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Abstract: Additive-manufactured metals have a low fatigue limit due to the defects formed during
the manufacturing process. Surface defects, in particular, considerably degrade the fatigue limit. In
order to expand the application range of additive-manufactured metals, it is necessary to improve the
fatigue limit and render the surface defects harmless. This study aims to investigate the effect of laser
peening (LP) on the fatigue strength of additive-manufactured maraging steel with crack-like surface
defects. Semicircular surface slits with depths of 0.2 and 0.6 mm are introduced on the specimen
surface, and plane bending-fatigue tests are performed. On LP application, compressive residual
stress is introduced from the specimen surface to a depth of 0.7 mm and the fatigue limit increases by
114%. In a specimen with a 0.2 mm deep slit, LP results in a high-fatigue-limit equivalent to that of a
smooth specimen. Therefore, a semicircular slit with a depth of 0.2 mm can be rendered harmless by
LP in terms of the fatigue limit. The defect size of a 0.2 mm deep semicircular slit is greater than that
of the largest defect induced by additive manufacturing (AM). Thus, the LP process can contribute
to improving the reliability of additive-manufactured metals. Compressive residual stress is the
dominant factor in improving fatigue strength and rendering surface defects harmless. Moreover,
the trend of the defect size that can be rendered harmless, estimated based on fracture mechanics, is
consistent with the experimental results.

Keywords: additive manufacturing; maraging steel; laser peening; compressive residual stress;
surface defect; fatigue limit

1. Introduction

As additive manufacturing (AM) technology can produce parts with complex shapes
that cannot be realized through conventional machining, it is expected to play an active
role in production, from various perspectives. For example, it can simplify the manufac-
turing process, and reduce product weight, lead time, and cost. The two main metal AM
technologies are powder bed fusion (PBF) and directed energy deposition (DED). In PBF, a
heat source is irradiated on the required part of a powder bed filled with raw powder. The
powder is melted and fused with the underlying layer by repeating the process to form
the desired product [1–3]. PBF has two classifications according to the type of heat source:
selective laser melting (SLM) using lasers, and electron beam melting (EBM) using electron
beams. In DED, an energy beam, such as a laser or electron beam, irradiates and melts the
base material, or both the base material and the supplied material, to build a modeling
object. Although the surface roughness is inferior to that of PBF, DED has advantages over
PBF: the material only needs to be supplied to the required area, the build speed is high
owing to the large layer thickness, and it is suitable for building large components [4]. Due
to the SLM method being used extensively, owing to its high accuracy, we focused on SLM
in this study as well. However, because of gas contamination in the equipment and poor
melting of the material powder, the AM process creates easily formed defects on the surface
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and within the material. Furthermore, fatigue cracks are generated from the defects due to
cyclic loading, degrading the fatigue strength [5–10]. In maraging steel, the fatigue strength
of AM specimens is reported to be approximately one-third that of forged specimens [11].
As fatigue strength immensely influences equipment durability, it is necessary to improve
fatigue strength to increase the reliability of manufactured products, and further expand
the range of application.

Various methods have been proposed to improve the fatigue strength of additive-
manufactured materials; typical examples include hot isostatic pressing (HIP) and shot
peening (SP). HIP improves fatigue strength by reducing the internal defect size in additive-
manufactured components, by applying high pressure in a high-temperature environment.
It has been confirmed that the fatigue strength of additive-manufactured Ti-6Al-4V is
improved by HIP [12,13]. On the other hand, when HIP treatment is applied to additive-
manufactured 316 L stainless steel, the fatigue strength decreases because of the grain
growth caused by heating during HIP [14]. In SP, the surface is deformed plastically
by striking the material with small steel balls to increase the hardness and introduce
compressive residual stress, which enhances the fatigue strength. This method is effective
in improving the fatigue strength of several AM materials, such as aluminum alloys [15,16]
and maraging steel [17,18]. However, as the layer of compressive residual stress due to SP
is shallow, the fatigue limit may not be improved in additive-manufactured metals that
include defects within as well as on the surface.

Recently, it has been demonstrated that the fatigue strength of conventional metals can
be improved by laser peening (LP); this is a surface modification method that introduces
compressive residual stress on the surface layer through the local impact effect of high-
pressure ablation plasma, generated by irradiating a material immersed in water with short
laser pulses [19–21]. As LP induces a considerably deeper layer of compressive residual
stress compared to SP, it is more effective in improving fatigue strength [16]. Furthermore,
LP has high reproducibility because of the stringent control of laser pulses, and can be
applied to components with complex shapes manufactured by the AM process.

