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Abstract: High-pressure die casting (HPDC) can produce precise geometries in a highly productive
manner. In this paper, the failure location and cycles were identified by analyzing the fatigue behavior
of the die subjected to repeated thermal stress. An energy-based semi-empirical fatigue life prediction
model was developed to handle the complex stress history. The proposed model utilizing mean
stress, amplitudes of stress, and strain was calculated by one-way coupling numerical analysis of
computational fluid dynamics (CFD) and finite element analysis (FEA). CFD temperature results of
the die differed from the measured results by 2.19%. The maximum stress distribution obtained from
FEA was consistent with the actual fracture location, demonstrating the reliability of the analytical
model with a 2.27% average deviation between the experimental and simulation results. Furthermore,
the model showed an excellent correlation coefficient of R2 = 97.6%, and its accuracy was verified by
comparing the calculated fatigue life to the actual die breakage results with an error of 20.6%. As a
result, the proposed model is practical and can be adopted to estimate the fatigue life of hot work
tool steels for various stress and temperature conditions.

Keywords: fatigue life prediction; hot work tool steel; high-pressure die casting; computational fluid
dynamics; finite element analysis; thermal stress

1. Introduction

High-pressure die casting (HPDC) is a process wherein molten metal is injected inside
the mold cavity at high speed and pressure conditions. This process has been widely
utilized in the aerospace and automotive industries for its high productivity, product
strength, corrosion resistance, and precise dimensional accuracy [1–3]. During HPDC,
processes such as filling the chamber, solidifying, opening and closing, product removal,
and spraying occur continuously [4]. Meanwhile, the die replacement procedure takes
considerable time and increases production costs [5]. The reason is that the HPDC die
manufacturing process requires high energy and many workforces due to being made of
high-strength H13 hot work tool steel [6].

Therefore, thermal fatigue life prediction is essential to determine the replacement time of
the die. Cumulative fatigue damage caused by thermal contraction and expansion of thermal
stresses has a vital influence on die destruction. The thermal stress is caused by the uneven
temperature distribution of the die due to an injection of high-temperature molten metal,
product detachment, and repeated fast cooling via low-temperature coolant [7,8]. In particular,
increased heat transfer due to the coolant flow channel reduces the process time by promot-
ing rapid cooling; however, the temperature difference in the die rises, which is fatal to the
thermal fatigue fracture [9]. The pressure and the temperature for evaluating the thermal
stress can be accurately tracked by employing load cells and thermocouples. Additionally,
the molten metal flow remains constant for each cycle, causing the temperature field to
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converge [10,11]. Therefore, it is unnecessary to analyze the thermal stress at every HPDC
cycle [12,13].

Many studies have confirmed the temperature effect on thermal fatigue behavior
through experiments or numerical analysis [14–20]. Wei et al. [21] suggested a methodology
for considering thermal stress within Abaqus software by employing a simplified die casting
model. In addition, Klobčar et al. [15] evaluated the strength of the die material against
thermal stress through experiments in which the die specimen was repeatedly immersed
in water and aluminum molten metal. Meanwhile, the studies mentioned above have
limitations arising from their difficulty in simulating the actual HPDC and its complicated
experiments confined to a specimen.

Concerning fatigue analysis, typical conventional models have been suggested by
Goodman [22], Smith–Watson–Topper (SWT) [23], Walker [24], and Coffin–Manson [25,26].
These models have been introduced to predict the fatigue life of materials via maximum
and minimum stress or strain. Meanwhile, the Rainflow counting method, which con-
verts various loading sequences into constant stress amplitude, has also been proposed
by Matsuishi and Endo [27]. Nevertheless, stress or strain history under the operating
environment of products is highly complex, making it challenging to apply these fatigue
life prediction models.

For this reason, many studies have been conducted to describe fatigue behavior in
complex stress states by adopting various methods [28–35]. For instance, Choi et al. [29]
proposed a semi-empirical model based on the specimen angles and strain amplitude,
representing the nonlinear anisotropic behavior. Meanwhile, Lu et al. [16] developed a
thermal fatigue model by utilizing the relationship between the thermal plastic strain and
the temperature change. The temperature change is the difference between the initial and
final temperature in the thermal fatigue test of the simple plate and dies insert samples.
The proposed model was improved using the temperature at the point where the plastic
strain was rapidly induced.

