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Abstract: The current technology of leaching low-grade scheelite with sodium hydroxide or sodium
carbonate has the disadvantages of large leaching reagent dosage and low leaching efficiency of
tungsten. In order to extract scheelite efficiently, the kinetics of low-grade scheelite leaching with
a mixture of sodium phosphate and sodium fluoride was investigated. In this study, the effects of
temperature, phosphate concentration, and fluoride ion concentration on the leaching rate of tungsten
were investigated. Our results showed that the leaching rate of tungsten was greatly influenced
by the temperature and less affected by the concentration of phosphate and fluorine ions. The
leaching process was controlled by a chemical reaction with an apparent activation energy value
of 51 ± 0.2 kJ/mol. The apparent reaction orders with respect to phosphate and fluorine ions were
0.49 and 0.11, respectively. The reaction product calcium fluorophosphate was a loose, rod-like
crystal, which would not tightly wrap on the surface of scheelite to prevent the diffusion process.
The leaching kinetics of low-grade scheelite was in accordance with the shrinking core model, and
the corresponding kinetic equation was also established.
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1. Introduction

Tungsten, as an important strategic metal, has been widely used in agricultural pro-
duction, industry, and national defense and plays an indispensable, important role in the
field of human economy and production because of its excellent physical, mechanical, and
chemical properties [1,2]. The main economic minerals of tungsten are wolframite and
scheelite. The reserves of scheelite are about two-thirds of the total reserves of tungsten
ore in the world, and the grade of primary scheelite is most below 0.4%. In addition, it has
been found that most of the tungsten ores discovered in recent years are low-grade scheel-
ite through exploration [3–6]. With the gradual depletion of wolframite and high-grade
scheelite concentrates, low-grade scheelite has gradually become the main raw material of
the tungsten industry [7–10].

At present, globally speaking, scheelite is mainly leached with sodium hydroxide or
sodium carbonate. In China, the process of leaching scheelite with sodium hydroxide is
widely adopted [11–13]. However, the reaction equilibrium constant of leaching scheelite
with sodium hydroxide is very small (25 ◦C, K = 2.5 × 10−4), so it is necessary to increase
the concentration of sodium hydroxide to promote scheelite decomposition. For scheelite
concentrates (WO3 > 65 wt%), the dosage of NaOH is generally 2.5~2.8 times the theoretical
amount, while for low-grade scheelite (WO3 < 40 wt%), the leaching efficiency is lower
than 95% even if the dosage of sodium hydroxide is 4 times the theoretical amount [14].
In Western countries, sodium carbonate is widely used to digest scheelite. The reaction
equilibrium constant of leaching scheelite with sodium carbonate is also small (4.26 × 10−1

at 25 ◦C). The leaching efficiency of low-grade scheelite reaches 98% only when the dosage
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of sodium carbonate is as high as 5 times the theoretical amount [15–17]. Therefore, the
current sodium hydroxide or sodium carbonate leaching process is not suitable for treating
low-grade scheelite, due to the disadvantages of the large dosage of leaching reagent and
low leaching efficiency. In recent years, researchers have proposed some new methods
for treating low-grade scheelite. Scheelite was leached with a mixture of sulfuric acid and
phosphoric acid based on the high solubility of phosphotungstic acid and transferred into
the leaching solution in the form of phosphotungstic heteropoly acid. The results of the
leaching kinetics of scheelite with the mixture of phosphoric acid and sulfuric acid showed
that the apparent activation energy of the reaction was 63.8 kJ/mol, and scheelite leaching
was controlled by a chemical reaction [18]. Scheelite leaching with a mixture of hydrochloric
acid and hydrogen peroxide has also been proposed. Tungsten entered the leachate as a
soluble peroxotungstic acid (WO(O2)2(H2O)2). The leaching rate of scheelite was greatly
affected by temperature and less affected by hydrochloric acid concentration [19].

