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Abstract: A low-frequency-assisted boring operation is a key cutting process in the aircraft man-
ufacturing sector when drilling deep holes to avoid chip clogging based on chip breakage and,
consequently, to reduce the temperature level in the cutting process. This paper proposes a predicted
force model based on a commercial control-supported chip breaking function without external vibra-
tion devices in the boring operations. The model was fitted by conventional boring measurements
and was validated by vibration boring experiments with different ranges of amplitude and frequency.
The average prediction error is around 10%. The use of a commercial function makes the model
more attractive for the industry because there is no need for intrusive vibration sensors. The low-
frequency-assisted boring (LFAB) operations foster the chip breakage. Finally, the model is generic
and can be used for different cutting materials and conditions. Roughness is improved by 33% when
vibration conditions are optimal, considered as a vibration amplitude of half the feed per tooth. This
paper presents, as a novelty, the analysis of low-frequency vibration parameters in boring processes
and their effect on chip formation and internal hole roughness. This has a practical significance for
the definition of a methodology based on the torque model for the selection of conditions on other
hole-making processes, cutting parameters and/or materials.

Keywords: chip segmentation; ST52 cast steel; torque analysis; roughness; machining of low-
frequency processes

1. Introduction

The boring process is a very common operation when machining deep holes with tight
precision and high-quality requirements [1–3]. The large length-to-diameter ratio implies
large chip length and, consequently, high forces on the cutting tool and heating of the piece,
tool and machine tool. Taking this into account, vibration-assisted machining (VAM) was
proposed in the late 1950s. This technique is characterized by the addition of external or
internal vibrational energy (either high or low frequency) to the conventional machining
movement to reduce cutting forces and generate thinner chip thickness [4]. Numerous
papers showed the technique being divided by the function of vibration frequencies: at
a low frequency (under 100 Hz) in drilling [3,5,6] and in turning [7] and at ultrasonic
frequencies both in milling [8,9] and in drilling [10].

Regarding boring [11], an apparatus to perform cutting with an elastic movement
and superimposed axial vibration [12] to improve the quality of the surface showed good
results [13]. Other processes between drilling and boring were discussed, such as the
boring trepanning association (BTA) [3], presenting a severe segmentation of the chip; on
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the contrary, in this present paper, we look at generating segmented and easy-to-remove
chips with vibrations at a very low frequency.

Regarding vibrational devices or approaches, they can be divided into three groups.
The first group is piezoelectric and magnetostrictive actuators. The second one is based
on transmission mechanisms, and the last group is resonant and non-resonant VAM
systems [4]. All devices work at a high frequency and are intrusive to the process. Therefore,
CNC software developers have created a function related to chip segmentation control
(CSC) for several new pieces of equipment by different brands.

Focusing on this, CSC is described as the addition of a tool movement function
(sinusoidal as an example) to the characteristically linear movement of the Z-axis, which
is normally employed in conventional boring processes. When the frequency level is
lower and the amplitude is larger, the process is a so-called low-frequency-assisted boring
(LFAB) operation [5]. Figure 1 illustrates tool movement in LFAB. Boring is very interesting
because the feed movement is not too fast; therefore, the CNC is agile enough to perform
the sinusoidal variation [14]. Vibration in the radial direction produces a chip of variable
thickness to facilitate chip segmentation [15,16].
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LFAB induced a variable uncut chip thickness (tch), and momentarily uncut chip
thickness is equal to zero; therefore, it could be assumed that chip segmentation allows the
avoiding of chip clogging when drilling deep holes [17]. The tool oscillation opposite to
the feed direction creates a loss of contact with the piece and, thus, interrupted machining
occurs. In addition, fresh air enters in the tool–piece gap, decreasing tool temperature and,
consequently, improving machining efficiency [5,6].

On the other hand, almost all CNC manufacturers offered the peck drilling cycle for
deep drilling to allow chip breakage. However, a commercial enterprise proposes a specific
function, called control-supported chip breaking, based on the superimposing of the lathe
motion and a quadratic sine wave. The benefits of this function are the value positivity, the
strategy simplicity, and the jerk motion continuity [3].

Focusing on kinematic and force models for LFAB, Jallageas et al. [18] proposed a
kinematic model assisted by forced–excited low frequencies when drilling carbon fiber-
reinforced plastics (CFRP) to optimize the chip evacuation. The model evaluated the
efficiency of the MITIS™ vibration system. Yang et al. [5] developed a drilling force
kinematic model for forced low-frequency-assisted drilling (LFAD) when machining a hole
of Ti-6Al-4V. They estimated the maximum thrust force, maximum torque, mean thrust
force and mean torque with an average predicted error of 10%. Moreover, Bleicher et al. [19]
carried out a kinematic model to investigate the influence of LFAD on the chip formation
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when drilling small holes of age-hardened copper-zirconium. Recently, Li et al. [6] proposed
an LFAB mechanical model to predict the thrust force and torque when drilling deep holes
in Inconel 690. The thrust and torque levels are reduced by 22 and 14%, respectively, using
an LFAB system. The described papers developed kinematic models using external devices
to validate the LFAB or LFAD operations. However, this paper validates an LFAB process
without an external one and exclusively uses the internal function of the control, which
allows for the validation to be easily completed. Other models aim to study the effect of
cutting parameters, based on statistical analysis, on the roughness of the machined surface
and vibration [20,21].