As summarized so far, the fatigue behavior of the die material can be described through
a semi-empirical fatigue life prediction model. Various attempts have been made to predict
the fatigue life of the die casting die in consideration of thermal stress via the temperature
difference term and experimental results [16,36–38]. However, there appear to be no
prior studies that predict fatigue life of the die under constantly changing thermal stress
and complex stress states by utilizing the relationship between maximum and minimum
average stress–strain. In addition, many studies have been conducted to attempt thermal
and structural analysis individually; still, the successful development of one-way coupled
numerical analysis has yet to be achieved.

For these reasons, a thermofluid analysis model was developed considering the tem-
perature change in the die in the actual HPDC process. The simulation was conducted for
20 repeated cycles to obtain a converged periodic temperature field throughout all compu-
tational domains. Furthermore, a one-way co-simulation of structural analysis was carried
out based on the temperature result of computational fluid dynamics (CFD). Thermal
stress–strain of finite element analysis (FEA) was evaluated utilizing the quasi-steady-state
assumption based on the instantaneous temperature distribution.

For determining the temperature effects on the AISI H13 hot work tool steel, the flow
stress model and temperature-dependent coefficients were chosen and adopted for the
numerical simulations. The Johnson–Cook flow stress model, comprising the mechanical
and thermal properties, was selected to define a relationship between thermal strain and
temperature [39–42]. The model parameters were determined using the tensile experiment
results at different experimental temperatures and employed in an FEA model. The low-
cycle fatigue life simulation results were verified by comparing to the experimental results,
which show good agreement with the actual crack positions.

In addition, fatigue tests were performed with various stress and temperature con-
ditions to predict the fatigue life of the HPDC die. As a result, a semi-empirical model
enabling the prediction of the fatigue failure life under exposure to thermal stress was
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proposed based on simulation and experimental results. The proposed model is a strain–
stress-based energy function in a power-law form. The energy function was calculated
utilizing the maximum and minimum stress–strain obtained from the die, and the fa-
tigue life can be predicted without stress–strain change history. Moreover, by conducting
three case studies with different coolant passages, the best design capable of improving
the fatigue life of the die was evaluated. As the results of this research, designers can
predict vulnerabilities in advance and compare the fatigue life considering the effect of
thermal stress.

2. Materials and Methods

The fatigue life prediction of the die subjected to thermal stress at various tempera-
tures was performed through the procedure shown in Figure 1. First, static and fatigue
experiments were carried out utilizing machined uniaxial and notch specimens to appraise
the mechanical properties under various load conditions. Additionally, the temperature
and pressure on the dies were measured with a thermocouple and load cell. Arduino Uno
collects the measurement data every 0.31 s.
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Secondly, the material coefficients adopted for numerical analysis were determined
by the stress–strain curves obtained from the tensile tests. Furthermore, the boundary
conditions of one-way coupled numerical analysis combining CFD and FEA were defined
using measured temperature and pressure data. The thermal stress could be accurately
evaluated through the developed simulation by mapping the temperature distribution
to structural analysis. Finally, the semi-empirical model utilizing energy function was
developed by assessing the effects of thermal stress. The strain and stress values in the
hysteresis loop of each fatigue test condition were extracted from the FEA results. The
acquired values were used as input to the semi-empirical model, allowing prediction of the
fatigue life.

