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Abstract: Aluminum alloy hot stamping technology can improve the formability of materials and
obtain parts with high dimensional accuracy. Friction behavior in the hot stamping process is very
important for forming quality. Accurate friction coefficient is helpful to improve the prediction
accuracy of forming defects. It is hard to obtain the friction coefficient by simple experiments due
to the complicated thermal–mechanical coupling and contact conditions during the hot stamping
of aluminum alloys. In order to explore the effect of friction behavior on forming quality, hot
stamping experiments of 7075 aluminum alloy U-shaped parts with different lubricants were carried
out. The influence of different lubricants on the force–displacement curve, material inflow, surface
appearance, and thickness distribution of the formed part was analyzed. The results showed
that a good lubrication effect could be obtained with the molybdenum disulfide lubricant. The
friction coefficient under different lubrication conditions was obtained by using the inverse problem
optimization method. Compared with the experimental results, the determined friction coefficients
could accurately predict the force–displacement curves and the thickness distributions of formed
parts under different lubrication conditions.

Keywords: 7075 aluminum alloy; hot stamping; friction coefficient; inverse problem optimization

1. Introduction

Automobile lightweight is one of the most important aims to reduce fuel consumption
and air pollution [1]. A good candidate for body lightweight is 7075 aluminum alloy
which exhibits high specific strength, strong impact resistance, and good corrosion resis-
tance [2]. However, the formability of 7075 aluminum alloy in T6 condition is poor at room
temperature and it is difficult to form complex parts [3,4]. The hot stamping technology
of aluminum alloys can be used to improve the formability of materials, overcome the
springback of parts, and enhance the forming accuracy [5].

The hot stamping of aluminum alloys is a complicated thermal–mechanical coupling
process and friction behavior is the key factor influencing forming quality and die life [6].
Poor friction condition will make the 7075 aluminum alloy adhere to the surfaces of tools
and lead to galling and cracking defects [7]. Using lubricant or die surface coating are
effective methods to reduce the friction during the forming process. Liu et al. [8] have
studied the importance of lubricant in hot forming through experiment and finite element
simulation. The results indicate that lubricant can effectively reduce the fracture and galling
of formed parts. Marzouki et al. [9] have carried out the pin-disk friction experiment at
400 ◦C and investigated the effectiveness of different tool coatings in hot stamping.

To obtain the friction coefficient at high temperature, some researchers developed
sliding friction and wear tester. Yanagida et al. [10] performed a sliding friction test to
obtain the friction coefficient of hot forming. Ghiotti et al. [11] evaluated the influence of
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the material thermal treatment on the adhesive in AA7075 hot stamping. Solid graphite
lubrication was investigated for both the solubilized and the T6 material conditions by
means of strip drawing tests in the temperature range 200–450 ◦C varying the normal
contact pressure up to 10 MPa and the sliding velocity up to 50 mm/s. The results
showed that the friction coefficient presents an initial decrease as the temperature increases,
followed by adhesion phenomena at the highest temperatures with material transfer
to the dies. Zaba et al. [12] studied the abrasive wear resistance 2024 aluminum alloy
strips under friction conditions involving various lubricants. The results allowed for
predicting set lubricant-material for tools which can be applied to sheet metal made of
aluminum alloy 2024. The sliding friction experiment can obtain the friction coefficient
under different temperatures and pressures. However, the sliding friction test didn’t
consider the deformation process of the materials and could not accurately obtain the
friction coefficient in the actual hot forming process.

In this work, hot stamping experiments of 7075 aluminum alloy U-shaped parts with
different lubricants were carried out. The influence of different lubricants on the force–
displacement curve, material inflow, surface appearance, and thickness distribution of the
formed part was analyzed. The friction coefficients under different lubrication conditions
were obtained by using an inverse problem optimization method.

2. Materials and Methods
2.1. Materials

The material used in this study is 7075 aluminum alloy with a thickness of 2 mm pro-
duced by Southwest Aluminum Co., Ltd. (Chongqing, China). The chemical composition
of it is shown in Table 1.

Table 1. Chemical composition of 7075 aluminum alloy (from the supplier).

