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Abstract: High-strength, wear-resistant steel often suffers from delayed cracking after flame cutting.
Delayed cracking can lead to extremely harmful sudden brittle fracture; therefore, it is necessary to
study the formation of delayed cracking in high-strength steel. This work investigated the influence
of TiN inclusions and segregation on the delayed cracking in NM450 wear-resistant steel by optical
microscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy and
electron backscattered diffractometer methods. The results indicated that the delayed cracks origi-
nated from the segregation zones (SZs) containing multiple high-hardness segregation bands. The
tensile strength of the SZ specimens was higher than that of non-segregation zone (NSZ) specimens,
while the total elongation and reduction of area of the SZ specimens were relatively lower compared
with the NSZ specimens. Therefore, the delayed cracking on the flame cutting surface of the NM450
steel plate was attributed to the existence of SZs that contain a high density of dislocations and
considerable micro-sized TiN inclusions.

Keywords: NM450 wear-resistant steel; delayed cracks; mechanical properties; segregation zone;
TiN inclusions

1. Introduction

With the development of heavy industry, the demand for high-strength steel has
increased, and more high-strength steel has been developed [1]. Flame cutting is widely
used in cutting steel plates due to its low cost, easy operation, high cutting efficiency and
wide range of applicable steel plate thickness [2]. However, high-strength wear-resistant
steel often suffers from delayed cracking after flame cutting due to aggregation of residual
hydrogen in the steel plate. Delayed cracks, which occur without warning, can lead to
sudden brittle fracture, which is extremely harmful. Therefore, it is necessary to study the
cause of delayed cracking in high-strength steel. Microstructural constituents can act as
hydrogen trapping sites, including grain boundaries, dislocations and inclusion/matrix
interfaces, which can induce hydrogen-induced delayed cracking [3,4]. The hydrogen
trapping ability of martensite, a typical structure for high-strength steel, is more significant
than that of ferrite and pearlite because of the high concentration of solute carbon and the
high density of dislocations [5,6]. NM450 wear-resistant steel is a low-alloy, high-strength
martensitic steel widely used in the mechanical engineering field because of its low cost
and excellent mechanical properties. At present, microalloying elements, such as Ti and
Nb, are widely used to improve the strength, toughness and other mechanical properties of
low-alloy, high-strength steel [1,7]. However, the improper addition of Ti can lead to the
formation of micro-sized TiN inclusions, which easily capture hydrogen atoms and result
in hydrogen-induced delayed cracking [4,8]. Wu et al. [9] and Wang et al. [10] studied
the fracture mechanisms of TiN inclusions under tensile stress. Delayed cracking in the
NM450 steel plate often occurs in the flame cutting surface. Therefore, in this work, delayed
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cracking was studied by a series of tensile tests performed on the segregation zones (SZs)
and non-segregation zones (NSZs) of NM450 steel. The influence of TiN inclusions and
segregation on delayed cracking was analyzed in detail.