2.1. Materials and Experimental Methods

Heat-treated AISI H13 was selected as a die material for the HPDC process. Table 1
shows the chemical composition of heat-treated AISI H13, and the physical and thermal
properties are reported in Table 2. In addition, uniaxial tensile and fatigue tests were
conducted to characterize static and fatigue behavior. The dimensions of the tensile and
fatigue specimens were determined considering the ASTM E8 and E466 standards and the
grip part of the test equipment, thereby facilitating specimen production. The ASTM E8
standard has a gauge length equivalent to four times the diameter of the central region
for small round bar specimens. Therefore, the center diameter was set to 5 mm, and the
gauge length was set to 20 mm following the standard. In addition, depending on the
ASTM 466, the grip part diameter was defined as 12 mm, 1.5 times or more than the center
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diameter. The fillet radius was set to be 30 mm, smaller than the proposed standard of
40 mm, in consideration of the short fixed part of the experimental equipment [43,44]. The
specimens were machined in three different shapes: uniaxial and two types of notched
shapes. The experiments were carried out at temperatures of 20, 300, and 500 ◦C using an
MTS Landmark servo-hydraulic test system at 50% relative humidity. The dimensions of
the specimens and the testing machine can be seen in Figure 2.

Table 1. The chemical composition of AISI H13 hot work tool steel (wt%).

Cr Mo Si V C Ni Cu Mn P S

4.7–5.5 1.1–1.8 0.8–1.2 0.8–1.2 0.3–0.5 0.3 0.25 0.2–0.5 0.03 0.03

Table 2. The physical and thermal properties of AISI H13 hot work tool steel.

Density (g/cm3)
Specific Heat Capacity

(J/g·◦C)
Thermal Conductivity

(W/m·K)

7.80 0.46 24.3
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setting for static and fatigue tests of MTS Landmark servo-hydraulic test system.

The uniaxial tensile tests were conducted at 50 mm/min tensile speed to evaluate the
static mechanical properties. The attained stress–strain curves were utilized to determine
Johnson–Cook flow stress model parameters, as described in Section 2.2.2. Furthermore,
the fatigue experiments were set up by a stress ratio (R = 0.05 ) and maximum stress, using
tension–tension loading load-controlled conditions. The stress ratio is the minimum stress
divided by the maximum stress. The fatigue test frequency was 1 Hz, and experiments
were carried out at the same temperatures as used for the static tests.

2.2. Numerical Analysis Methodology

The die is continuously damaged by thermal–mechanical stress due to repeated ther-
mal expansion and contraction in the process cycle. This phenomenon is intensified due
to the temperature difference between the molten metal and the coolant. Therefore, it is
essential to calculate the thermal–mechanical stress field precisely. For these reasons, the
one-way co-simulation of the CFD and the FEA was developed. The procedure for the
proposed one-way co-simulation is summarized in Figure 3.
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First, the temperature distribution of the solid mesh was obtained by CFD. The
temperature data are in the polyhedral centroid mesh because CFD uses a finite volume
method (FVM) solver. For this reason, transient CFD results were interpolated to nodes
by the inverse distance weighted (IDW) method. Next, the storage data in the FVM were
changed to suit the FEA through the sorting algorithm. Afterward, the input files of the
FEA were created by parsing and merging the sorted data. Finally, the thermal stress was
calculated, and the fatigue life of the die could be predicted. Additionally, all procedures
were verified by comparing the simulation results with the actual HPDC process.

2.2.1. Thermofluid Analysis

A three-dimensional CFD with a conjugate heat transfer model was required to analyze
the solid part’s spatial and temporal temperature distribution. This study considered the
effect of the coolant flow on local heat transfer by the passage. The flow inside the coolant
passage was numerically simulated using continuity and momentum equations, as follows:

∂Vi
∂xj

= 0 (1)

∂
(
VjVi

)
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

[
ν

(
∂Vi
∂xj

+
∂Vj

∂xi

)]
(2)

Here xi is the cartesian coordinate, Vi the velocity component, ρ the fluid density,
p the pressure, and ν the kinematic viscosity. The coolant rejects the heat from the sur-
face of the passage by forced convection heat transfer. Since the coolant is liquid and
the average velocity through the path is low, an incompressible flow is assumed. The
gravitational acceleration is ignored because the die part is not large enough to consider
the hydraulic pressure.