Element Si Fe Cu Mn Mg Cr Zn Ti Al

Wt.% <0.4 <0.5 1.2–2.0 <0.3 2.1–2.9 0.18–0.28 5.1–6.1 <0.20 Balance

2.2. Hot Tensile Test

The tensile specimens were heated to 480 ◦C at the heating rate of 20 ◦C/s and kept for
60 s by Gleeble 1500D thermal simulator (DSI Company, Poestenkill, NY, USA). Then, the
specimens were cooled at 15 ◦C/s to 300 ◦C, 350 ◦C, 400 ◦C and 450 ◦C respectively, and hot
tensile tests were carried out at strain rates of 0.01 s−1, 0.1 s−1 and 1.0 s−1. Each condition
was repeated three times. The geometry of the tensile specimen is shown in Figure 1.
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The Hockett–Sherby model [13] was used to extend the stress–strain curves. The
Hockett–Sherby model is shown in Equation (1):

σ = σs − (σs − σ0) exp
(
−mεn

p

)
(1)
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Figure 2 shows the experimental and predicted true stress–strain curves at different
temperatures and strain rates. The flow stress increases gradually with the strain rate
increasing at 400 ◦C, shown in Figure 2a. The main reason is that the higher strain rate
easily produces the accumulation of dislocations, increasing the deformation resistance
of the material. When the strain rate is 0.1 s−1, the flow stress reduces with the defor-
mation temperature rising, shown in Figure 2b. At 300 ◦C, the strain hardening effect
dominates. When the temperature is above 350 ◦C, the softening effect of the material is
increasingly apparent, and at this time the recovery softening and strain hardening are in
dynamic equilibrium.
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In order to obtain the anisotropy of the material, tensile tests were conducted at the
temperature of 400 ◦C and the strain rate of 0.01 s−1 on the specimens with the rolling
direction of 0◦, 45◦ and 90◦. Three experiments were repeated under each condition, and
the average value was taken. The anisotropy coefficient r can be defined by Equation (2):

r =
dε

p
2

dε
p
3

(2)

where dε
p
2 and dε

p
3 are the plastic increments in the width and thickness directions of the

tensile specimen.
The anisotropy coefficient r and yield strength σyld were obtained, as shown in Table 2.

Table 2. Anisotropy coefficient (r) and yield strength (σyld) at 400 ◦C.

Sampling Direction σyld (MPa) r

0◦ 45 0.69
45◦ 45 0.81
90◦ 46 0.81

2.3. Hot Stamping Experiment of U-Shaped Parts

The 7075 aluminum alloy blank was put in the furnace for solid solution treatment at
480 ◦C with 30 min. The blank was then quickly transferred to the forming tools by manual
operation, and the transfer process was about 6–8 s. The transferred blank was formed at
400 ◦C and quenched for 8 s after forming, and the holding pressure was set to 25 MPa.
Finally, the artificial aging was conducted at 120 ◦C with 24 h.

Figure 3 shows the set-up of the U-shaped tools used in the experiment. It is composed
of a die, punch, blank holder, and two nitrogen springs. The temperature of the die, punch,
and blank holder is 25 ◦C. There are no cooling channels in the die, punch, and blank
holder due to the interval of 30 min between the two experiments. The nitrogen spring has
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a compression length of 100 mm, an initial force of 7400 N, and a terminal force of 11,900 N.
In order to prevent the heat loss caused by the contact between the binder and the blank,
four flexible holding devices were put on the blank holder.
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U-shaped part hot stamping experiments were conducted with no lubricant, boron
nitride lubricant (JD-3028), graphite lubricant (CRC-03094), and molybdenum disulfide
lubricant (CRC-32660). The lubricant was sprayed on the surfaces of tools and the blank
respectively, and the last remaining lubricant on the tools was cleaned with ethanol when
the lubricant was changed each time.

3. Establishment of Finite Element Model
3.1. YLD2000-2D Yield Model

Considering the influence of anisotropy on forming, YLD2000-2D yield model [14–16]
was used. The yield function of YLD2000-2D is written as:

σeq =

(
ϕ′ + ϕ′′

2

)1/a

(3)

where ϕ′ and ϕ” are written as:
ϕ′ =

∣∣X′1 − X′2
∣∣a (4)

ϕ′′ =
∣∣2X′′2 + X′′1

∣∣a + ∣∣2X′′1 + X′′2
∣∣a (5)

where Xi
′ and Xi” are the principal values of the linearly transformed stress tensors, X′

and X”, which are written as:
X′ = L′ : σ (6)

X′′ = L′′ : σ (7)

where “:” denotes the doubled contracted product between two tensors. The fourth-order
linear stress transformation tensors are L′ and L” and can be reduced for plane-stress
loading to:

L′ =

 L′11 L′12 0
L′21 L′22 0
0 0 L′66

 (8)

L′′ =

 L′′11 L′′12 0
L′′21 L′′22 0
0 0 L′′66

 (9)
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and are defined as: 
L′11
L′12
L′21
L′21
L′66

 =


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1


 α1

α2
α7

 (10)


L′′11
L′′12
L′′21
L′′21
L′′66

 =
1
9


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9




α3
α4
α5
α6
α8

 (11)

