obtained through the CRITIC and PCA-utility method.

4. Conclusion

EDM machining of HcHcr steel under different electrodes and dielectric fluids is
carried out in the present work. Taguchi L18 experiments are conducted to perform
experiments, analysis, and optimization. The following conclusions are drawn:
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1. The electrode material is found the most dominating factor for higher MRR, lower SR
and TWR compare to the other parameters.

2. Higher MRR, lower SR and TWR are attained by graphite electrode in presence of
distilled water as dielectric fluid compared to brass and copper.

3. The optimal setting obtained by both hybrid methods is the same at A1B3C1D1,
(i.e., A1: DW; B3: 9 A, C1: 50 µs; D1: graphite). This signifies that both the hybrid
methods are equally capable to provide better results in responses (i.e., high MRR of
0.0632 gm/min, low values of SR of 1.68 µm and TWR of 0.012 gm/min).

4. Micrographic analysis of the optimal conditions shows better surface and uniform
distribution of surface compared to the worst conditions.

5. Interesting observation related to the weight calculation by PCA method. PCA
possesses major drawbacks such as eigenvalues correspond to two PC are greater
than 1 for PC1 and close to unity for PC2, and the explained variation of the first PC
is less than 50%. Note that there is no universal rule defined yet to determine the
weights for the said drawbacks of PCA. However, the CRITIC method determined
the weights of each response are found equal to 0.3470 for MRR, 0.3067 for SR, and
0.3463 for TWR. Hence, the Taguchi-CRITIC-Utility approach is treated as the best
model to optimize the multi-responses.

Hence, for better machinability of HcHcr steel, a graphite electrode with distilled
water fluid medium is suggested. Furthermore, PCA possesses major drawbacks in the
calculation of weights of the parameters. Therefore, hybrid methods i.e., Taguchi-CRITIC-
Utility approach methods, can be employed for multi-response optimization of another
machining process.
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