This paper aims to facilitate the process of machining holes by boring. The estimation
of the correct vibration parameters helps to facilitate chip removal. By means of an
analytical model, the expected chip length and thickness were obtained. In addition, the
cutting torque was estimated. The estimation of the cutting torque gives a better idea of
the trends in heat generation, deviations or residual stresses in the workpiece. Firstly, the
kinematic and torque models for LFAB are explained. Secondly, the validation results are
illustrated and discussed, respectively. Finally, the conclusions are described.

2. Materials and Methods
2.1. Kinematic and Torque Modeling for LFAB

The modeling procedure is divided into five steps as shown in Figure 2. The first one
defines the cutting conditions of the boring process and the geometrical tool parameters and
the main parameters to define the commercial control-supported chip breaking function.
Second, the uncut chip thickness model is described.
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The third step establishes the force model under conventional boring experiments,
and the fourth one calculates the torque validated experimentally during a boring oper-
ation. The last step, called validation measurements, is a horizontal stage whose aim is
to experimentally validate the control-supported chip breaking function, the force model
without vibrations and the vibrational boring experiments.

2.1.1. Input Parameters for the LFAB Model (Step 1)

The main features that define the LFAB model are described. Figure 3 illustrates the
geometrical cutting tool parameters and workpiece material. The boring tool is a Sandvik
Coromant CoroTurn® 107 insert (TCMT 06 T1 04-PF 4325, Sandviken, Sweden) coated with
a multi-layer CVD TICN + AL2O3 + TICN. The main geometrical characteristics are 7◦

of clearance angle, 0.397 of corner radius and 3 cutting edges. The angles of incidence
(kr y k′r) are measured with an optical digital microscope Celestron 44302-C (Torrance, PA,
USA) as can be seen in Figure 3 and with an optical microscope Dino-Lite AD7013MTL
(Torrance, PA, USA). It has a 5-megapixel (2592 × 1944) sensor for crystal clear images with
an anti-reflection coating.
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Figure 3. Geometrical tool parameters.

The workpiece material is a ST52 cast steel cylinder. The cylinder major and minor
diameters are 38 and 28, respectively. Table 1 shows the chemical composition of the
material.

Table 1. Nominal composition of the material.

Material
Alloy

Chemical Composition (wt %)

C Si Mn P S

Steel ST 52 0.20 0.55 1.60 0.040 0.040

The cutting velocity is 250, 350 and 450 m/min, and the feed parameter and depth of
cut are 0.05 mm/tooth and 0.5 mm, respectively, for the LFAB experiments. Finally, the
vibration parameters are selected in a range of 0–4 Hz for the frequency and 0–0.2 mm for
the amplitude to define the LFAB operations.

2.1.2. Uncut Chip Thickness Model (Step 2)

The kinematic model is based on a commercial control-supported chip breaking
function. This application superimposes a vibrational motion on the lineal motion with
the aim of breaking chips during the boring operation. Therefore, lineal movement is
calculated by

ZL, pred = θ· F
2π·N (1)

where θ is the matrix of the angular position of the tool when developing a cylinder, F is
the feed rate, and N is the revolution per minute.
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The vibrational motion is defined by the sin2 function as can be seen in Equation (2),
where the frequency of the predicted model is f = freq/2

ZV, pred = A· sin2
(

60· f ·θ
N

)
(2)

where A and f are the amplitude and the low frequency, respectively.
Therefore, both motions are superposed to define the LFAB process based on a com-

mercial control-supported chip breaking function.

ZLFAB, pred = θ· F
2π·N + A· sin2

(
60· f ·θ

N

)
(3)

Figure 4 illustrates the ZLFAB,pred along the angular position of the tool when develop-
ing a cylinder for the n trajectories with and without amplitude and frequency values. The
chip breakage and the period when the edge is inactive can be observed.
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Finally, the uncut thickness matrix (tch,pred) is estimated based on the difference
between the superposed motions in the following angular positions:

tch,pred = ZLFAB, predi+1,j − ZLFAB, predi,j (4)

Moreover, θ = 2π· f ·t; therefore, the uncut thickness vector (tch,pred)

tch,pred = tch,pred(t) = ZLFAB, predi+1,j − ZLFAB,predi,j (5)

2.1.3. Force and Torque Model (Steps 3 and 4)

Once uncut thickness parameters along with the time are calculated, the following
step (Step 3 in Figure 2) is to estimate cutting forces Fc,pred. These values are calculated
with Equation (5). However, this formula requires the specifications of the tool [16].

