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Abstract: In this paper, glass-ceramics were prepared from secondary nickel slag by the melting
method. The effects of Fe2O3 on the crystallization behavior of glass-ceramics were investigated by
differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The properties
of glass-ceramics such as Vickers hardness, bending strength, and acid and alkali resistance were
systematically discussed. The results indicate that the crystallization temperature (Tc) and transition
temperature (Tg) of the glass show a trend of decreasing and then increasing with the increase in Fe2O3

content. The precipitation and refinement of the crystalline phase were promoted significantly when
the Fe2O3 content was lower (≤9.32 wt%), while the crystallinity decreased slightly when the Fe2O3

content increased to 12.42 wt%. The promotion of crystal precipitation led to the depolymerization of
the glass network. When the Fe2O3 content was 9.32 wt%, the sample exhibited the best crystallization
ability, consisting of uniformly distributed anorthite, ferrobustamite and glass phases, while the
Vickers hardness and bending strength were 11.42 GPa and 121 MPa, respectively.

Keywords: glass-ceramics; secondary nickel slag; Fe2O3; crystallization

1. Introduction

Glass-ceramics are inorganic, non-metallic materials prepared by the controlled crys-
tallization of glasses via different processing methods [1]. They have excellent physico-
chemical properties and are widely used in decoration, biomedicine and construction [2].
Due to the similarity in composition, industrial solid wastes can be used as raw materials
for the preparation of glass-ceramics so as to realize resource utilization [3], which not
only eliminates a large quantity of waste, but also reduces the production cost of glass-
ceramics [4]. Currently, the preparation of glass-ceramics using ceramic substitutes of solid
wastes such as granite waste [5], molybdenum tailings [6], yellow phosphorus slag [7] and
furnace slag [8,9] has become a notable research topic in the area of solid-waste recycling.

Nickel slag discharged during nickel smelting in flash furnaces or oxygen-rich top-
blowing furnaces is also an important solid waste, requiring resource utilization. Scholars
have mainly focused on the extraction of valuable metals [10], underground filling materi-
als [11] and the preparation of glass-ceramics [12]. From the perspective of resource value,
nickel slag reduction for iron extraction is considered as a resource utilization approach
with high economic value. However, it is difficult and costly to extract iron adequately [13].
Therefore, the residual fraction of iron oxides in the secondary nickel slag is unavoidable.
It is of research significance to control the appropriate amount of residual iron oxide and to
consider the resource utilization of secondary nickel slag. Many studies have investigated
the use of nickel slag for the preparation of glass-ceramics, but all of them have used iron-
free secondary nickel slag as raw material. For example, Ma et al. [14] studied the changes
in the crystalline phase and microstructure of glass-ceramics. Wang et al. [12] studied the
effect of different nucleating agents on the crystallization of the glass-ceramics and found that
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the main crystalline phase was closely related to the nucleating agent. Previous studies have
ignored the iron oxides that inevitably remain in the secondary nickel slag. Therefore, the effect
of iron oxides on the crystallization of nickel slag glass-ceramics has not been clarified.

The effect of iron oxide on glass crystallization is related to the type of glass-ceramics
system and the content of iron oxide. In the high basicity (30.45 wt% SiO2-47.98 wt%
CaO-2.89 wt% Al2O3) glass-ceramics system, the crystallization activation energy increased
and then decreased with increasing Fe2O3 content, and the samples containing Fe2O3
exhibited better acid–base resistance and water absorption in comparison [7]. In a CaO-
Al2O3-MgO-P2O5 glass-ceramics system, it was found that the introduction of 5 wt% Fe2O3
as the nucleation agent could improve the mechanical properties and density [15]. In a low
Mg/Al ratio (45 wt% SiO2-15 wt% CaO-11 wt% Al2O3-9 wt% MgO) glass-ceramics system,
Fe2O3 facilitated the formation of spinel, but inhibited the precipitation of pyroxene, with
a dual influence mechanism [16]. Therefore, the effect of Fe2O3 on the crystallization of
glass-ceramics is complex. Fewer glass-ceramics with low basicity and high MgO content
systems have been prepared from nickel slag, and the effect of Fe2O3 on crystallization is
not known.

In this paper, the aim was to explore the effect of residual Fe2O3 content in secondary
nickel slag on the crystallization and properties of glass-ceramics. Secondary nickel slag
with different reduction levels was used as raw material and compounded with blast
furnace slag to prepare glass-ceramics. The effects of Fe2O3 on the crystallization behavior,
microstructure and properties of nickel slag glass-ceramics were investigated in detail,
which will provide a theoretical basis for the cooperative utilization of nickel slag and
glass-ceramics.