The unsteady-state simulation is modeled using appropriate boundary conditions
based on the complete HPDC process. The HPDC occurs in five steps, as shown in Figure 4:
mold filling, the opening of the movable die, part removal, coolant spraying, and closing of
the movable die. The thermal flow analysis boundary conditions were divided according
to the process chain. When the die was opened and sprayed, a convective heat transfer
coefficient of air and coolant was given, and the measured temperature was applied when
in contact with the molten metal. Numerical analysis was conducted without modeling the
spraying tool, assuming homogeneous distribution of the air and coolant. This assumption
was verified by comparing the measured temperature results of the infrared camera to the
simulation temperature.
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Figure 4. Die casting process overview. (a) Movable and fixed die. (b) The one-cycle process chain
of HPDC.

Fatal breakage arises on the distributor of the movable die, where temperature differ-
ences occur significantly. Therefore, the simulation area was selected as a distributor and
a peripheral die. This modeling significantly contributed to the reduction in the analysis
time by excluding the unnecessary area. Temperature and pressure data measured by the
thermocouple and load cell were applied as boundary conditions for the distributor of the
movable die. The numerical analysis domain and the data measurement method are shown
in Figure 5.
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The thermofluid analysis was performed using STAR-CCM+ commercial software,
which was used to obtain periodic temperature history. The simulation was continuously
simulated over 20 cycles to obtain the stabilized temperature field. Convection and con-
duction heat transfer, and adiabatic boundary conditions were defined. Heat transfer
coefficients (100 and 10,000 W/m2·K) were adopted for considering the forced convection
in the blowing and spraying processes for air and coolant, respectively. In addition, heat
transfer analysis was performed through thermal resistance modeling between fluid molten
metal and solid die. The boundary condition between solid and solid was given in the solid
cast state before 480 ◦C. The resistance between fluid and solid was applied in the liquid
cast state at a temperature above that. The heat transfer and thermal resistance coefficient
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according to the temperature are shown in Table 3. The boundary conditions between the
copper plating and the AISI H13 are also granted. All the thermofluid boundary conditions
are summarized in Figure 6.

Table 3. The heat transfer coefficients and the thermal contact resistance considering solid and liquid
cast temperatures.

Temperature (◦C) Heat Transfer Coefficient
(W/m2·K)

Thermal Contact Resistance
(R”) (×10−5/K)

479 400 250
579 17,000 5.88
600 38,000 2.63
620 42,000 2.38
700 42,000 2.38
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2.2.2. Thermostress Analysis

The thermal stress was evaluated by FEA, utilizing the commercial software Abaqus
2019. The difference in the thermal expansion between AISI H13 and copper induces
thermal stress. The linear thermal expansion coefficient αi is selected to acquire the thermal
strain. The thermal strain difference between the current and initial temperatures can
be gained by the increment concept in Abaqus/Standard. The αi of copper and AISI
H13 hot work tool steel material according to temperature were applied to simulate the
temperature-dependent behavior, as shown in Table 4.

∆εth
i = εth

i − εth
init = αi

(
Ti, f i

β

)
(Ti − T0)− αinit(Tinit − T0) (3)

αi ≡
1
L

dL
dT
∼=

εth
i − εth

0
Ti − T0

(4)
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Table 4. The thermal expansion coefficients of copper and AISI H13 hot work tool steel.

Material Temperature (◦C) Thermal Expansion
Coefficient (αi) (×10−6/◦C)

Copper 25 16.0
650 20.0

AISI H13 hot work tool steel

100 10.4
250 11.5
400 12.6
550 13.0

The temperature distributions were interpolated to match the computational points of
FVM and FEM by the IDW method. The distance between the target and nearby points is
calculated and multiplied by the weight function. Interpolated values are obtained utilizing
Java Script. The definition of thermal expansion and IDW are shown in Figure 7.

di(x, xi) =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 (5)

wi(x) =
1

di(x, xi)
p (6)

φ(x) =


N
∑
i

wi(x)φi

N
∑
i

wi(x)
di(x, xi) 6= 0

φi di(x, xi) = 0

(7)
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Figure 7. Definition of thermal expansion and the IDW method. (a) Determining thermal strain
by the incremental concept. (b) Computational points of FVM (left) and FEM (right). (c) Distance
between FVM and FEM points in IDW method.