Fc,pred = kc,1·A1,pred + kc,2·A2,pred (6)

kc,1, kc,2, A1,pred and·A2, pred are the specific pressures and the associated areas of
primary and second edges, respectively, ref. [9]

Fc, pred = kc1,1·b1·h1−m
1,pred + kc1,1·b2·h1−m

2, pred (7)

kc1,1, b1, b2, h1,pred·h2,pred, m are the specific pressure, widths of cut, thicknesses of
cut of primary and second edges and material constant, respectively [19].
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Taking into account the geometrical parameters of the tool (kr, k′r, DOC, etc.), Equa-
tion (7) is transformed into Equation (8):

Fc, pred = kc1,1·
DOC
sin kr

·
[
tch,pred· sin kr

]1−m
+ kc1,1·

DOC
sin k′r

·
[
tch,pred· sin k′r

]1−m (8)

Knowing the value of the incidence angle of the primary edge measured in the
previous section (kr = 90◦) and reordering the equation terms [19],

Fc, pred = kc1,1·DOC·tch,pred
1−m·

[
1 + sin k′r

−m] (9)

Finally, the predicted torque Tc,pred is calculated according to the following equation:

Tc,pred = Fc, pred·
(

D
2
− DOC

2

)
(10)

After reordering the equation terms, the final predicted torque equation is as follows:

Tc, pred =
1
2
·kc1,1·DOC·(DOC− D)·tch,pred

1−m·
[
1 + sin k′r

−m] (11)

kc1,1 is the specific pressure and m is the material constant. Both are estimated statistically
by studying the conventional boring process measurements.

2.1.4. Validation Results and Discussion (Step 5)

In order to confirm the validity of the predicted torque model, several LFAB processes
are performed. On one hand, this stage fits the torque model according to the conventional
boring measurements analyzing different cutting conditions. On the other hand, the LFAB
model fulfills the requirements of an industrial control function and is validated with
different vibration conditions.

After describing the steps involved in setting the torque model for each case of
boring, the chain of experiments is described. The chain of experiments is described in the
following subsection, as well as the machine and cutting conditions.

2.2. LFAB Tests Set-Up

The boring measurements are carried out in the 5-axis multitasking machining center
THR 16 (Ibarmia, Azkoitia, Spain) with SINUMERIK 840D sl CNC software (Siemens,
Berlin, Germany). The workpiece material is an ST52 cast steel cylinder whose outer
and inner diameters are 40 and 28 mm, respectively. The Sandvik CoroBore® 825 fine
boring tool (825-36TC06-A25) and coated commercial cemented carbides tool tips (Sandvik
Coromant TCMT 06 T1 04-PF 4325, Sandviken, Sweden) with a 0.396 mm nose radius are
used.

For the design of the experiments, cutting velocities are 250, 350 and 450 m/min,
feed per tooth are 0.025 and 0.050 mm/tooth and depth of cut are 0.1, 0.25 and 0.50 mm.
Therefore, 18 conventional measurements are required to fit the force model (three times
replicated). The boring process worked without coolant. Figure 5 illustrates the setup of
the LFAB process in the multitasking machining center.

Table 2 below summarizes the cut-off parameters used in the work presented in this
paper. Table 2 in Group a presents the cutting conditions under conventional conditions
that serve to feed Step 3, in which the constants of the tool–workpiece binomial are defined.
All these tests are performed without amplitude and frequency. Table 2 in Group b shows
the values used in the model validation tests, either in the kinematic part Step 2 or the
torque model Step 4.
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Table 2. Conventional cutting conditions. LFAB cutting conditions.

Group Test # Vc
(m/min)

fz
(mm/tooth) N (rpm) F

(mm/min)
DOC
(mm)

Amplitude
(mm)

f = 2freq
(Hz) Coolant

a

01 250 0.025 2487 62 0.10 - - DRY
02 250 0.025 2487 62 0.25 - - DRY
03 250 0.025 2487 62 0.50 - - DRY
04 250 0.050 2487 124 0.10 - - DRY
05 250 0.050 2487 124 0.25 - - DRY
06 250 0.050 2487 124 0.50 - - DRY
07 350 0.025 3482 87 0.10 - - DRY
08 350 0.025 3482 87 0.25 - - DRY
09 350 0.025 3482 87 0.50 - - DRY
10 350 0.050 3482 174 0.10 - - DRY
11 350 0.050 3482 174 0.25 - - DRY
12 350 0.050 3382 174 0.50 - - DRY
13 450 0.025 4476 112 0.10 - - DRY
14 450 0.025 4476 112 0.25 - - DRY
15 450 0.025 4476 112 0.50 - - DRY
16 450 0.050 4476 224 0.10 - - DRY
17 450 0.050 4476 224 0.25 - - DRY
18 450 0.050 4476 224 0.50 - - DRY

b

19 250 0.050 2487 124 0.5 0.100 4 DRY
20 250 0.050 2487 124 0.5 0.050 4 DRY
21 250 0.050 2487 124 0.5 0.025 4 DRY
22 250 0.050 2487 124 0.5 0.010 4 DRY
23 250 0.050 2487 124 0.5 0 0 DRY
24 250 0.050 2487 124 0.5 0.100 1 DRY
25 250 0.050 2487 124 0.5 0.100 2 DRY
26 250 0.050 2487 124 0.5 0.100 4 DRY