Yield stress σ0, σ45, σ90 and anisotropic coefficient r0, r45, r90 in three directions of
uniaxial tensile test are needed to determine the eight parameters αi of YLD2000-2D model.
In addition to the uniaxial tensile tests, the equal-biaxial tensile yield stress σb and r-value
rb can be calculated using through-thickness compression tests to calibrate the equal-biaxial
tensile region of anisotropic yield functions. In this work, we did not conduct the equal-
biaxial tensile test. σb and rb can be approximately expressed by uniaxial tensile results, as
shown in Equations (12) and (13):

σb = σ0+σ45
2 (12)

rb = r0+r45
2 (13)

The eight parameters of YLD2000-2D yield model obtained by minimum error func-
tion method are shown in Table 3. The yield trajectory of YLD2000-2D model is shown
in Figure 4.

Table 3. YLD2000-2d yield criterion parameters of 7075 aluminum alloy.

a1 a2 a3 a4 a5 a6 a7 a8 m

0.969 0.979 0.979 0.998 1.017 1.000 0.998 1.052 8
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3.2. Finite Element Simulation of Hot Forming of U-Shaped Parts

LS-DYNA was used to simulate the hot forming of U-shaped part. The shell element
was used to mesh the tools and the blank, as shown in Figure 5. The element number of
the blank and tools is 19,380 and 5250, respectively. The physical and thermal parameters
of the blank and tools are shown in Table 4.
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Table 4. Physical and thermal parameters of the blank and tools (400 ◦C).

Material ρ
(kg/m3)

E
(GPa) ν

Cp
(J/kg·K)

W
(W/m·K)

H13 7880 210 0.30 460 24
7075 2810 70 0.33 1128 143

4. Reverse Optimization of Friction Coefficient

The principle of reverse optimization of friction coefficient is to calibrate the friction
coefficient by comparing and optimizing the experimental and predicted forming force–
displacement curve.

Friction coefficient reverse optimization is as follows:

(1) The initial values of static friction coefficient (FS) and dynamic friction coefficient (FD)
were set as 0.3, and the variation range was set between 0 and 0.8.

(2) The forming force–displacement curve obtained from FE simulation was compared
with the experimental result, and the error δ was set as the square sum of the difference
between the simulated and experimental forming forces, as shown in Equation (14):

δ = ∑N
i=1

(
FSim

i − FExp
i

)2
(14)

where N is the number of points taken on the curve. FSim
i is the simulated forming force,

and FExp
i is the experimental forming force. When the error δ was smaller than 1 × 10−5,

the optimization iteration ended.
The calibrated friction coefficients under different lubrication conditions are shown in

Table 5. It can be seen that the friction coefficient is greatly reduced by using lubricant.
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Table 5. Calibrated friction coefficient FS and FD.

Lubrication
Condition

Static Friction Coefficient
(FS)

Dynamic Friction Coefficient
(FD)

No Lubricant 0.450 0.290
boron nitride 0.163 0.143

graphite 0.154 0.140
molybdenum disulfide 0.144 0.138

5. Results and Discussion
5.1. Force–Displacement Curve under Different Lubrication Conditions

Figure 6 displays the force–displacement curves of different lubrication conditions.
Two experiments were conducted for each lubricant condition. The force–displacement
curves with the same lubrication agree well except for no lubricant conditions. It can be
seen that the forming force without lubrication is larger, and the value is 66.9 KN and
51.7 KN respectively when the die stroke is 25 mm. The forming force of the second part
without lubrication decreases rapidly after the die stroke is 20 mm, which indicates that
the material is cracked. However, the forming force decreases obviously after spraying
lubricants. When the die stroke is 25 mm, the forming force is 30.5 KN and 27.1 KN with
boron nitride lubricant and 27.8 KN and 30.1 KN with graphite lubricant. The difference of
forming force between the two lubricants is small. The minimum forming force of 25.3 KN
and 26.1 KN is obtained with molybdenum disulfide.

Metals 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

5. Results and Discussion 
5.1. Force–Displacement Curve under Different Lubrication Conditions 

Figure 6 displays the force–displacement curves of different lubrication conditions. 
Two experiments were conducted for each lubricant condition. The force–displacement 
curves with the same lubrication agree well except for no lubricant conditions. It can be 
seen that the forming force without lubrication is larger, and the value is 66.9 KN and 51.7 
KN respectively when the die stroke is 25 mm. The forming force of the second part with-
out lubrication decreases rapidly after the die stroke is 20 mm, which indicates that the 
material is cracked. However, the forming force decreases obviously after spraying lubri-
cants. When the die stroke is 25 mm, the forming force is 30.5 KN and 27.1 KN with boron 
nitride lubricant and 27.8 KN and 30.1 KN with graphite lubricant. The difference of form-
ing force between the two lubricants is small. The minimum forming force of 25.3 KN and 
26.1 KN is obtained with molybdenum disulfide. 