2. Experiment
2.1. Glass Preparation

The oxide composition of the nickel slag treated in this work was obtained by X-ray
fluorescence (XRF) spectroscopy (S4 Explorer, Bruker, Karlsruhe, Germany), as shown in
Table 1. It was found that the total iron (TFe) content of the nickel slag was 36.24 wt%.
Simulated nickel slag was prepared using analytical reagents for the subsequent study.
The base batch for the glass-ceramics was determined by controlling the five reduction
levels of nickel slag, which were 60%, 70%, 80%, 90% and 100%, respectively. The blast
furnace slag containing 41.13 wt% CaO was the main calcium source for glass-ceramics.
The formulation designs of the samples and their labels are shown in Table 2. The designs
of glass-ceramics showed low basicity and high MgO content.

Table 1. Raw material compositions of nickel slag and blast furnace slag (wt%).

TFe CaO SiO2 MgO Al2O3 Na2O K2O Other

Nickel slag 36.24 3.35 28.32 9.86 2.52 0.56 0.25 3.37
Blast furnace slag - 41.13 39.17 8.00 9.50 - - 2.20

Note: TFe is the total content of elemental iron.

Table 2. Compositions of the base glasses (wt%).

CaO SiO2 MgO Al2O3 Fe2O3

The
Reduction
Rate (%)

21.39 54.59 16.70 7.32 0 100
21.39 54.59 16.70 7.32 3.11 90
21.39 54.59 16.70 7.32 6.21 80
21.39 54.59 16.70 7.32 9.32 70
21.39 54.59 16.70 7.32 12.42 60
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The powdered oxides were mixed well and then held at 1500 ◦C for 2 h in the muffle
furnace within a Pt crucible. To better reduce the internal stress, the cast and treated
samples of the base glass were first annealed at 600 ◦C for 2 h and then naturally cooled to
room temperature.

2.2. Characterizations

Approximately 10 mg water-quenched glass powders were measured by differential
scanning calorimetry (DSC131, SETARAM, Lyon, France). The samples were heated from
20 ◦C to 1200 ◦C at the rate of 10 ◦C/min under the air atmosphere and the air flow
rate through the sample pan was kept constant at 100 mL/min. The phases of the glass-
ceramics were analyzed by X-ray diffraction (D8 ADVANCE, Bruker, Karlsruhe, German).
The diffraction patterns were recorded in the 2θ range from 10◦ to 90◦ at a scan rate of
4◦/min. The microstructure of the sample was examined by scanning electron microscopy
(VEGA II-XMU, TESCAN, s.r.o., Brno, Czech Republic) after etching with 5 wt% HF
solution for 30 s. Fourier transform infrared (Nicolet Antaris II, Thermo Fisher Scientific,
Waltham, MA, USA) spectra of the water-quenched samples were collected in the range of
400 cm−1–1400 cm−1.

The glass-ceramics powders with particle size 0.5 mm~1.0 mm were etched in 20 mol%
H2SO4 and NaOH solution at 95 ◦C for 1 h, respectively, and the experiment was re-
peated five times. The chemical resistance was evaluated by the weight loss percentage:
(m0−m1)/m0 × 100%, where m0 and m1 were the weights of the samples before and after
corrosion, respectively. Meanwhile, the Vickers indentation method was used to measure
Vickers hardness under 0.5 kg load for 10 s (401MVD, Beijing Shidai Shanfeng Technol-
ogy Co., Ltd. (Beijing, China)). Each data point represents an average value obtained by
testing ten specimens. The flexural strength assessments of samples were measured by a
three-point bending method with the Material Testing System (WDW300, Jinan Wance Co.,
Ltd. (Jinan, China) at a sample size of 3 mm × 4 mm × 40 mm, span of 25 mm and loading
speed of 0.5 mm/min. The bending strength was calculated as R = (3F∗L)/(2b∗h∗h), where
F is the breaking load, L is the span, b is the width, and h is the thickness, and the bending
strength test was repeated five times.