The interpolated values are stored with the coordinate systems. Next, the data are
sorted, and the coordinate systems are matched to their nodal points using the Matlab
sorting algorithm. Then, the node numbers with temperature data are parsed and merged.
Finally, the modified values are written to Abaqus input. The parsing, combining, and
writing steps are conducted with a Python script.
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Thermal stress–strain values are evaluated using quasi-steady-state assumptions based
on instantaneous temperature distribution. The stress–strain relationship is defined as the
shear stress and the temperature difference:

σij = 2G
[

1
2
(
uij + uji

)
− α∆Tδij

]
+ λukkδij (8)

where σ, G, ui, a, ∆T, and λ refer to, respectively, a stress component, the shear modulus,
the displacement component, the linear thermal expansion coefficient, a temperature
difference, and the Lamé constant. The Johnson–Cook model is selected as the flow stress
model. The Johnson–Cook model is one of the models that can accurately simulate the
temperature-dependent flow stress of a hot work tool steel material.

σ = (A + Bεn)
(

1 + C ln
.
ε
∗)

(1− T∗m) (9)

.
ε
∗ is the dimensionless effective strain rate (

.
ε
∗
=

.
ε/

.
ε0), and T∗m the dimensionless

temperature (T∗m = (T − T0)/(Tmelt − T0)), where T0 is a reference temperature and Tmelt
the melting point. A, B, C, n, and m are Johnson-Cook model parameters. Attained
stress–strain curves of tensile experiments are used to determine the Johnson-Cook model
parameters.

The analysis model has 2,083,878 four-node tetrahedral elements (C3D4). The bottom
surface attached to the rear die has fixed boundary conditions in the x, y, and z directions.
In addition, the surface where each die connected to another is restricted to surface-to-
surface contact constraints. The boundary conditions applied to the thermal stress analysis
are summarized in Figure 8.
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2.3. Fatigue Life Prediction Model

The semi-empirical fatigue life prediction model of AISI H13 die is proposed to manage
the effects of repeated thermal stress. The developed model starts with the Manson–Coffin
strain-based fatigue life model [26].

f (ε) =

(
εp, max − εp, min

)
2

= ∆εp = A
(

N f

)c
(10)
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In the Manson-Coffin model, the fatigue life can be estimated by the total plastic strain
amplitude ∆εp with two material coefficients A and c. Manson-Coffin-Basquin model
appended elastic deformation and linked the relationship to the failure stress.

εa,t = εa,e + εa,p =
σ′f
E

(
2N f

)b
+ ε′f (2Nf)

c (11)

The total strain amplitude εa,t is expressed as the sum of the elastic and the plastic
strain amplitude, εa,e and εa,p, respectively. Furthermore, the elastic strain amplitude
represents true fracture stress σ′f , Young’s modulus E, and the cycles to failure N f . In
addition, the plastic strain amplitude is described as the true fracture strain ε′f and the
failure cycle. Although the Manson-Coffin-Basquin equation has been used in numerous
studies, it has difficulty reflecting the repeated effect of thermal stress.

In addition, when the mean stress in the actual design is included, the material
becomes more vulnerable to fatigue. Substituting this phenomenon to the Basquin model,
the fatigue life decreases when the mean stress increases.

∆εtot

2
≈

(
σ′f − σm

)(
2N f

)b

E
+ ε′f

(
2N f

)c
(12)

It can be seen that the mean stress must be compensated through the strain amplitude
to keep the lifetime the same. When this is summarized from the stress perspective,
Goodman’s rule is derived.

∆σσm

2
≈

∆σ
(

σ′f − σm

)
2σ′f

(13)

This study combines the abovementioned models to develop a model that can consider
the effects of repeated thermal stress and temperature.

f (ε, σ) =

(
εmax − εmin

2ε f

)(
σmax − σmin

2σf

)(
σmax + σmin

2σf

)
=

∆ε · ∆σ · σm

ε f σ2
f︸︷︷︸

material characteristics

= A
(

N f

)c
(14)

The denominators of all terms consist of the uniaxial tensile fracture strain and stress
(ε f and σf ). Subsequently, the denominators of the entire model are determined by material
characteristics. The first term may assess the effects of temperature distribution in the
process. Since the thermal strain depends on the temperature change, the fatigue fracture
can be predicted efficiently without using the temperature term directly. The maximum
and minimum difference in the strain, εmax and εmin, allows the calculation of the die’s
damage at the highest and lowest temperatures. As a result, there is an advantage in that
it is not necessary to evaluate the constantly changing temperature, thus simplifying the
otherwise complex calculation.