2. Materials and Methods

The NM450 steel plate was composed of 0.20C-1.28Mn-0.52Si-0.72 (Ni + Cr + Al)-
0.17(Nb +Mo + B)-0.014Ti-0.0040N, wt.%. The as-received 20 mm-thick steel plate exhibited
a fully martensitic microstructure after 910 ◦C quenching. Delayed cracks continued to
appear on the flame cutting surface of the steel plate for a few days. The microhardness
was tested using a digital hardness tester (XHD-2000TMSC; Vickers, Shanghai, China) with
a 0.5 kg force on the flame cutting surface along the crack direction. For the mechanical
testing, cylindrical specimens were prepared from SZs and NSZs in the matrix. The
specimens with a gauge length of 17.5 mm long and a 3.5 mm diameter were prepared
according to the GB/T 228.1–2010 standard (China National Standard, China). Room
temperature tensile testing was carried out at a speed of 10 mm per minute on a universal
tensile testing machine (CMT5105; SANS, Shenzhen, China). In order to accurately prepare
the tensile specimens from the SZs and NSZs, the sheet was etched with 10 mL of nitric
acid and 90 mL of ethanol until the macroscopic segregation was observed in the thickness
direction, and then the samples were cut by an electric spark wire cutting machine followed
by further machining into tensile specimens. The flame cutting surface specimen for the
optical microscopy (OM; BX51M; OLYMPUS, Tokyo, Japan) was prepared by mechanical
polishing and corrosion by a saturated aqueous solution of picric acid at 80 ◦C. The delayed
crack morphology was observed using OM and scanning electron microscopy (SEM; Quanta
250 FEG; FEI, Utah, UT, USA), with standard rough and finish polishing procedures. The
size and quantity of TiN inclusions in the SZ and NSZ were analyzed by OM, the number
of TiN inclusions in the SZ and the NSZ was 166 and 102, respectively, and both the
statistical areas were 45 mm2. Inclusions in the tensile fracture surfaces were analyzed
by SEM and an energy dispersive spectrometer (EDS; INCA-ENERGY, Oxford, UK). The
microstructure and carbide morphology of the matrix were characterized by transmission
electron microscopy (TEM; 2100; JEM, JEOL, Japan). The thin foils used for the TEM were
prepared using a double-jet electro-polisher with 10 mL of perchloric acid and 90 mL of
ethanol in a mixed solution at –20 ◦C under a voltage of 20 V. Crystallographic analysis and
microstructural characterization of a non-segregation and a segregation band were carried
out by a 20 kV field emission scanning electron microscope (FESEM; ZEISS, Oberkochen,
Germany) integrated with an electron backscatter diffraction (EBSD) detector with a step of
0.3 µm. HKL Channel 5 software (Oxford, UK) was used for the data acquisition and post-
processing. The dislocation density was quantitatively analyzed using X-ray diffraction
(XRD; PANalytical, Almelo, Holland) with a Cu-Kα radiation source (λ = 1.5406 Å). The
specimens were scanned over the angle range of 40–102◦, with a step size of 0.02◦ and a
speed of 1◦ min−1 after electropolishing.

3. Results and Discussion
3.1. Crack Analysis

The crack morphology and hardness of an SZ on a flame cutting surface of NM450
steel are shown in Figure 1. Both ends of the crack gradually converge to a stop, indicating
that the energy was exhausted in the crack propagation process. The crack at SZ3 (Figure 1a)
propagated intermittently, indicating that a re-initiating process occurred under the induc-
tion of other factors, such as inclusions and hydrogen induction [11,12]. The cracks ran
throughout the whole SZ and extended in both directions from the SZ. Moreover, the crack
at SZ3 had a greater opening width, so we speculated that the crack may have originated
in the SZ. As seen by OM, the SZ on the flame cutting surface contained multiple black
segregation bands. We measured the microhardness of the SZ along the crack direction
(Figure 1b). High hardness values corresponded to the black segregation bands, while low
hardness points corresponded to the positions between the segregation bands, suggesting
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that the composition of the black segregation bands was different from the other zone.
Segregation bands are caused by the selective crystallization of a steel sheet during the
continuous casting process, which enriches the C, Mn, Nb, Ti and other elements in the
steel [13,14].

Metals 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

black segregation bands. We measured the microhardness of the SZ along the crack direc-
tion (Figure 1b). High hardness values corresponded to the black segregation bands, while 
low hardness points corresponded to the positions between the segregation bands, sug-
gesting that the composition of the black segregation bands was different from the other 
zone. Segregation bands are caused by the selective crystallization of a steel sheet during 
the continuous casting process, which enriches the C, Mn, Nb, Ti and other elements in 
the steel [13,14]. 
(a) 

 

  
Figure 1. (a) Optical microscopy image of the morphology of a segregation crack and (b) the mi-
crohardness curve of a segregation band in a segregation zone (SZ). 

The morphology of a crack on the flame cutting surface is shown in Figure 2. The 
crack propagation is relatively straight within the high-hardness segregation bands and 
the opening width of the crack there is larger. Contrastingly, in the low hardness zone 
between the segregation bands, the crack turns, bifurcates and converges. The expansion 
of the crack on the flame cutting surface included several stages: (i) crack propagation, (ii) 
crack convergence and arrest, (iii) crack re-initiation, (iv) crack re-propagation and (v) 
crack re-arrest. These gradual and delayed processes indicated that the cracks on the flame 
cutting surface did not form simultaneously [15]. 

  

(b) 

Figure 1. (a) Optical microscopy image of the morphology of a segregation crack and (b) the
microhardness curve of a segregation band in a segregation zone (SZ).