3. Results and Discussion
3.1. Thermal Behavior of the Base Glass

The crystallization behavior of the base glass after quenching was measured by DSC to
determine whether it was reasonable and reliable [17]. Figure 1 shows the DSC curves of five
samples containing different Fe2O3 contents. It was found that the transition temperature
(Tg) of the parent glass is about 822–875 ◦C, and the crystallization temperature (Tc) of
the main crystalline phase occurs at 1002–1058 ◦C. Therefore, the nucleation temperature
of the samples is 900 ◦C, since the optimal nucleation temperature is usually 50–100 ◦C
higher than the Tg of the glass [18]. Then, the samples were kept at nucleation temperature
and the corresponding crystallization temperature for 1.5 h to obtain glass-ceramics. With
the increase in Fe2O3 content, the values of Tg and Tc show a tendency to decrease and
then increase, and when the Fe2O3 content is 9.32 wt%, the nucleation temperature and
crystallization temperature of the glass can be reduced most effectively. When the glass
contains a small amount of Fe2O3, Fe3+ exists mainly as octahedral coordination, which
reduces the viscosity of the glass and facilitates the diffusion of atoms and ions, leading to
a reduction in the nucleation and crystallization temperatures of the matrix glass. When
the content of Fe2O3 is 12.42 wt%, the nucleation and crystallization temperatures start to
increase, probably because the Fe2O3 content exceeds the appropriate range and part of the
Fe3+ is present in the form of a tetrahedral coordination [19,20].
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Figure 1. DSC curves of the glass samples with the heating rate of 10 ◦C/min in air.

The intensity of the crystallization peak at Tc became sharp, suggesting that Fe2O3
promotes the crystallization precipitation. When the Fe2O3 content exceeds 9.32 wt%, a
relatively weak exothermic peak appears near 950 ◦C, showing the precipitation of different
crystalline phases. The results here are consistent with the subsequent analysis in XRD.

3.2. Crystalline Phase and Morphological Structures Analysis

The glass-ceramics powder was ground and then analyzed by XRD to determine
the phase composition. The XRD results are shown in Figure 2. It can be seen that the
broad diffraction peaks between 25◦and 35◦are generally considered to be the amorphous
glass phase. As the Fe2O3 content increases, a large amount of anorthite (Ca(Al2Si2O8))
precipitates as the main crystalline phase. The other samples also precipitate the secondary
crystalline ferrobustamite ((CaFe)SiO3) compared with the samples with 0 wt% Fe2O3
content. Notably, the peak intensity of the crystalline phase increases with increasing Fe2O3
below 9.32 wt%, but then decreases.
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Figure 2. XRD patterns of glass-ceramics with different Fe2O3 contents.
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The average grain size of glass-ceramics was evaluated using the Scherrer equation,
which is widely used to determine the size of crystalline particles in powders, as presented
in Equation (1):

D = Kλ/(β∗cosθ) (1)

where D is the average grain size of the crystalline domains, K is a dimensionless shape
factor with a typical value of 0.89, λ is the wavelength of the X-rays (0.15406 nm in this
case), β is the full width at half-maximum (FWHM), and θ is the Bragg angle.

The crystallinity of glass-ceramics was evaluated using the Rietveld method [21,22].
The Rietveld method is a refinement of the raw XRD spectrum, and the crystallinity was
calculated based on the refinement results using TOPAS 4.2 software. The refinement
spectrum is shown in Figure 3. The residual factors represented by Rwp are all below
10%, and the fitted optimized values represented by χ2 are all below 4. Therefore, the
fitting effect is better and the calculation of crystallinity is more accurate. Figure 4 shows
the values of crystallinity and crystallite size of glass-ceramics with different contents of
Fe2O3. As the Fe2O3 content increases from 0 wt% to 12.42 wt%, the crystallinity of the
glass increases monotonically and then decreases, while the crystallite size is reversed. It
can be seen that the appropriate amount of Fe2O3 facilitates the precipitation and refines
the crystalline phase. When the Fe2O3 content is 9.32 wt%, the glass-ceramics show the
maximum crystallinity, and the characteristic peaks of the glass phase disappear, while
the diffraction peaks of anorthite and ferrobustamite are more intense. However, with
further increase in the content, the type of the main crystalline phase did not change, but
the crystallinity decreased slightly, which shows that the excess Fe2O3 has no positive effect
on the crystallization process.
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Figure 3. XRD refinement patterns of glass-ceramics with different Fe2O3 contents: (a) 0 wt% Fe2O3;
(b) 3.11 wt% Fe2O3; (c) 6.21 wt% Fe2O3; (d) 9.32 wt% Fe2O3; (e) 12.42 wt% Fe2O3.
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Figure 4. Crystallinity and crystallite size of glass-ceramics.

Figure 5 shows the surface and interior microstructure of glass-ceramics with an Fe2O3
content of 9.32 wt%. It can be seen that the surface and internal structural forms are similar,
but the amount of crystal on the surface is more uniform and dense, which is due to the
fact that the crystallization process grows from the sample surface to the interior region,
and the holding time on the surface is relatively longer. Therefore, macroscopically, the
crystallization can be considered to be homogeneous and uniform.
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Figure 5. SEM pattern of glass-ceramics: (a) surface; (b) interior.