During the boring process, the milling machine is equipped with the Pro-micron
Spike® system to acquire the cutting along the Z direction, the torque and the bending
moments, although only the first two signals are studied to develop the torque model. This
sensor is located on the tool holder. Post-processing analysis of the registered signals is
performed in Python®.
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3. Results and Discussion
3.1. Uncut Chip Thickness Model Results

Before fitting and validating the torque model, the model development proposes the
validation of the vibration motion when using the commercial control-supported chip
breaking function (Sf ), and then studies the tool trajectory to understand the LFAB process
when the chip segmentation control is enabled. The uncut chip thickness model results
are shown.

Focusing on the validation of industrial vibration control, Table 3 shows two experi-
ments with the same cutting conditions and different vibrations.

Table 3. LFAB boring specifications for different vibration conditions.

Vc
(m/min)

fz
(mm/tooth) N (rpm) F

(mm/min)
DOC
(mm)

Amplitude
(mm)

f = 2freq
(Hz) Coolant

250 0.050 2487 124 0.5 0.100 4 DRY
250 0.050 2487 124 0.5 0.050 2 DRY

Figure 6 shows the superposed vibration motions in the cases of Table 3, corresponding
to the vibration conditions of (a) vibration amplitude 0.1 mm and frequency 4 Hz and (b)
vibration amplitude 0.05 mm and frequency 2 Hz. The first one is when the industrial
chip segmentation control is used and the second one is the modeling movement using
Equation (2). The R-squared of these two measurements are 0.90 and 0.95, respectively.
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mm and f = 2 Hz.

On validating the vibration motion in the model according to the industrial function,
the tool trajectory and the predicted uncut thickness results are shown according to the
cutting and vibrational conditions described in Table 4.

Table 4. LFAB and conventional boring conditions.

Vc
(m/min)

fz
(mm/tooth) N (rpm) F

(mm/min)
DOC
(mm)

Amplitude
(mm) f (Hz) Coolant

250 0.050 2487 124 0.5 0.100 4 DRY
250 0.050 2487 124 0.5 0.000 0 DRY

On the other hand, Figure 7 shows the predicted uncut thickness according to the
cutting and vibration conditions in Table 2. The red signal shows the predicted chip
thickness in the case of LFAB application with 0.1 mm amplitude and 4 Hz vibration
frequency, and the blue line shows the predicted chip thickness under the same cutting
conditions but without applying vibrations. It can be seen that the chip thickness in
conventional cutting is constant once the tool enters the hole to be bored, while the chip
thickness in the case of LFAB is variable according to the kinematics described in Figure 6.
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Figure 7. Predicted uncut thicknesses when boring at different vibration conditions (red line
A = 0.1 mm and f = 4 Hz and blue line A = 0 corresponding to conventional cutting).

This model parameter estimated by Equations (4) and (5) is the input for the next
stage to validate the force and torque model analyzing an LFAB process.

3.2. Fitting of Force Model Results

To calculate the uncut thickness, firstly, the force model is fitted according to conven-
tional boring experiments and considering Equation (11), and, secondly, the model torque
is fitted by the conventional boring experiments under different cutting conditions.

Figure 8 illustrates the design of experiments (DoE) proposed for the conventional
measurements. Three levels for cutting velocity (250, 350 and 450 m/min), three lev-
els for DOC (0.1, 0.25 and 0.5 mm) and two levels for fz (0.025 and 0.05 mm/tooth) are
selected to define the DoE. All in all, there is a total of 18 measurements for the exper-
iments. Furthermore, the boring tool diameter and the coolant are 30 mm and in dry
conditions, respectively. Finally, the vibration conditions (amplitude and frequent) are zero
in conventional experiments.
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Figure 8. Design of experiments for a boring conventional measurement corresponding to Table 2 Group a of tool material
characterization tests.

Before fitting the torque model, the average value is calculated by studying the steady
state of the boring operation as can be seen in Figure 9. In Figure 9, torque signal and the
average torque level of the conventional experiment registered by Pro-micron Spike are
shown.
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Figure 9. Measured and fitting torque data according to DoE conventional experiments. Measurement
number and cutting conditions defined by Table 2.