Sodium phosphate is an effective decomposition reagent for scheelite. Hydroxyapatite
(HAP) with a small solubility product is generated by leaching scheelite with sodium phos-
phate in an alkaline solution. The equilibrium constant of the reaction is 1.38 × 1014 at 25 ◦C,
indicating that the efficient decomposition of scheelite can be theoretically achieved under
the conditions of low temperature and low sodium phosphate concentration. However, for
the scheelite concentrate (WO3, 78wt%), the leaching efficiency of tungsten reached 97% in
the actual test when the dosage of NaOH was 1. 6 times the theoretical amount, and the
dosage of Na3PO4 was 1.8 times the theoretical amount at 270 ◦C [20]. The experimental
results did not agree with the thermodynamic analysis results of leaching scheelite with
sodium phosphate. In order to determine the cause of this phenomenon, the kinetics of
leaching scheelite with sodium phosphate was studied. It was found that the reaction
product Ca5(PO4)3OH was very compact and wrapped on the surface of scheelite, which
led to the internal diffusion process as the controlling step of the scheelite leaching reac-
tion. Therefore, it was necessary to strengthen the internal diffusion process by increasing
the sodium phosphate concentration and the temperature, so as to obtain a satisfactory
leaching efficiency of scheelite. For low-grade scheelite, the leaching efficiency decreased
significantly under the same conditions as those of leaching the scheelite concentrate with
sodium phosphate in an alkaline solution. Therefore, a large amount of sodium phos-
phate and a high temperature are also necessary when leaching low-grade scheelite with
sodium phosphate.

In view of the disadvantages of the large dosage of leaching reagent and low leaching
efficiency existing in the current processes for leaching low-grade scheelite with sodium
carbonate or sodium hydroxide or sodium phosphate, it is of great significance to propose
a new method for the effective leaching of low-grade scheelite. Based on the compound
solubility product and chemical reaction equilibrium theory, a new process for leaching
low-grade scheelite with a mixture of sodium phosphate and calcium fluoride is pre-
sented. In the leaching process, the reaction product calcium fluorophosphate with a very
small solubility product is generated (shown as Equation (1)), and low-grade scheelite
can be effectively decomposed under the conditions of low leaching reagent dosage and
low temperature.

9CaWO4(s) + 6Na3PO4(aq) + CaF2(s) = 9Na2WO4(aq) + 2Ca5(PO4)3F(s) (1)

The thermodynamic analysis results showed that the equilibrium constant of the
reaction was as high as 7.71 × 1036, which implied that low-grade scheelite can theoretically
be completely decomposed. Our team studied the leaching of low-grade scheelite and
investigated the effect of process parameters on the leaching efficiency of scheelite [21].
Our experimental results showed that the leaching efficiency of scheelite was 98.6% when
the sodium phosphate stoichiometric ratio was 1.6, the calcium fluoride stoichiometric
ratio was 1.0, and the temperature was 160 ◦C. The extraction of tungsten from a scheelite
concentrate with phosphate and fluoride has been studied [22]. However, unlike scheelite
concentrates, low-grade scheelite contains a large amount of calcite and other associated
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minerals, which will also react with the leaching agent, thus interfering with the leaching
of scheelite. In the leaching process of low-grade scheelite, the reaction product calcium
fluorophosphate was an insoluble solid, which might be wrapped on the surface of the
scheelite and hinder the mass transfer process. Therefore, it is necessary to study the
kinetics of leaching low-grade scheelite, to determine the controlling step of the leaching
process and to provide theoretical guidance for the efficient leaching of low-grade scheelite.

2. Materials and Methods
2.1. Materials and Reagents

The low-grade scheelite used in this study was provided by Ganzhou Haichuang
Tungsten Industry Co., Ltd (Ganzhou, China). The ore was ground by a vibrating mill
(Hengzhong brand, XZM-100) and used for the leaching experiments. The main chemical
composition of low-grade scheelite is shown in Table 1. The X-ray diffraction analysis
(XRD) results in Figure 1 show that the ore is mainly composed of scheelite (CaWO4) and
calcite (CaCO3).

Table 1. Main components of low-grade scheelite.

Element WO3 Sn Mo S Ca Fe Mn P As SiO2

Content wt% 37.52 0.69 0.14 1.13 12.26 1.81 0.34 0.13 0.32 2.31
Relative error % 0.68 1.23 1.41 0.81 0.42 1.72 1.43 1.52 2.11 0.45
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Figure 1. XRD patterns of low-grade scheelite.