The morphology of a crack on the flame cutting surface is shown in Figure 2. The
crack propagation is relatively straight within the high-hardness segregation bands and
the opening width of the crack there is larger. Contrastingly, in the low hardness zone
between the segregation bands, the crack turns, bifurcates and converges. The expansion
of the crack on the flame cutting surface included several stages: (i) crack propagation,
(ii) crack convergence and arrest, (iii) crack re-initiation, (iv) crack re-propagation and
(v) crack re-arrest. These gradual and delayed processes indicated that the cracks on the
flame cutting surface did not form simultaneously [15].
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3.2. Tensile Properties

The stress–strain curves are shown in Figure 3. Table 1 shows the tensile properties of
all the samples in the transverse and longitudinal directions. Interestingly, the elastic stages
of all the tensile curves were similar despite the higher stress of the SZ samples compared
to the NSZ samples during plastic deformation. The tensile strength of the SZ samples was
higher than that of the NSZ samples, while the total fracture elongation and area reduction
were the opposite. This implied that work hardening took place after yielding, and the
work hardening rate of the SZ samples was relatively high compared with the NSZ samples
due to their relatively higher enrichment of C and Mn elements, which resulted in the
relatively higher tensile strengths of the SZ samples.
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Figure 3. Stress–strain curves of the segregation zone (SZ) and the non-segregation zone (NSZ) in
different directions.

Table 1. Tensile properties of the NM450 steel specimens in different directions.

Direction Location Tensile Strength (MPa) Elongation (%) Area Reduction (%)

Transverse
Segregation Zone 1606 13.5 38.4

Non-segregation Zone 1503 16.3 54.5

Longitudinal Segregation Zone 1579 14.4 42.9
Non-segregation Zone 1474 17.7 55.6

3.3. Fractography
3.3.1. Fracture Surface

SEM was used to observe the tensile specimen fractures in the longitudinal SZ and
NSZ, as shown in Figure 4. The tensile fracture surfaces of the two specimens were both
composed of a fiber zone and a shear lip. However, distinct differences in the shapes
of the fiber zones were noted: the elliptical shape of the SZ with a long delamination
crack (Figure 4a) and the circular shape of the NSZ (Figure 4b). This suggested that the
SZ significantly affected the fracture process. The fracture surface was characterized by
ductile dimples, tear ridges, a small amount of quasi-cleavage and secondary cracks. A
higher percentage of quasi-cleavage and secondary cracks with brittle characteristics on
the fracture surface of the SZ specimen was found compared to the NSZ (Figure 4c,d). The
regular-shaped inclusions were identified as TiN inclusions containing small amounts of
Nb by EDS (Figure 4g) analysis. Nb is a micro-alloyed element which can also bind with
N, but its affinity for bonding with N is weaker than Ti [16]. The breakage of TiN inclu-
sions under tensile stress led to brittle quasi-cleavage (Figure 4e). Elliptical CaO·(Al2O3)x
inclusions—according to the EDS spectra shown in Figure 4h—were found at the bottom of
a large deep dimple (Figure 4f). The impurity of S and Mg existed in the form of CaS and
MgO, which partially covered the CaO·(Al2O3)x [17,18]. Due to their high hardness and
poor deformability, the brittle quasi-cleavage fracture was caused by ~2 µm TiN inclusions;
however, ~10 µm ellipsoidal CaO·(Al2O3)x inclusions caused ductile dimples, indicating
that TiN inclusions were more harmful than CaO·(Al2O3)x inclusions. This result is consis-
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tent with that reported by Mizobe [19], which showed that the small-size TiN inclusions
induce crack initiation more easily than large-size Al2O3 inclusions.
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Figure 4. Fracture surfaces of the specimens after tensile testing. (a) Tensile fracture of a segregation
zone (SZ), (b) tensile fracture of a non-segregation zone (NSZ), (c) fiber zone of the SZ, (d) fiber zone
of the NSZ, (e) TiN inclusion on a fracture surface, (f) CaO·(Al2O3)x inclusion on a fracture surface
and (g,h) the energy-dispersive spectrums of the inclusions.
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3.3.2. Transverse Section of the Tensile Fracture Surface