Surface defects significantly reduce the fatigue strength of metals. In the case of
additive-manufactured metals, the surface is very rough; if the surface roughness is re-
moved by machining, the internal defects may be exposed on the surface. Therefore, if the
surface defects can be rendered harmless in terms of the fatigue limit through peening, the
reliability of additive-manufactured metals can be improved, which can contribute to the
increased industrial usage of additive-manufactured parts. Surface defects can be rendered
harmless through various types of peening on conventionally manufactured metals [22–25].
Takahashi et al. reported that a semicircular surface defect with a less than 0.2 mm depth
could be rendered harmless by applying SP to spring steel [22]. Fueki et al. clarified that a
semicircular surface defect with a depth of less than 1 mm could be rendered harmless by
applying needle peening to high-tensile steel-welded joints [23]. Takahashi et al. compared
the maximum defect size that can be rendered harmless by SP and cavitation peening
(CP) in 7075 aluminum alloy. The results indicated that semicircular defects with depths
below 0.1 mm and 0.2 mm could be rendered harmless by SP and CP, respectively [24]. In
addition, Takahashi et al. investigated the maximum defect size that could be rendered
harmless by the peening of 7075 aluminum alloys through SP and LP, and determined that
semicircular surface defects with depths below 0.4 mm could be rendered harmless by LP,
which was higher than the depth of 0.1 mm by SP [25]. However, as the effect of LP on the
fatigue strength of additive-manufactured maraging steel has not been studied, the defect
size that can be rendered harmless by LP remains unknown.

To clarify the effect of LP on the fatigue strength and the surface defect size that can
be rendered harmless by LP, bending-fatigue tests are conducted on AM maraging steel,
in this study. The fatigue strength of metals primarily depends on the surface residual
stress, hardness, and surface roughness. Therefore, the changes in these factors after LP
treatment are investigated to elucidate the results of fatigue testing. The defect size that
can be rendered harmless by LP is estimated based on fracture mechanics.
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2. Experiments
2.1. Material and Specimens

Additive-manufactured maraging steel was used as the specimen. Using a 3D printer
(ProX300, 3D Systems), 90 mm (length) × 20 mm (width) × 6 mm (thickness) plates were
first fabricated in the width direction. Table 1 lists the chemical compositions of the raw-
material powders. Solution heat treatment was performed in a salt bath at 820 ◦C for 1 h,
followed by water cooling; the plates were then machined into 4.5 mm thick bending-
fatigue test specimens as shown in Figure 1a. After solution heat treatment, the mechanical
properties included a tensile strength of 1135 MPa, 0.2% proof stress of 920 MPa, and a
Vickers hardness of 364 HV. Figure 1b shows the shape and dimensions of the semicircular
slit introduced in the minimum cross-section of the specimen through electric discharge
machining, to simulate crack-like surface defects. The direction of the semicircular slit is
perpendicular to the longitudinal direction, and the width is 0.04 mm.

Table 1. Chemical composition of maraging steel (wt%).

Ni Co Mo Ti Si Mn C Fe

17–19 9–11 4–6 0.9–1.1 ≤1 ≤1 ≤0.03 Bal.
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Figure 1. Shapes and dimensions of (a) the bending-fatigue test specimen and (b) the semicircular slit.

Figure 2 depicts the flowchart of the machining process of the bending-fatigue test
specimens and the types of specimens used in the fatigue tests. The specimens were
categorized into four groups: untreated smooth specimens (Smooth), LP-treated smooth
specimens (Smooth + LP), specimens with a semicircular slit (Slit), and specimens with a
semicircular slit after LP treatment (LP + Slit).
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Specimens with semicircular slit depths a = 0.2 and 0.6 mm are referred to as the 0.2 Slit
and 0.6 Slit specimens, respectively. In the LP + Slit specimen, the semicircular slit was
introduced after LP to avoid peening within the slit.