Once the torque average values of the DoE conventional measurements are estimated,
best described in Table 2 Group a, the final stage is to fit the model torque regarding these
averages and Equation (11). Figure 10 shows the average measured torque values and the
fitting results. The fitting strategy used Python® functions to achieve the best R-squared
parameter, which is the statistical measure used in this paper to represent the proportion
of the variance of the dependent variable to be modeled (in this case the torque) that is
explained with the regression [22].
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Figure 10. Measured (dot point cloud) and predicted torques (dashed line) of LFAB process with
vibrational conditions (A = 0.01 mm and f = 4 Hz; test number 19 in Table 2).

The R-squared is 0.95; therefore, the specific pressure (kc1,1) and the material constant
(m) values are fitted to 1000 N/mm2 and 0.245, respectively [23]. Therefore, Equation (11)
is transformed into

Fc, mod = 1000·DOC·tch,mod
1−0.245·

[
1 + sin k′r

−0.245
]

(12)

Consequently, the torque equation is

Tc, mod =
1
2
·1000·DOC·(DOC− D)·tch,mod

1−0.245·
[
1 + sin k′r

−0.245
]

(13)



Metals 2021, 11, 1009 11 of 17

3.3. Torque Model Results

In this section, a torque model is presented as the result of the force model applied to
the boring tool. In this section, the torque model is studied as a comparison parameter as it
better adjusts to the phenomenon of machining with a rotary tool.

Once the theoretical background is described, the torque model and experimental
results are validated for different vibration conditions and cutting requirements.

Focusing on the amplitude change, this study proposes to keep the values of cutting
speed, fz and depth of cut, whose values are 250 m/min, 0.05 mm/tooth and 0.5 mm,
respectively. The measurements are made in dry conditions. The boring tool diameter is
28 mm. The frequent is kept in the value of 4 Hz, and the amplitude values selected are 0.1,
0.05, 0.025 and 0.01 mm. Figure 10 shows the predicted and measured torques for an LFAB
operation with an amplitude level of 0.01 mm and a frequency of 4 Hz. The R-squared
is 0.98. The dashed line corresponds to the predicted signal that fits perfectly with the
measured signal (black dots). It can be seen how the torque value increases from zero as
the tool penetrates the part (the section before 0.3 s). Once the tool is fully inserted into the
part, the torque has an average value of around 4.5 Nm and a peak-to-peak variation of
1.5 Nm.

All in all, the LFAB model performance works reasonably well to predict the torque
by studying an LFAB process. Figure 11 shows the measured and predicted torques of
LFAB operations keeping the frequency value at 4 Hz and selecting an amplitude range
(0.1, 0.05, 0.025 and 0.01 mm). A better description of the cutting conditions used is shown
in Table 2b tests 19–22. A reduction of peak-to-peak values is observed with decreasing
vibration amplitude, while the mean torque value appears to remain constant.
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Figure 11. Measured and predicted torques of LFAB processes with vibrational conditions: (a)
A = 0.1 mm, (b) A = 0.05 mm, (c) A = 0.025 mm and (d) A = 0.01 mm with constant Vc = 250 m/min,
fz = 0.05 mm/tooth, DOC = 0.5 mm and f = 4 Hz; tests 19–22 in Table 2.

Keeping the amplitude value, Figure 12 shows the predicted and measured torques
in the LFAB operations at different frequency values. More precisely, the torque signals
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shown are test 23 in blue at a frequency of 0 Hz without LFAB, test 24 in red at 1 Hz, in
green at 2 Hz test 25 and test 26 in black at a frequency of 4 Hz, which is test 27 of Table 2.
One of the most favorable findings is that the use of LFAB does not result in a higher
average cutting torque. As for the peak-to-peak torque, it reaches zero when segmentation
occurs at all frequencies but seems to be slightly higher at the 4 Hz frequency.
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Figure 12. Measured and predicted torques of LFAB processes with vibrational conditions.
A = 0.1 mm and different frequencies (a) f = 0 Hz, (b) f = 1 Hz, (c) f = 2 Hz and (d) f = 4 Hz;
tests 23–26 in Table 2.

The presented torque model shows results adjusted to the measurements made, with
an error of 9% in the tests with amplitude variation and 13% in which the variable under
examination is the frequency. A deviation smaller than 10% is widely accepted, although
the quality of the prediction depends on the nature of the physical phenomenon and the
measurement equipment [24]. This error is calculated considering the error percentage
as Equation (14). In frequency tests, the source of the error comes from a certain phase
difference between the simulated wave and the experimental wave.

n

∑
i=0

Ti
measured − Ti

predicted

n · Ti
measured

× 100 (14)

3.4. Observation of Chip Formation

Figure 13 shows the chips collected during the tests carried out to compare chip
typology described and given by the standard [25]. The standard establishes categories
by numbering them from 1. Ribbon chips to 8. Natural broken chips. A distinction is
made between a favorable chip for cutting and an unfavorable chip. Considering this
classification, the produced chip goes from an unfavorable 4.3 Snarled shape to a 4.2 Short
in the 4. Washer-type chip category as the vibration frequency increases. The amplitude of
vibration that produces a better chip corresponds to half the feed per tooth.
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Figure 13. Observation of the generated chip on LFAB processes with vibrational conditions
A = 0.1 mm and frequency (a) f = 0, (b) f = 1, (c) f = 2 and (d) f = 4 Hz, tests 23–26 of Table 2,
and with constant f = 4 Hz and different amplitudes (e) A = 0.1, (f) A = 0.05, (g) A = 0.025 and
(h) A = 0.01 mm; tests 19–22 of Table 2.