A fracture was cut along the central axis, and the morphology of the inclusions at
different distances from the fracture surface was observed by SEM, as shown in Figure 5.
The most distal CaO·(Al2O3)x inclusion still maintained a spherical shape due to very little
tensile stress (Figure 5a). The CaO·(Al2O3)x inclusion slightly closer to the fracture surface,
as shown in Figure 5b, was deformed in the direction of the tensile stress, resulting in
several cracks. When subjected to large tensile stress, the CaO·(Al2O3)x inclusion near the
fracture surface was cracked, and parts of the cracks were widened without obviously
forming microcracks on the matrix/inclusion interface perpendicular to the tensile stress
(Figure 5c). The majority of the microcracks did not extend throughout the entire width
of the CaO·(Al2O3)x, indicating the good deformability of the CaO·(Al2O3)x. The TiN
inclusion most distal from the fracture surface retained its original regular morphology
due to low tensile stress (Figure 5d). Slightly closer to the fracture, microcracks with dif-
ferent widths appeared in the TiN inclusion (Figure 5e). Near the fracture surface, many
microcracks in the TiN inclusion were further widened and eventually formed holes due
to the high tensile stress. They were accompanied by the formation of microcracks in the
matrix/inclusion (Figure 5f). All the microcracks in the TiN inclusion extended throughout
the entire width of the TiN inclusion and were accompanied by microcracks in the ma-
trix/TiN interface due to the brittleness and hardness of the TiN. The most well-developed
fractures were in the TiN and CaO·(Al2O3)x inclusions closest to the fracture surface. The
changes in the CaO·(Al2O3)x inclusions with increasing tensile stress could be divided into
three steps, as shown in Figure 6a: (i) microcracks formed in the CaO·(Al2O3)x inclusions
were accompanied by deformation in the tensile stress direction, (ii) multiple microcracks
formed and some widened with further deformation and (iii) the microcracks continued to
widen along with matrix and inclusion deformation without obvious microcracks forming
in the matrix/inclusion interface. The changes in the TiN inclusions with increasing tensile
stress could be divided into three steps, as shown in Figure 6b: (i) microcracks formed in the
TiN inclusions, (ii) multiple microcracks formed and some widened and (iii) TiN inclusions
formed a hole and were accompanied by obvious microcracks in the matrix/inclusion
interface. These results demonstrated that under tensile stress, the regular-shaped TiN in-
clusions with high hardness and poor deformability were broken, and microcracks formed
in the matrix/TiN interface, which induced brittle quasi-cleavage fracture. The circular and
deformable CaO·(Al2O3)x inclusions with fewer matrix/inclusion interface microcracks
caused deep ductile dimples.

3.4. Microstructure
3.4.1. Distribution of TiN Inclusions

Figure 7 illustrates the size distribution of the TiN inclusions in the SZ and NSZ.
There were more TiN inclusions in the SZ than the NSZ, and the average sizes of the TiN
inclusions in the SZ and the NSZ were 6.36 and 6.06 µm, respectively. The maximum sizes
of the TiN inclusions in the SZ and NSZ were 21 and 13.3 µm, respectively. The greater
size and number of TiN inclusions were related to the greater number of quasi-cleavage
fractures observed in the SZ compared to the NSZ. This was also related to the lower total
fracture elongation and reduction of the area observed in the SZ compared with the NSZ.
This is consistent with previous research on high-density and large brittle TiN inclusions
that can easily initiate cleavage fractures [20,21].
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spectrums of the inclusions.
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Figure 7. Optical microscopy images and size distribution of the TiN inclusions. (a) Non-segregation
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3.4.2. Dislocation Density Analysis

TEM was used to analyze the substructures of the steel plate specimen, as shown in
Figure 8. The microstructure was lath martensite with many dislocation clusters (Figure 8a).
Nanoscale carbide precipitates were observed in the martensite (Figure 8b), which have the
effect of precipitation hardening [22].
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To quantify the difference in dislocation density in the SZ and NSZ, the dislocation
density, ρ(m−2), was calculated by the modified Williamson–Hall (MWH) method [23],
as follows:

4 K = 0.9d +
1
2

πM2b2√ρC, (1)

where ∆K is the full width at half maximum at a particular diffraction angle, K is the
diffraction vector, and K = 2sin θ/λ, where θ is the diffraction angle, λ is the diffraction
wavelength, d is the crystallite size, M is a dislocations distribution parameter, b is the
Burgers vector (~0.248 nm) and C is an average contrast factor of dislocation. A typical
XRD peak profile (Figure 9a) was used to calculate the dislocation density (Figure 9b,c),
based on Equation (1). The result shows that dislocation density in the SZ was higher
than that in the NSZ, as shown in Figure 9c, due to the enrichment of C, Mn, Ti, and Nb
alloy elements. This results in higher hardness and tensile strength because of dislocation
strengthening [7,23,24]. The chemical composition also affects the dislocation density
of the lath martensite. With increasing C, Mn and other elements, the Ms temperature
dropped, and the continuous cooling transformation (CCT) curves shifted to the right
with the increasing hardenability [25]. With increasing C content, the lattice constant ratio
of the C/A in martensite increased, resulting in an increase in the volume strain during
martensitic transformation. A decrease in the Ms temperature resulted in a decrease of
lath martensite self-tempering, and the recovery and dislocation annihilation of martensite
were inhibited with the increasing hardenability [25,26].
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Figure 9. (a) X-ray diffraction profiles of the non-segregation zone (NSZ) and the segregation zone
(SZ), (b) the fitted lines of ∆K vs. K2C based on the modified Williamson–Hall method and (c) the
calculated dislocation density of the NSZ and SZ.