2.2. LP Conditions

Figure 3a shows the setup of the LP device. LP was performed on specimens immersed
in water. Coating was not applied on the specimen surface. The second harmonic of the
Q-switched Nd: YAG laser was used for LP on both sides of the specimen. Figure 3b
shows the laser tracking during LP. The laser beam was irradiated on the specimen in the
y-direction (width), followed by the x-direction (longitudinal), in a layer. Table 2 lists the
applied LP conditions. The main parameters of LP include the laser pulse energy (Ep), laser
spot diameter (D), and laser pulse density (Np). The power density (G) and coverage (Cv)
were calculated using these values and the pulse duration (t) [26].
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Table 2. Laser peening conditions.

Spot diameter, D 0.45 mm

Pulse duration, t 7.3 ns

Pulse energy, Ep 50 mJ

Irradiation density, Np 144 pulse/mm2

Power density, G 4.31 GW/cm2

Coverage, Cv 2290%
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2.3. Measurement of the Surface Roughness, Residual Stress, and Vickers Hardness

The arithmetic mean of roughness Ra was measured in the longitudinal direction of the
specimen using a stylus-type roughness measuring machine (SE1200, Kosaka Laboratory
Ltd., Tokyo, Japan ). The measured length was 4 mm, and the average value of three
measurements was compared.

The cosα method was employed to measure the residual stress using an X-ray residual
stress analyzer (µ-X360, Pulstec Industrial Co. Ltd., Shizuoka, Japan). Table 3 details
the residual stress measurement conditions. The residual-stress distribution in the depth
direction was obtained by alternately measuring the surface residual stress and removing the
surface layer by electropolishing. As stress redistribution occurred after the removal of the
surface layer, a stress correction calculation [27] was performed for each measured result.

Table 3. Residual-stress measurement conditions.

Method cosα

Tube bulb Cr

Measurement surface (2.1.1) plane

Collimator diameter Φ1.0 mm

Voltage value 30 kV

Current value 1.0 mA

The Vickers hardness was measured using a micro Vickers hardness tester (HMV-G,
Shimadzu Co., Kyoto, Japan) under a holding time of 15 s and a load of 9.8 N. The average
value of three measurements was used.

2.4. Fatigue Testing

Fatigue testing was performed using a plane bending-fatigue test machine (PBF-60Xa,
Tokyo Koki Co. Ltd., Tokyo, Japan) under a stress ratio of R = 0 and a frequency of 20 Hz.
The fatigue limit ∆σw was defined as the maximum stress range at which the specimen could
withstand 107 cycles of cyclic loading. The fatigue strengths of most steels are determined
at 107 cycles. Therefore, the maximum number of loading cycles was set to 107 cycles in this
study. After fatigue testing, the fracture surfaces of the specimens were observed through
scanning electron microscopy (SEM; VE-8800, Keyence Ltd., Osaka, Japan).

3. Results
3.1. Surface Roughness, Residual Stress, and Vickers Hardness

The measured values of Ra were 0.30 µm and 1.41 µm for the non-LP and LP specimens,
respectively. The increase in the surface roughness after LP may be attributed to the
formation of ablation marks, due to the application of LP without coating.

Figure 4 displays the residual stress distribution for each specimen. Compressive
residual stress of 350 MPa is introduced on the surfaces of the non-LP specimens through
machining, as depicted by the solid circles in the figure. As the residual stress approaches
zero at a very shallow point for the non-LP specimen, its influence on the fatigue strength is
considered to be less. For the LP-treated specimen, the surface compressive residual stress
is 1060 MPa, as indicated by the solid squares. The maximum compressive residual stress
is 1150 MPa, measured at a depth of 0.02 mm. The point where the residual stress changes
from compression to tension, referred to as the crossing point, is 0.7 mm from the surface.

Figure 5 shows the Vickers hardness distribution measured at the cross-section of each
specimen. The hardness of the LP-treated specimens increases from the surface to a depth
of 1 mm, compared to that of the non-LP specimens. The maximum Vickers hardness was
observed at a depth of 0.3 mm; this is due to the work hardening caused by LP.
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3.2. Fatigue Test Results