The second and third terms consider the von Mises equivalent stress. The second
term involves the impact of thermal stress through the difference between maximum and
minimum stresses (σmax and σmin). In addition, by adding a third term for mean stress,
complex stress states can be considered. A and c are material coefficients calculated in
exponential form based on the fatigue experiments. A model was developed to maximize
the influence of thermal stress by including the stress-related term twice.

3. Results
3.1. Static and Fatigue Mechanical Properties

The load–stroke and the true stress–strain curves relevant for the unnotched and two
types of notched specimens are reported in Figures 9 and 10, respectively. The effects at
three different environmental temperatures (20, 300, and 500 ◦C) can be confirmed. As the
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experiment operating temperature increases, AISI H13 steel significantly reduces yield and
tensile strength. In addition, the different triaxialities caused by the three dimensions of
specimens (R = 0, 1, and 3 mm) changed the fracture displacements. When a material is
subjected to a complex stress state due to increased triaxiality, fracture occurs more quickly,
reducing fracture strain and stress.
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Three repeatability tests were carried out, and the average results were employed.
The Johnson–Cook flow stress model coefficients were determined through the L-BFGS-B
algorithm implemented in the Python script by comparing the load–displacement curves
between the experimental and FEA results, as shown in Table 5.

Table 5. The Johnson–Cook flow stress model parameters of AISI H13 determined by tensile tests.

Parameter A (MPa) B (MPa) C (-) n (-) m (-)

Value 560 5.293 0.031 0.2789 0.1141

Failure cycles from 102 to 105 were considered for all temperatures and triaxiality. The
true stress and strain associated with the unnotched specimens were calculated immedi-
ately. The data of notched specimens could not be obtained directly due to the complex
geometries; hence the stress and strain were gathered through FEA results. All values were
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acquired from the last stabilization cycle. The difference between the selected and fracture
cycle was less than 5% in terms of maximum and minimum displacement. All fatigue test
conditions, fracture cycles, and the energy function values worked out by the proposed
semi-empirical model are presented in Table 6. The developed model constants, A and c,
are equal to 0.05762 and −0.2143, showing high accuracy with the 0.976 correlation factor.
The regression line, calculated by the obtained model parameters, and an energy function
vs. the number of failure cycles are shown in Figure 11.

Table 6. Summary of fatigue experiments on the uniaxial and notched specimens.

Geometry Triaxiality (η) Temp. (◦C) εmax (-) εmin (-) (σvM)max
(MPa)

(σvM)min
(MPa)

Nf
(Cycles)

Energy
Function (-)

Unnotched
specimen 0.333

20
0.013 0.001 1200 60 1373 0.0119
0.010 0.000 1100 55 11,588 0.0074
0.008 0.000 1000 50 47,340 0.0052

300
0.009 0.001 1100 55 1215 0.0123
0.008 0.001 1000 50 8164 0.0087
0.007 0.001 900 45 20,690 0.0064

500
0.009 0.002 1000 50 2340 0.0112
0.008 0.001 950 48 3835 0.0094
0.008 0.001 900 45 10,873 0.0080

Notched
specimen

(R = 3 mm)
0.447

20
0.011 0.001 1200 60 949 0.0139
0.008 0.000 1100 55 4635 0.0086
0.007 0.000 1000 50 33,955 0.0061

300
0.008 0.001 1100 55 787 0.0140
0.007 0.001 1000 50 3308 0.0107
0.006 0.001 900 45 44,955 0.0056

500
0.007 0.002 1000 50 1093 0.0126
0.007 0.001 950 48 2862 0.0106
0.006 0.001 900 45 5580 0.0090