The corresponding microstructure images of glass-ceramics bulks are shown in Figure 6.
It can be seen that the samples (a–c) precipitated only a small amount of crystals with an
average diameter of 2.00–2.90 µm. The size of the crystals in the glass-ceramics becomes
smaller as the Fe2O3 content increases. When the Fe2O3 content reaches 9.32 wt% and
12.42 wt%, the crystals become dense and homogeneous. Thus, Fe2O3 can promote the
refinement of crystals and the denseness of glass-ceramics.
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3.3. Analysis of the Glass Network Structure

The crystallization ability of the glass correlates strongly with the structure of the glass
network. To evaluate the structure of precursor samples containing different amounts of
Fe2O3, infrared spectra were investigated. Figure 7 shows the FTIR spectra of the samples in
the wave number range of 400–1400 cm−1. It can be seen that the variation around 800 cm−1

first shifts from higher to lower frequencies and then recovers, which confirms that the
degree of network connectivity of the silicate framework may first decrease and then
increase. All spectra contain typical features of the aluminosilicate glasses and consist of
three components in the range of 1400–400 cm−1. The strongest absorption band is located
at 1200–800 cm−1, which is generated by the antisymmetric stretching vibrations of Si-O-T
(T = Si, Fe, Al) tetrahedra with different amounts of bridging oxygen (BO), and symmetric
stretching vibrations of non-bridging oxygen (NBO) in O-Si-O connections linkage [23]. The
weakest bond, located at 800–600 cm−1, is derived from symmetric stretching vibrations of
[AlO4] tetrahedra. The absorption band located at 600–400 cm−1 is the bending vibration
of BO in Si-O-T (T = Fe, Al) [24]. The trough depth of Si-O-T (T = Si, Fe, Al) tetrahedra units
becomes more shallow with the appropriate increase in Fe2O3, which suggests that the
complex silicate structure is simplified by Fe2O3. At high temperatures, part Fe3+ is reduced
to Fe2+ [25]. Thus, Fe2+ and Fe3+ usually coexist in glasses when Fe2O3 is present in the
glass system. The Fe2+ is located in octahedral coordination, while Fe3+ ions exist in both
tetrahedral coordination and octahedral coordination, with the tetrahedral coordination
corresponding to the replacement of Si4+, occupying the network modifying position, and
the octahedral occupying the network destruction position [26]. When the Fe2O3 content
is low, octahedral coordination dominates and disrupts the network structure, while the
opposite is true when the content is high [27].
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Figure 7. FTIR vibrational spectra of the samples: (a) 0 wt% Fe2O3; (b) 3.11 wt% Fe2O3; (c) 6.21 wt%
Fe2O3; (d) 9.32 wt% Fe2O3; (e) 12.42 wt% Fe2O3.

The degree of network connectivity can reflect the crystallization tendency of glass,
and is usually estimated by the relative content of Qn (n = 0, 1, 2, 3, 4, representing the
number of bridged oxygens of [SiO4]) [28]. Q1 and Q2 are monomeric and chain-like units,
which can depolymerize the glass network. Q3 denotes layered units that can make the
glass network harder. The band frequencies of the Qn-species tetrahedron are determined
based on the analysis reported in the literature [29], as shown in Table 3. To quantitatively
identify the glass structure, deconvolution of the FTIR spectra is performed in the range
of 800–1200 cm−1. Figure 8 shows the assignment results of the characteristic peaks. The
spectral band is divided into five individual absorption peaks, which can be assigned to
Q0, Q1, Q2, Q3 and Q4, respectively. The content of the non-bridging oxygen bond to the
total oxygen (NBO/T) reflects the network connectivity degree of the network structure, as
shown in Equation (2) [27,28]:

NBO/T = 4 × Q1 + 3 × Q2 + 2 × Q3 + Q4 (2)

Table 3. Attribution of the Qn-species structure unit in infrared spectra.