The S–N diagrams of the fatigue tests are displayed in Figure 6; the asterisks indicate
the specimens in which the fatigue crack initiation point is within the specimen, and the
arrows indicate the specimens that endured cyclic stress of 107 cycles. The fatigue limit
∆σw in this study is defined as the maximum stress range that can withstand 107 cycles
of cyclic loading, as stated in Section 2.4. The increase in the fatigue life due to LP is
confirmed regardless of the size of the slit. Figure 7 shows the relationship between the
fatigue limit and slit depth; the fatigue limit of the 0.2 Slit and 0.6 Slit specimens are 39%
and 48% less, respectively, than that of the smooth specimen. The fatigue limits tend to
decrease with an increase in the slit size. The fatigue limit of the Smooth + LP specimen is
43% more than that of the smooth specimen. In addition, the fatigue limit of the LP + 0.2
Slit specimen is improved by 114%, whereas there is no increase in the fatigue limit of the
LP + 0.6 Slit specimen. Only 100 MPa of compressive residual stress was introduced at a
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depth of 0.6 mm, as shown in Figure 4. Thus, the value of compressive residual stress was
insufficient for the size of the slit in the the LP + 0.6 Slit specimen.
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3.3. Fracture Surface Observation Results

Figure 8 shows the fracture surfaces of the Smooth and Smooth + LP specimens.
Fatigue crack initiation sites are observed on the surface of the Smooth specimen and
subsurface of the Smooth + LP specimen. In eight of the nine Smooth and Smooth + LP
specimens, fatigue cracks initiate from the defects that occur during the AM process. The
parameter

√
area, defined as the square root of the area of the defect projected onto a

plane perpendicular to the maximum principal stress, ranges from 37 µm to 170 µm. This
parameter can be used to evaluate the effect of various defects, such as notches, cracks, and
nonmetallic inclusions, on the fatigue limit [28].
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Figures 9 and 10 depict the fracture surfaces of the 0.2 Slit, LP + 0.2 Slit, 0.6 Slit, and
LP + 0.6 Slit specimens, respectively. For the slit specimens, the fatigue crack initiation sites
are identified at the slits (Figures 9a and 10a). The fatigue cracks initiate uniformly at the
front of the semicircular slit and propagate along a semicircular trajectory. The fatigue
cracks initiate at the slits for the LP + 0.6 Slit specimens as well; however, the fatigue
cracks initiate from the deepest point of the slit and propagate along a complicated path
(Figure 10b). A similar crack path was observed when an aluminum alloy with a surface
slit was subjected to LP [25]. The increased fatigue life of the LP + 0.6 Slit specimen can be
attributed to this crack propagation path, owing to compressive residual stress. In contrast,
two among the three LP + 0.2 Slit specimens are fractured outside the slit (Figure 9b). These
fatigue cracks initiate from the defects caused by AM, similar to those identified in the
Smooth and Smooth + LP specimens.

Metals 2022, 11, x FOR PEER REVIEW 10 of 15 
 

 

Figures 9 and 10 depict the fracture surfaces of the 0.2 Slit, LP + 0.2 Slit, 0.6 Slit, and 

LP + 0.6 Slit specimens, respectively. For the slit specimens, the fatigue crack initiation 

sites are identified at the slits (Figures 9a and 10a). The fatigue cracks initiate uniformly at 

the front of the semicircular slit and propagate along a semicircular trajectory. The fatigue 

cracks initiate at the slits for the LP + 0.6 Slit specimens as well; however, the fatigue cracks 

initiate from the deepest point of the slit and propagate along a complicated path (Figure 

10b). A similar crack path was observed when an aluminum alloy with a surface slit was 

subjected to LP [25]. The increased fatigue life of the LP + 0.6 Slit specimen can be at-

tributed to this crack propagation path, owing to compressive residual stress. In contrast, 

two among the three LP + 0.2 Slit specimens are fractured outside the slit (Figure 9b). 

These fatigue cracks initiate from the defects caused by AM, similar to those identified in 

the Smooth and Smooth + LP specimens. 

 

Figure 9. Fracture surface of the (a) 0.2 Slit and (b) LP + 0.2 Slit specimen. 

To investigate the influence of cyclic loading on the stability of the compressive re-

sidual stress, the residual stress distribution in the Smooth + LP specimen was measured 

after fatigue testing at the fatigue limit (depicted by the open squares in Figure 4). The 

compressive residual stress is redistributed by cyclic loading and decreases to 990 MPa 

on the surface after the test. Furthermore, the maximum compressive residual stress de-

creases to 1000 MPa and the crossing point shifts from 0.70 mm to 0.45 mm. As shown in 

Figures 8–10, the fatigue crack initiation point is located deeper than the crossing point in 

most of the specimens. This behavior is due to compressive residual stress. 