Notched
specimen

(R = 1 mm)
0.538

20
0.009 0.000 1200 60 470 0.0154
0.007 0.000 1100 55 1031 0.0134
0.006 0.000 1000 50 5100 0.0101

300
0.006 0.001 1100 55 413 0.0160
0.005 0.001 1000 50 1990 0.0112
0.005 0.001 900 45 11,980 0.0082

500
0.006 0.001 1000 50 488 0.0150
0.005 0.001 950 48 910 0.0126
0.005 0.001 900 45 3980 0.0106
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3.2. Numerical Analysis Results

The proposed one-way coupled method was used to evaluate the molten metal and
cooling water’s temperature distribution and thermal stress. Verification was performed for
each analysis stage. First, the thermofluid analysis was performed 20 times to consider that
the die was heated due to molten metal from atmospheric temperature. The temperature
convergence results at the die and the outlet of the coolant are shown in Figure 12. After
convergence, the simulation was conducted for one more cycle and utilized for thermal
stress analysis.
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Figure 12. CFD results of the die casting process cycle through time. (a) Temperature convergence at
the thermocouple measurement position in the die. (b) Temperature convergence at the coolant outlet.

The thermal analysis compared the temperature between the infrared camera mea-
surement and the simulation results at the same point of the die. The deviation of the
two measured results was 2.19%, confirming the rationality of the adopted heat transfer
coefficient and boundary conditions (Figure 13). Finally, the verified CFD temperature
calculation results were mapped to FEA. The temperature distribution comparison for the
thermal and structural analyses is shown in Figure 14.
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The thermal strain and stress have been calculated by the FEA model based on the
mapped CFD temperature results. The maximum thermal stress applied to the die was
1003.7 MPa. The structural analysis model was verified by observing the fracture location
of the distributor, which showed the fastest breakage in the die. The location of crack
initiation and the length of the fracture were measured. The highest thermal stress position
and the area with the most notable change in thermal stress were identical to the fracture
location of the distributor. In conclusion, it was confirmed that the actual thermal stress-
induced failure could be predicted through the one-way coupled thermo-structural analysis.
Figure 15 shows the die’s thermal strain–stress distribution and crack locations.
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3.3. Fatigue Life Prediction Based on the Semi-Empirical Model

A distributor with three flow paths was designed to identify the fatigue life due
to different temperature gradients and to ensure the accuracy and wide usability of the
prediction methodology. First, a distributor with a conformal cooling channel (CCC)
that can quickly cool the heat from the molten metal by plating copper was proposed.
In addition, the straight drilled channel (SDC) was applied, consisting of the AISI H13
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material. Finally, a distributor was designed with no copper plating, although it was the
same CCC as the first. The three distributor types are shown in detail in Figure 16.
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fatigue lives were 7940; 37,280; and 51,270 cycles, respectively, as shown in Figure 17. 

Figure 16. Various cooling channel models to validate the fatigue life prediction methodology.
(a) Copper plating conformal cooling channel model (Cu CCC). (b) H13 straight drilled channel
model (SDC). (c) AISI H13 conformal cooling channel model (H13 CCC).

Based on the validated numerical analysis model, the fatigue life of the HPDC die was
estimated using von Mises stress and strain for each distributor design. The maximum and
minimum stress–strain within one process cycle were extracted. The predicted fatigue lives
were 7940; 37,280; and 51,270 cycles, respectively, as shown in Figure 17.
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4. Discussion

Static and cyclic mechanical properties of the AISI H13 hot work tool steel have
been changed significantly depending on the temperature and triaxiality. Notably, as the
temperature increases, the yield strength, and tensile strength decrease. Through this, it
can be found that the damage received by the material is intensified as the temperature
change continues. In addition, the higher the triaxiality, the fracture occurs quicker, making
it difficult to predict the life of a die subjected to complex stress states.

In HPDC, the repeated thermal stress could be described through fatigue tests using
notched specimens, ranging from room temperature (20 ◦C) to the molten metal temper-
ature (500 ◦C). The semi-empirical model coefficient regressed through the experimental
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results showed a high correlation factor in combination with the one-way coupled numeri-
cal analysis technique. The advantage of the proposed methodology lies in the fact that it
does not simplify the actual HPDC process to laboratory scale nor has the need to perform
complex thermal stress experiments.