With further details on the analysis in Figure 13, for the same cutting conditions
(Vc = 250 m/min, fz = 0.05 mm/tooth and DOC = 0.05 mm), as the frequency is increased,
the chip is segmented more and more manually up to 4 Hz for a vibration amplitude of
A = 0.1, double the feed per tooth. This amplitude of vibration is considered excessive;
therefore, it is reduced by maintaining a fixed frequency of 4 Hz, and the lower part shows
how this affects chip formation. An amplitude equal to the feed rate per revolution is not
necessary. This is due to the fact that the waves are out of phase and the machined material
is not excessively ductile. This is proven by the fact that the ends of the segmented chip
do not transition from their maximum chip thickness to zero but that the segmentation
occurs earlier.

3.5. Surface Roughness

This section analyzes the effect of LFAB on the roughness of the machined hole. For
this purpose, the holes made with a variable amplitude of vibration are studied. The
objective is to determine the limit of amplitude necessary to promote a good final boring
hole quality. Figure 14 shows the profiles measured with the roughness meter in the holes
made. It is observed that an amplitude of vibration equal to 0.05 mm produces a better
quality of hole; therefore, it is recommended to use an amplitude of half of the feed per
tooth for boring holes of quality. The ripple frequency of the profile is maintained for the
different vibration amplitudes. This indicates that the vibration amplitude does not affect
the frequency at which the grooves that define the roughness of the part are produced as
much as the vibration frequency does.

A vertical scanning interferometry, Sensofar S-neox (Terrassa, Spain), is used to mea-
sure the hole roughness profile. The window size of the spatial median is set as 5× 5 points
in order to reduce short wavelength noise. To reduce the effect of longer wavelengths, a
Gaussian robust filter is used with a nesting index equal to 250 µm. Figure 15 shows the
results of the roughness profile in the tests at different vibration amplitudes. The existence
of a pattern derived from vibration can be seen more clearly. The tool in its axial movement
breaks the ridges of the profile, improving the quality of the surface. Table 5 summarizes
the roughness results with Ra as the mean roughness, Rz the maximum value of peak to
valley and Sa and Sz the extension to the surface, with the different vibration amplitudes. It
is confirmed that the best vibration amplitude strategy seems to be located around 0.05 mm,
a value close to half the feed per tooth. This improvement when LFAB conditions are
optimal can be attributed to the improved chip breaking seen in the previous section and
Figure 13, which effectively avoids chip scraping on the bore surface. Remember that in
the cutting conditions (amplitude 0.05 mm and frequency 4 Hz) with better roughness,
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a shorter chip length is shown. The effect of the vibration application is observed when
comparing the conventional case (a) A = 0 and the others where LFAB (b–e) A = 0 with
the same conditions: cutting speed, fz and depth of cut whose values are 250 m/min,
0.05 mm/tooth and 0.5 mm, respectively. The machined surfaces of the LFAB and the
conventional one, see Figure 15, clearly indicate that the machined surface is more severely
scratched by the chips in the conventional case.

Table 5. Summary of roughness results at different vibration amplitudes with f = 4 Hz.

Amplitude Ra (µm) Rz (µm) Sa (µm) Sz (µm)

A = 0 mm 2.95 13.93 3.11 57.00
A = 0.1 mm 2.16 10.80 2.31 32.80
A = 0.05 mm 1.42 7.56 1.50 16.10

A = 0.025 mm 1.53 9.92 1.41 19.40
A = 0 01 mm 1.85 7.17 1.92 18.90Metals 2021, 11, x FOR PEER REVIEW 15 of 18 
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better roughness, a shorter chip length is shown. The effect of the vibration application is 

observed when comparing the conventional case (a) A = 0 and the others where LFAB (b–

e) A = 0 with the same conditions: cutting speed, fz and depth of cut whose values are 250 

m/min, 0.05 mm/tooth and 0.5 mm, respectively. The machined surfaces of the LFAB and 

the conventional one, see Figure 15, clearly indicate that the machined surface is more 

severely scratched by the chips in the conventional case. 

Figure 14. Roughness profiles for tests with variable vibration amplitudes: (a) A = 0.1 mm, (b)
A = 0.05 mm, (c) A = 0.025 mm and (d) A = 0.01 mm, all with f = 4 Hz (see Table 2 tests 19, 20, 21
and 22).