Figure 9. Fracture surface of the (a) 0.2 Slit and (b) LP + 0.2 Slit specimen.

To investigate the influence of cyclic loading on the stability of the compressive
residual stress, the residual stress distribution in the Smooth + LP specimen was measured
after fatigue testing at the fatigue limit (depicted by the open squares in Figure 4). The
compressive residual stress is redistributed by cyclic loading and decreases to 990 MPa
on the surface after the test. Furthermore, the maximum compressive residual stress
decreases to 1000 MPa and the crossing point shifts from 0.70 mm to 0.45 mm. As shown in
Figures 8–10, the fatigue crack initiation point is located deeper than the crossing point in
most of the specimens. This behavior is due to compressive residual stress.
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3.4. Defect Size That Can Be Rendered Harmless by LP in Terms of the Fatigue Limit

In this study, it was determined that the slit was rendered harmless if the fatigue test
results satisfied either of the following two conditions based on a previous study [29]:

(a) The fatigue limit of the LP + Slit specimen increases to more than 90% of that of the
Smooth + LP specimen.

(b) In more than half the LP + Slit specimens, fracture occurs outside the slit.

As shown in Figure 7, the fatigue limit of the LP + 0.2 Slit specimen increases to 91%
of that of the Smooth + LP specimen, and two among the three specimens are fractured
outside the slit. Thus, both conditions (a) and (b) are satisfied for the LP + 0.2 Slit. However,
neither condition is satisfied for the LP + 0.6 Slit specimen. These results indicate that less
than 0.2 mm deep semicircular slits can be rendered harmless by LP.

The
√

area value (251 µm) of the semicircular slit with a = 0.2 mm, rendered harmless
by LP, is greater than that of the maximum subsurface defect observed at the initiation point
of the fatigue crack (

√
area = 170 µm). Therefore, it can be postulated that large defects

generated near the surface during the AM process can be rendered harmless by LP.

4. Discussion
4.1. Main Factors Contributing to Fatigue Strength Improvement by LP

As shown in Figures 8b and 9b, for the LP specimen, fatigue crack initiation near
the surface is suppressed by compressive residual stress, improving the fatigue limit, and
rendering the defect harmless. In addition, the increase in surface hardness shown in
Figure 5 contributes to fatigue strength improvement. The increase in surface roughness
shown in Section 3.1 can generally be a factor in lowering the fatigue limit. However,
surface roughness does not affect the fatigue strength of LP specimens because crack
initiation from the surface is suppressed.

Masaki et al. reported that when AM maraging steel was subjected to the SP, com-
pressive residual stress was introduced up to a depth of 0.4 mm and the fatigue life was
increased, but the fatigue limit was not enhanced [17]. Croccolo et al. reported that the
fatigue limit was improved by 19% after SP [18]. The fatigue limit improvement of 43%
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by LP in this study is considerably higher than both these results. This difference in the
improvement of the fatigue limit through LP may be due to the difference in the amount
and depth of the compressive residual stress introduced by LP, which is larger and deeper
in this study compared to those introduced by SP [17]. This compressive residual stress
suppresses crack growth, improving the fatigue limit significantly.

4.2. Evaluation of the Defect Size Rendered Harmless by LP Based on Fracture Mechanics

The defect size that can be rendered harmless by LP was evaluated based on the
fracture mechanics, assuming that the semicircular slit was equivalent to a semicircular
crack. It was assumed that the positive value of the stress intensity factor ∆KT contributed
to fatigue crack propagation. ∆KT can be calculated using the following equation [22,24]:

∆KT = Kmax + KR (1)

where Kmax is the stress intensity factor at maximum loading and KR is the stress intensity
factor due to residual stress. When evaluating Kmax using the Newman—Raju equation [30],
the fatigue limit of the Smooth + LP specimen (σmax = 660 MPa) was considered as the
maximum applied stress. For caluculating the value of KR, API RP579 [31] equations were
used. To calculate KR, the residual stress distribution after the fatigue test of the Smooth +
LP specimen (Figure 4) was fitted using the fourth-order equation.