3.4.3. EBSD Analysis

Local disorientation was performed for the NSZ and the SZ segregation band by EBSD
to characterize the concentration of local stress. The kernel average misorientation (KAM)
map (Figure 10a–c) showed that the segregation band had more orange and red areas than
the NSZ, demonstrating a greater stress concentration due to higher dislocation density,
as shown in Figure 9c. Most of these orange and red areas were located between the
martensite blocks and packets, which are prone to induced microcracks [27]. Figure 10d,e
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showed that the image quality maps in the NSZ and the SZ of the specimens, where the
black line means the angle of boundary 15◦ ≤ θ ≤ 50◦ and red line means θ > 50◦. Of the
grain boundaries, 54.8% were greater than 50◦ in the NSZ, and 52.1% were greater than
50◦ in the segregation band (Figure 10f). Grain boundaries larger than 50◦ can effectively
consume more energy and prevent crack propagation [28]. In the SZ, there were not only
multiple segregation bands with high dislocation densities but also many micro-sized TiN
inclusions, which can efficiently trap hydrogen atoms. Therefore, the SZ was more prone
to crack initiation. In addition, the segregation band contained fewer large-angle grain
boundaries, so the ability to prevent crack propagation was poor. This also explained why
the ductility of the SZ was less than the NSZ.
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Figure 10. Kernel average misorientation (KAM) and image quality maps for the (a) non-segregation
zone (NSZ) and (b) the segregation band. (c) Corresponding distribution of the KAM value. (d) NSZ,
(e) segregation band and (f) misorientation distribution (black line 15◦ ≤ θ≤ 50◦ and red line θ > 50◦).

The hardness and strength of the SZs were greater than those of the NSZs due to
the enrichment of elements and higher dislocation density in the SZs. The number and
size of the TiN inclusions in the SZs were larger than those in the NSZs, resulting in
the lower plasticity of the SZs. Large TiN inclusions in the SZs tended to accumulate
hydrogen atoms between the interfaces of the TiN inclusions and the matrix. This promoted
hydrogen pressure when the hydrogen atoms were converted into hydrogen molecules,
which promoted the delayed crack initiation and propagation [29]. More hydrogen was
trapped by the higher local stress generated by the higher density of dislocations in the
SZs (Figure 10b) than in the NSZs (Figure 10a) [4]. Cracks converge and stop when the
crack propagation process exhausts the available energy. However, hydrogen aggregation
will continue to occur at the crack tip, which causes the delayed crack re-initiation and
re-propagation. Therefore, the delayed cracking on the flame cutting surface of the NM450
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steel plate in this study was attributed to the existence of SZs, which contain high-density
dislocations and a considerable number of micro-sized TiN inclusions.

4. Conclusions

• Delayed cracking appeared up to a few days after the flame cutting of the NM450
steel plate. Cracks were found to originate from an SZ that contained multiple high-
hardness segregation bands.

• The tensile strength of the NM450 steel in the SZ was higher than that in the NSZ,
but the total elongation and reduction of area in the SZ were relatively low. The
tensile fracture surface of the specimens was characterized by ductile dimples, tear
ridges, a few quasi-cleavage surfaces and secondary cracks. A higher percentage of
quasi-cleavage and secondary cracks were found in the fracture surface of the SZ
specimen compared to the NSZ specimen.

• Regular-shaped TiN inclusions with high hardness and poor deformability were
more harmful than circular and deformable CaO·(Al2O3)x inclusions. The latter was
observed to cause a deep ductile dimple, while the former initiated a brittle quasi-
cleavage fracture. The size and number of TiN inclusions in the SZ were relatively
greater than those in the NSZ, which induced more quasi-cleavage fractures. This
was also why the total fracture elongation and reduction of area in SZ were less than
those in the NSZ. The dislocation density in the SZ was higher than that in the NSZ,
increasing the hardness and strength of the SZ, which initiated the delayed cracking.
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