Metals 2021, 11, 1009 15 of 17
Metals 2021, 11, x FOR PEER REVIEW 16 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 15. Topography profiles with different vibration amplitudes: (a) A = 0 mm, (b) A = 0.1 mm, (c) A = 0.05 mm, (d) A 

= 0.025 mm and (e) A = 0.01 mm with the same frequency f = 4 Hz (see Table 2 tests 23, 19, 20, 21 and 22, respectively). 

Table 5. Summary of roughness results at different vibration amplitudes with f = 4 Hz. 

Amplitude Ra (µm) Rz (µm) Sa (µm) Sz (µm) 

A = 0 mm 2.95 13.93 3.11 57.00 

A = 0.1 mm 2.16 10.80 2.31 32.80 

A = 0.05 mm 1.42 7.56 1.50 16.10 

A = 0.025 mm 1.53 9.92 1.41 19.40 

A = 0 01 mm 1.85 7.17 1.92 18.90 

4. Conclusions 

A predicted torque model in LFAB operations based on the control-supported chip 

breaking function on ST52 cast steel cylinders is presented. The specific conclusions are 

the following: 

 The CNC function is more attractive for the industry because there is no need for 

intrusive vibration sensors. 

 The LFAB operations permit chip breakage and easy removal from bored holes. 

 The LFAB model is validated for different low frequencies and high amplitudes. The 

model estimates the cutting torques with a predicted error of 9% in the case of am-

plitude variable testing and 13 in the frequency evaluation testing. 

 The model is for general purposes and could be applied to different cutting materials 

and conditions. 

Figure 15. Topography profiles with different vibration amplitudes: (a) A = 0 mm, (b) A = 0.1 mm,
(c) A = 0.05 mm, (d) A = 0.025 mm and (e) A = 0.01 mm with the same frequency f = 4 Hz (see Table 2
tests 23, 19, 20, 21 and 22, respectively).

4. Conclusions

A predicted torque model in LFAB operations based on the control-supported chip
breaking function on ST52 cast steel cylinders is presented. The specific conclusions are the
following:

• The CNC function is more attractive for the industry because there is no need for
intrusive vibration sensors.

• The LFAB operations permit chip breakage and easy removal from bored holes.
• The LFAB model is validated for different low frequencies and high amplitudes.

The model estimates the cutting torques with a predicted error of 9% in the case of
amplitude variable testing and 13 in the frequency evaluation testing.

• The model is for general purposes and could be applied to different cutting materials
and conditions.

A correct selection of vibration parameters favors the generation of correct chips
and improves the surface generated in terms of its roughness. The minimum admissible
vibration frequency is 4 Hz with a vibration amplitude equal to half the feed per tooth.

This work presents, as a novelty, the analysis of low-frequency vibration parameters
in boring processes to favor chip segmentation and roughness improvement. This would
be practically useful for materials where the heat is concentrated at the tool tip. Future lines
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would consist of offering a methodology capable of being extended to other material–tool
assemblies and cutting conditions. It could also be applied to other continuous cutting
processes, such as turning, drilling and reaming.
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Nomenclature

Vc Cutting velocity (m/min)
N Rotatory velocity (rpm)
F Feed rate (mm/min)
fz Feed per tooth (mm/tooth)
DOC Depth of cut (mm)
D Boring tool diameter (m)
kr Main edge angle (◦)
kr’ Second edge angle (◦)
A Amplitude of LFAB process (mm)
F Frequency of predicted model (Hz)
Freq Frequency of LFAB process (Hz)
ZL,pred Vertical position of boring tool (mm)
Zv,pred Vibration vertical position of boring tool (mm)
Zv,meas Vibration vertical position of commercial function (mm)
Θ Matrix of the angular position of tool when developing a cylinder (◦)
ZLFAB, pred Vertical position of LFAB process (mm)
tch, pred Uncut thickness of LFAB process (mm)
t Time (s)
kc1 Specific cutting force (N/mm2) in the main edge
kc2 Specific cutting force (N/mm2) in the second edge
A1,pred Cutting area in the main edge (mm2)
A2,pred Cutting area in the second edge (mm2)
b1 Width of cut in the main edge (mm)
b2 Width of cut in the second edge (mm)
kc1,1 Predicted value of specific force (N/mm2)
m Material constant (-)
Fc,pred Predicted cutting force of LFAB process (N)
Tc,pred Predicted cutting torque of LFAB process (N·m)

References
1. Yang, S.; Tong, X.; Ma, X.; Ji, W.; Liu, X.; Zhang, Y. The guide block structure design of boring and trepanning association (BTA)

deep hole drilling. Int. J. Adv. Manuf. Technol. 2018, 99, 911–918. [CrossRef]
2. Biermann, D.; Bleicher, F.; Heisel, U.; Klocke, F.; Möhring, H.-C.; Shih, A. Deep hole drilling. CIRP Ann. 2018, 67, 673–694.