Figure 11 displays the relationship between ∆KT and the crack depth for a semicircular
crack. ∆KT,A and ∆KT,C correspond to ∆KT at the deepest and surface points of the
semicircular crack, respectively. As the sizes of the cracks in this study were small, the
threshold stress intensity factor range ∆Kth was dependent on the crack size.
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Various equations have been proposed for the dependence of ∆Kth on the crack size.
In this study, we used the equation proposed by El Haddad et al. to calculate ∆Kth [32,33]:

∆Kth = ∆K(L)th∆
√

a
a + a0

(2)

a0 =
1
π

(
∆K(L)th

∆σw0

)2

, (3)

where ∆σw0 is the stress range at the fatigue limit of the Smooth specimen (∆σw0 = 460 MPa).
∆K(L)th is the threshold stress intensity factor range for a large crack, and is obtained based
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on the relationship between the tensile stress σ,
√

area, and the maximum stress intensity
factor KI,max for a surface crack, presented by Murakami [34]:

KI,max = 0.65σ

√
π
√

area. (4)

For evaluating ∆K(L)th, KI,max in Equation (4) becomes ∆K(L)th and σ is equal to ∆σw.
Thereby, Equation (4) is transformed to Equation (5) [35]:

∆K(L)th = 0.65∆σw

√
π
√

area (5)

In Equation (5), we applied the fatigue limit ∆σw = 240 MPa for slit depth a = 0.6 mm,
and calculated ∆K(L)th as 7.58 MPa

√
m.

Assuming that the semicircular slit is equivalent to a semicircular crack, it is possible
to evaluate whether the semicircular slit can be rendered harmless based on the relationship
between ∆KT and ∆Kth. If ∆KT is less than ∆Kth, the slit is considered harmless. Therefore,
the maximum defect size amax that can be rendered harmless is estimated from the inter-
section of ∆KT and ∆Kth. Figure 11 shows that the value of amax is 0.44 mm. This result
is consistent with the experimental result that a semicircular slit with a = 0.2 mm can be
rendered harmless by LP, whereas a surface defect with a = 0.6 mm cannot. This suggests
that even if a surface defect of the same size as amax exists, the defect can be rendered
harmless in terms of the fatigue limit.

5. Conclusions

In this study, the effects of LP on the fatigue strength and the surface defect size that
can be rendered harmless by LP in additive-manufactured maraging steel were investigated.
The obtained results are as follows:

1. The maximum compressive residual stress of 1150 MPa is introduced by LP. The
crossing point is at a 0.7 mm depth from the surface.

2. The fatigue limit of a smooth specimen without a slit was increased by 43% through
LP.

3. The fatigue limit of a specimen with a 0.2 mm deep semicircular slit was improved
by 114% through LP. Most of the specimens fractured outside the slit. Therefore,
semicircular surface slits with a less than 0.2 mm depth can be rendered harmless in
terms of the fatigue limit.

4. The corresponding size of
√

area for a 0.2 mm deep semicircular slit was 251 µm,
which was greater than the maximum value of the defect (

√
area = 170 µm) caused by

AM, observed at the crack initiation point.
5. For the semicircular slit with a depth of 0.6 mm, LP did not improve the fatigue limit

nor render the defect harmless, but increased the fatigue life.
6. The main factor that contributes to improving the fatigue strength and rendering sur-

face defects harmless is the compressive residual stress induced by the application of
LP. Thus, LP is effective in improving the reliability of additive-manufactured metals.
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Nomenclature

AM additive manufacturing
LP laser peening
a depth of the slit
amax maximum slit size rendered harmless by peening
a0 intrinsic defect size
Cv coverage of laser peeing
∆σ stress range (twice the stress amplitude)
∆σw fatigue limit
∆σw0 fatigue limit of the smooth specimen
∆KT positive value of the stress intensity factor
∆KT,A ∆KT at the deepest point of the crack
∆KT,C ∆KT at the surface of the crack
∆Kth threshold stress intensity factor range
∆K(L)th threshold stress intensity factor range for a large crack
D spot diameter of the laser
Ep pulse energy
G power density
HV Vickers hardness
KI,max maximum stress intensity factor for a surface crack
Kmin minimum stress intensity factor
Kmax maximum stress intensity factor
KR stress intensity factor by the residual stress
Nf number of cycles to failure
Np irradiation density
R stress ratio
Ra arithmetic mean of the roughness
σ tensile stress
σmax maximum applied stress
t pulse duration√

area square root of the area projected in the direction of the principal stress
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