Unlike commercialized software, which focuses on the defects or the solidification
of products, a one-way coupled thermofluid–structure analysis method with CFD and
FEA is proposed. The CFD analysis model uses two measured temperatures. One is the
temperature collected through a thermocouple in contact with molten metal and utilized
to provide boundary conditions. The other is the temperature measured at the distributor
using an infrared camera, which is adopted to verify the analysis model. As a result of
the verification, the heat transfer coefficient derived through reverse engineering and the
boundary conditions assigned to the analysis model were found to show high reliability.

The FEA model was used to investigate the combined thermal stress state of the test
sample. The Johnson–Cook flow stress model, widely used to demonstrate the effect of tem-
perature on the strain, was adopted to implement the behavior of temperature-dependent
materials in the FEA. As a result of deriving the coefficient from a similar procedure for
determining the model constant using experimental results according to temperature in the
existing literature, the deformation of the material could be well represented. The load–
displacement curves from the structural analysis were compared with the experimental
results. The average deviation of the area integration was 2.27%, indicating good agreement.
The results show that the implemented structural analytical model is reliable. Further, it is
believed that using machine learning models such as artificial neural networks can consider
thermal effects through the database without deriving material coefficients [42].

The die is subjected to a more severe temperature change with the increase in cooling
efficiency. The fatigue life of die designs with three cooling channels was investigated
to verify the presented fatigue life prediction procedure. Out of the three models, the
CCC with copper plating had the highest cooling efficiency but also the lowest fatigue life.
The SDC had lower cooling efficiency because less surface area was in contact with the
die compared to the copper-plated cooling channel; however, the fatigue life increased as
the temperature distribution was maintained uniformly. Despite its lower heat transfer
efficiency, the AISI H13 CCC shows a fatigue life of nearly seven times that of the copper-
plated channel. The results show that if the cooling channel design is solely focused on
lowering the temperature of the die, it can lead to a distinct disadvantage in terms of the
die replacement time.

In addition, the accuracy of the fatigue life prediction model has been confirmed by
comparing the experimental and numerical analysis results of the copper-plated CCC die.
Compared to the fact that actual die fracture occurs at 10,000 cycles on average, there
was an error of about 20%. Given that the fracture occurs under low cycle fatigue, the
proposed fatigue life prediction procedure is highly accurate and can be widely used in
actual die design. Research on cooling channel design parameters that affect thermal stress
by changing the temperature distribution of dies needs to be performed in the future.

5. Concluding Remarks

In this study, the thermally induced fatigue life of the AISI H13 hot work tool steel die
was predicted. In addition, the effect of different cooling efficiency on the life of the HPDC
die was analyzed. The results obtained are as follows:

1. The ultimate tensile strength decreases as the temperature increases, and it is the
highest at 20 ◦C, decreasing by 9.1% at 300 ◦C and 15.5% at 500 ◦C.

2. A one-way coupled thermal–structure analysis model was developed. Compared
with the IR camera measurement, the temperature results obtained from the CFD sim-
ulation varied by only 2.19%, verifying the thermofluid analysis boundary conditions.

3. The locations subjected to maximum thermal stress and thermal stress difference indicated
by the FEA analysis results precisely matched the actual crack positions. In addition, the
average deviation was 2.27%, showing high accuracy of structural analysis.
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4. The energy-based semi-empirical fatigue life prediction model showed high accuracy
with a correlation coefficient of 97.2%, showing high accuracy. In addition, the results
differed by only 20% compared to 10,000 cycles: the low-cycle fatigue fracture of the
copper-plated CCC die.

5. The CCC without copper had 6.46 times longer fatigue life than the copper-plated
CCC, proving that the coolant passage with high cooling efficiency may not be an
optimal die design.

6. The proposed fatigue life prediction methodology allows designers to predict fatigue
life without manufacturing actual dies when designing HPDC dies.
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