[CrossRef]
3. Li, X.; Zheng, J.; Li, Y.; Xiao, J.; Guo, B.; Liu, C. Modeling and experimental investigation of drilling force for low-frequency axial

vibration-assisted BTA deep hole drilling. Int. J. Adv. Manuf. Technol. 2020, 111, 1721–1733. [CrossRef]

http://doi.org/10.1007/s00170-018-2418-7
http://doi.org/10.1016/j.cirp.2018.05.007
http://doi.org/10.1007/s00170-020-06162-4


Metals 2021, 11, 1009 17 of 17

4. Zheng, L.; Chen, W.; Huo, D. Review of vibration devices for vibration-assisted machining. Int. J. Adv. Manuf. Technol. 2020, 108,
1631–1651. [CrossRef]

5. Paulsen, T.; Guba, N.; Sölter, J.; Karpuschewski, B. Influence of the workpiece material on the cutting performance in low
frequency vibration assisted drilling. CIRP J. Manuf. Sci. Technol. 2020, 31, 140–152. [CrossRef]

6. Yang, H.; Ding, W.; Chen, Y.; Laporte, S.; Xu, J.; Fu, Y. Drilling force model for forced low frequency vibration assisted drilling of
Ti-6Al-4V titanium alloy. Int. J. Mach. Tools Manuf. 2019, 146, 103438. [CrossRef]

7. Gorostidi, J.M.; Beudaert, X.; Astarloa, A.; Ealo, J.A.; Soraluce, J.A.; Fernandes, M.H. Chip breaking system for turning applications
using machine drive oscillations. DYNA Ing. E Ind. 2020, 95, 100–106. [CrossRef]

8. Chen, W.; Huo, D.; Shi, Y.; Hale, J.M. State-of-the-art review on vibration-assisted milling: Principle, system design, and
application. Int. J. Adv. Manuf. Technol. 2018, 97, 2033–2049. [CrossRef]

9. Suárez, A.; Veiga, F.; Polvorosa, R.; Artaza, T.; Holmberg, J.; de Lacalle, L.L.; Wretland, A. Surface integrity and fatigue of
non-conventional machined Alloy 718. J. Manuf. Process. 2019, 48, 44–50. [CrossRef]

10. Yarar, E.; Karabay, S. Investigation of the effects of ultrasonic assisted drilling on tool wear and optimization of drilling parameters.
CIRP J. Manuf. Sci. Technol. 2020, 31, 265–280. [CrossRef]

11. Dong, G.; Wang, L.; Li, C.; Yu, Y. Investigation on ultrasonic elliptical vibration boring of deep holes with large depth–diameter
ratio for high-strength steel 18Cr2Ni4WA. Int. J. Adv. Manuf. Technol. 2020, 108, 1527–1539. [CrossRef]

12. Ngo, Q.H.; Chu, N.H.; Nguyen, V.D. A Study on Design of Vibratory Apparatus and Experimental Validation on Hard Boring
with Ultrasonic-Assisted Cutting. Int. J. Adv. Eng. Res. Appl. 2018, 3, 383–396.

13. Moraru, G.F. Nonlinear Dynamics in Drilling and Boring Operations Assisted by Low Frequency Vibration. In ASME 2007
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Proceedings of the 6th
International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, Las Vegas, NV, USA, 4–7 September
2007; The American Society of Mechanical Engineers: New York, NY, USA, 2007; Volume 5, pp. 951–960.

14. Mikołajczyk, T.; Latos, H.; Pimenov, D.Y.; Paczkowski, T.; Gupta, M.K.; Krolczyk, G. Influence of the main cutting edge angle
value on minimum uncut chip thickness during turning of C45 steel. J. Manuf. Process. 2020, 57, 354–362. [CrossRef]

15. Zou, F.; Dang, J.; An, Q.; Chen, M. Mechanism and feasibility study of low frequency vibration assisted drilling of a newly
developed CFRP/Al co-cured material. J. Manuf. Process. 2021, 68, 115–127. [CrossRef]

16. Li, C.; Xu, J.; Chen, M.; An, Q.; El Mansori, M.; Ren, F. Tool wear processes in low frequency vibration assisted drilling of
CFRP/Ti6Al4V stacks with forced air-cooling. Wear 2019, 426-427, 1616–1623. [CrossRef]

17. Veiga, F.; Suárez, A.; Val, A.G.D.; Penalva, M.; Lacalle, L.N.L.D. Evaluation on advantages of low frequency assisted drilling
(LFAD) aluminium alloy Al7075. Int. J. Mechatron. Manuf. Syst. 2020, 13, 230–246.

18. Jallageas, J.; K’Nevez, J.-Y.; Chérif, M.; Cahuc, O. Modeling and optimization of vibration-assisted drilling on positive feed
drilling unit. Int. J. Adv. Manuf. Technol. 2013, 67, 1205–1216. [CrossRef]

19. Bleicher, F.; Reiter, M.; Brier, J. Increase of chip removal rate in single-lip deep hole drilling at small diameters by low-frequency
vibration support. CIRP Ann. 2019, 68, 93–96. [CrossRef]
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