The sodium phosphate, sodium hydroxide, and sodium fluoride used in this study
were all analytical-grade reagents produced by Xilong Science Co., Ltd (Chengdu, China).
All the aqueous solutions used in the study were prepared with deionized water.

2.2. Experimental Procedure

During the leaching process of low-grade scheelite, calcium fluoride first dissolved
and released free fluoride ions, which reacted with phosphate ions and scheelite to form
calcium fluorophosphate. To determine the apparent reaction order of these fluoride ions,
it is necessary to maintain a fixed fluoride ion concentration during the leaching process.
Since calcium fluoride is insoluble in water, soluble sodium fluoride was added in place
of calcium fluoride to maintain a fixed fluoride ion concentration. During the process of
leaching low-grade scheelite with the mixture of sodium phosphate and sodium fluoride,
the addition of sodium hydroxide was necessary in order to maintain the alkalinity of
the solution and ensured that phosphorus existed as orthophosphate. In this study, a
certain amount of sodium hydroxide was added to adjust the pH value of the solution to
around 12.
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Briefly, a 400 mL solution with certain concentrations of sodium phosphate, sodium
hydroxide, and sodium fluoride was added to an autoclave (YZPR-250 Intelligent microre-
actor). When the solution was heated to 95 ◦C, 4 g of low-grade scheelite was quickly
added into the autoclave. The time started when the temperature in the autoclave reached
a predetermined value. A large liquid–solid ratio (L/S = 100) was used in the leaching of
low-grade scheelite to keep the leaching agent concentration approximately unchanged
during the leaching process. Briefly, 3 mL of the slurry was removed from the autoclave at
different times, and the WO3 concentration of the leachate was determined to calculate the
leaching efficiency of tungsten. The WO3 concentration of each sample was determined
twice. The thiocyanate colorimetric method was used to determine the concentration of
tungsten using a spectrophotometer. Phosphorus concentration in the solution was deter-
mined using ICP-AES (Intrepid IIXSP). The fluoride ion concentration in the solution was
determined by using a fluoride ion selective electrode. The leaching efficiency of tungsten
X% is defined as:

X% = (CW × V)/MW (2)

where CW represents the concentration of WO3 in the leachate, g/L; V represents the
volume of leachate, L; MW represents the mass of WO3 in low-grade scheelite, g.

3. Results
3.1. Kinetic Model of Leaching Low-Grade Scheelite

The shrinking core model has been widely used to describe the leaching kinetics
of minerals. In the leaching process of low-grade scheelite, the scheelite is gradually
transformed into the reaction product calcium fluorophosphate, which surrounds the
surface of scheelite particles. With the extension of the leaching time, the particle size of the
scheelite is gradually reduced. Therefore, the shrinking core model was used to describe
the leaching kinetics of low-grade scheelite in this study. According to several studies in
the literature [23,24], the kinetic equation of the mineral leaching process can be expressed
as Equation (3).

δα

3D1
+

r0

2Ds
[1 +

2
3

α − (1 − α)
2
3 ] +

1
kr
[1 − (1 − α)

1
3 ] =

cA0

4ρr0
t (3)

where t represents the leaching time (s), α represents the leaching efficiency of tungsten (%),
δ represents the thickness of the liquid film on a solid surface (m), D1 represents the mass
transfer coefficient of ion in the liquid film layer (m/s), Ds represents the mass transfer
coefficient of ion in the solid product layer (m/s), kr represents the chemical reaction rate
constant, ρ represents the molar density of the solid reactant (kmol/m3), cA0 represents
the initial concentration of reactant A (kmol/m3), r0 represents the radius of the low-grade
scheelite particle (m).

When the leaching process is controlled by a chemical reaction, Equation (3) can be
simplified to Equation (4).

1 − (1 − α)
1
3 =

krcA0

4ρr0
t (4)

In comparison, when the leaching process is controlled by diffusion in the solid
product layer, Equation (3) can be simplified to Equation (5).

1 − 2
3

α − (1 − α)
2
3 =

DscA0

4ρr02 t (5)

3.2. Influence of Temperature on the Leaching of Low-Grade Scheelite

The experiments were carried out with the temperature ranging from 100 ◦C to 130 ◦C
for the −75/+58 µm mineral particle size with 0.7 mol/L Na3PO4 and 0.16 mol/L NaF in
the solution, and the results are shown in Figure 2.
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Figure 2. Effect of temperature on the leaching efficiency of tungsten.