Structural Units Onb Qn IR Band (cm−1)

[SiO4]4− 4 Q0 840–890
[Si2O7]6− 3 Q1 900–950
[SiO3]2− 2 Q2 960–1130
[Si2O5]2− 1 Q3 1050–1100

[SiO2]0 0 Q4 1160–1190

The calculation results of NBO/T are shown in Figure 9. With the increase in Fe2O3
content, the NBO/T in the precursor first increases and then decreases, reaching a max-
imum at an Fe2O3 content of 9.32 wt%. It can be seen that the degree of crystal network
connectivity shows a trend of decreasing and then increasing. According to the network
connectivity–depolymerization reaction, shown in Equation (3):

2O− = O0 + O2 (3)
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Figure 8. Deconvoluted spectra of the glasses using Gaussian function: (a) 0 wt% Fe2O3;
(b) 3.11 wt% Fe2O3; (c) 6.21 wt% Fe2O3; (d) 9.32 wt% Fe2O3; (e) 12.42 wt% Fe2O3.
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Figure 9. NBO/T as a function of Fe2O3 content.

The increase in Fe2O3 to 9.32 wt% promotes the reaction to the left, leading to the
conversion of bridging oxygen to non-bridging oxygen in the glass. The Fe2O3 content
has a strong depolymerizing effect on the glass network, which makes the structure loose.
This change forms more ion channels, making it easier for isolated ions such as Mg2+ and
Fe3+, which have smaller ionic radii, to diffuse in the melt. Thus, the precipitation of the
anorthite and ferrobustamite phase is promoted. By further increasing Fe2O3, the reaction
proceeds to the right, which means that non-bridging oxygen is converted to bridging
oxygen [30]. The transition reveals that Fe2O3 can not only promote the depolymerization
of the glass structure but also polymerize to some extent. The loose glass network structure
always favors the nucleation of the precursor [31]. Therefore, Fe2O3 can promote the
depolymerization of glass network structure and drive the precipitation of the anorthite
and ferrobustamite phase from the glass phase. However, the nucleation of the glass-
ceramics is likely to be inhibited with high Fe2O3 content.
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3.4. Physicochemical Properties of Glass-Ceramics

Glass-ceramics have the dual characteristics of glass and ceramics, with good me-
chanical and chemical properties. Figure 10 shows the effect of Fe2O3 content on the
physicochemical properties of glass-ceramics. The Vickers hardness and bending strength
gradually increase with increasing Fe2O3, mainly because of the higher crystallinity and
dense structure. Glass-ceramics with high crystallinity exhibit crack–crystal interactions,
which significantly strengthen the glass-ceramics [32]. Therefore, Vickers hardness and
bending strength are significantly increased at high crystallinity. The mechanical properties
are more suitable when the Fe2O3 is 9.32 wt%, which is due to the high crystallinity and
the fine and dense microstructure of the crystalline phase. The Vickers hardness, bending
strength, acid resistance and alkali resistance of this sample are 11.42 GPa and 121 MPa,
99.81% and 99.70%, respectively, which meet the performance requirements of industrial
glass-ceramic plates (JC/T 2097-2011).
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Figure 10. The physical and chemical properties of the samples: (a) mechanical properties;
(b) chemical properties.

The increase in crystal bulk density improves the bending strength and chemical
resistance of glass-ceramics. However, excessive nucleation and crystallization can reduce
the proportion of glass phases, resulting in compromised connectivity between crystalline
and crystalline phases, which reduces the bending strength. Therefore, a further increase in
Fe2O3 weakens the properties of glass-ceramics.

4. Conclusions

In the secondary nickel slag glass-ceramics system with low basicity and high MgO
content, Fe2O3 promotes the precipitation of crystals and changes the value of NBO/T in
the precursor glass, leading to a more open network structure. When the Fe2O3 content
was 9.32 wt%, the NBO/T reached a maximum value of 1.40. After heat treatment, the
glass-ceramics were well crystallized and effectively reduced in size.

(1) With the increase in Fe2O3 content, the crystallization temperature of glass-ceramics
first decreases and then increases. Fe2O3 can effectively reduce the crystallization
temperature and improve the crystallization capacity.

(2) The crystal phases precipitated are anorthite and ferrobustamite, and crystallinity
reaches a maximum of 72.45% with Fe2O3 content of 9.32 wt%. The microstructure of
glass-ceramics becomes dense with the increase in Fe2O3.

(3) Fe2O3 changes the value of NBO/T in the glass, increasing first and then decreasing.
Excessive Fe2O3 will weaken the depolymerization of the [SiO4] tetrahedral structure,
as when Fe2O3 reaches 12.42 wt%.

(4) When the content of Fe2O3 is 9.32 wt%, the Vickers hardness, bending strength, acid
resistance and alkali resistance of this sample are 11.42 GPa and 121 MPa, 99.81% and
99.70%. The performances meet the requirements of industrial glass-ceramic plates
(JC/T 2097-2011).
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