 
Figure 6. Force–displacement curves under different lubrication conditions. 

The determined optimal friction coefficient was used to analyze and predict the form-
ing forces and its comparison with the experimental results is shown in Figure 7. The error 
of the prediction is less than 10%. The simulation results of the whole forming process are 
in good agreement with the experimental results. There is a larger error near the end of 
forming due to the larger holding force. 

Figure 6. Force–displacement curves under different lubrication conditions.

The determined optimal friction coefficient was used to analyze and predict the
forming forces and its comparison with the experimental results is shown in Figure 7. The
error of the prediction is less than 10%. The simulation results of the whole forming process
are in good agreement with the experimental results. There is a larger error near the end of
forming due to the larger holding force.
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5.2. Surface Quality under Different Lubrication Conditions

Figure 8 shows the surface morphology of U-shaped part under different lubrication
conditions. It can be seen from Figure 8a that one formed part without lubricant has serious
scratches at the corner and side wall, while the other part without lubricant has serious
cracks during the forming process. The formed parts with boron nitride lubricant have
no obvious scratches and cracks, as shown in Figure 8b. There are a few scratches on the
side wall and the corner of formed parts using graphite lubricant (Figure 8c). The formed
parts with molybdenum disulfide lubricant have no scratch, as shown in Figure 8d. The
morphology of the parts show that the lubricating effect of molybdenum disulfide lubricant
is better than that of graphite lubricant and boron nitride lubricant.
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5.3. Thickness Distribution under Different Lubrication Conditions

The positions for the thickness measurement on the formed part are shown in Figure 9.
The average value of 5 measurements for each position was obtained with spiral micrometer,
and the results are shown in Table 6. The thinning of the formed parts is in the punch corner
(b), side wall (c), and the die corner (d). There is little thickness change in top surface (a)
and flange (e). This is because the deformation of the material during the forming process
was concentrated in the corner and side wall areas under the action of the blank holder,
and the corner and side wall area was thinned due to the action of friction.
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Table 6. Average thickness distribution of parts for experiments and simulations (mm).

lubricant Results Top Surface Punch Corner Side Wall Die Corner Flange

Non-lubricant
simulation 2.000 1.881 1.905 1.893 2.000
experiment 2.000 1.880 1.900 1.890 2.000

Boron nitride
simulation 2.000 1.932 1.939 1.941 2.000
experiment 2.000 1.930 1.940 1.940 2.000

Graphite simulation 2.000 1.938 1.961 1.952 2.000
experiment 2.000 1.940 1.960 1.950 2.000

Molybdenum
disulfide

simulation 2.000 1.973 1.971 1.962 2.000
experiment 2.000 1.960 1.970 1.960 2.000

The predicted thickness distribution was basically consistent with the experimental
results (Table 6), which indicates that the determined friction coefficient can accurately
predict the experimental situation.

5.4. Material Inflow under Different Lubrication Conditions

A good lubrication condition can make the material have a greater inflow in the
forming process [17]. Figure 10 shows the measurement of material inflow after forming.
Five measurements were carried out at different positions, and the average inflow l1 and l2
were calculated. The sheet flows with different lubricants are shown in Figure 11. It can be
seen that the inflows of formed part with molybdenum disulfide lubricant are the largest,
which is 22.3 mm and 22.7 mm respectively, followed the part with graphite lubricant,
which is 22.4 mm and 22.4 mm respectively, and the inflow of boron nitride parts is 21.7 mm
and 22.2 mm respectively. The material inflow of no lubricant part is the smallest, which is
20.2 mm and 20.9 mm, respectively.
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Figure 11. Material inflow of formed parts with different lubrication conditions (mm): (a) No
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6. Conclusions

Hot stamping experiments of 7075 aluminum alloy U-shaped parts were carried out
with different lubricants, and the effects of different lubricants on forming quality were
investigated. The results are as follows:

(1) Without lubricants, the forming force was large, and the parts were easy to crack
in the forming process. The use of lubricants could significantly reduce the forming force.
Compared with graphite and boron nitride lubricant, molybdenum disulfide lubricant had
better lubrication effect on hot stamping of 7075 aluminum alloy.

(2) The friction coefficients under different lubrication conditions were determined by
finite element simulation and inverse problem optimization method. By comparing the
experimental and simulated results of forming force, thickness distribution, and material
inflow, the FEM reverse optimization method could effectively determine the friction
coefficient of 7075 aluminum alloy hot forming process.
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