It can be seen from Figure 2 that the temperature had a great influence on the leaching
efficiency of scheelite. With the increase in temperature, the leaching efficiency of scheelite
increased sharply. When the temperature was 130 ◦C, low-grade scheelite was completely
decomposed within 150 min. Compared with leaching scheelite with sodium carbonate,
the required temperature was obviously lower for leaching low-grade scheelite using the
new process. Therefore, the decomposition of low-grade scheelite with the mixture of
sodium phosphate and sodium fluoride can be promoted by increasing the temperature.
In order to determine the leaching kinetic equation, the leaching efficiency of WO3 at
different temperatures was substituted into Equations (4) and (5), and the fitting correlation
coefficient results are shown in Figures 3 and 4. It can be clearly observed that the chemical-
reaction-controlled model fitted the experimental data of the leaching kinetics of low-grade
scheelite better than the solid-product-diffusion-controlled model.
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The apparent leaching rate constant k of tungsten at different temperatures can be
determined as the slopes of the straight lines in Figure 3. Based on Equation (6), the
Arrhenius plot of lnk vs. T−1 is shown in Figure 5. The plot of k versus 1/T shows a
favorable linear relationship. The apparent activation energy E of the leaching reaction was
calculated as 51.22 kJ/mol based on the slope of the line. The apparent activation energy E
was considered to be 51 ± 0.2 kJ/mol in consideration of the determination error. Hence,
the leaching reaction of low-grade scheelite was considered to be controlled by a chemical
reaction, since the apparent activation energy was greater than 42 kJ/mol [25].
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k = A0 exp(
−E
RT

) (6)

where A0 is the frequency factor, E is the apparent activation energy (J/mol), R is the
universal gas constant (8.314 J/mol·K), and T is the reaction temperature (K).
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3.3. Influence of Phosphate Concentration on Leaching of Low-Grade Scheelite

The experiments for investigating the influence of phosphate concentration on low-
grade scheelite leaching were carried out with the phosphate concentration ranging from
0.5 mol/L to 0.9 mol/L at a temperature of 110 ◦C, a NaF concentration of 0.16 mol/L, and
a mineral particle size of −75/+58 µm, and the results are shown in Figure 6.

It can be seen from Figure 6 that the increase in phosphate concentration promoted
the leaching efficiency of low-grade scheelite. Compared with the temperature, the ef-
fect of sodium phosphate concentration on the leaching efficiency of tungsten was rela-
tively smaller. The decomposition of low-grade scheelite is less dependent on the sodium
phosphate concentration. This means that the efficient decomposition of scheelite can be
achieved under the condition of a low sodium phosphate dosage. This has two advantages
for low-grade scheelite leaching: On the one hand, a low sodium phosphate dosage reduces
the cost, and on the other hand, the residual phosphorus concentration in the leaching
solution is low, which is conducive to the subsequent phosphorus removal operation. In
order to determine the apparent reaction order with respect to phosphate concentration,
the leaching efficiency of tungsten under different phosphate concentrations is substituted
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into Equation (4), which shows a good linear relationship between 1 − (1 − α)1/3 and t
(Figure 7). In this study, the apparent reaction order for the sodium phosphate concen-
tration was determined to be 0.49 (Figure 8), implying that the dependence of scheelite
leaching on the Na3PO4 concentration is not strong.
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3.4. Influence of Fluoride Ion Concentration on the Leaching of Low-Grade Scheelite

The effects of fluoride ion concentration on the leaching efficiency of scheelite were
investigated with the fluoride ion concentration ranging from 0.05 to 0.5 mol/L at a
temperature of 110 ◦C, a Na3PO4 concentration of 0.7 mol/L, and a mineral particle size of
−75/+58 µm, and the results are shown in Figure 9.
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It can be seen from Figure 9 that the leaching efficiency of scheelite increased with
the increase in fluoride ion concentration. Compared with the temperature, the effect of
fluoride ion concentration on the scheelite leaching efficiency was smaller. This means that
scheelite can be efficiently decomposed at lower fluoride ion concentrations. Therefore, the
addition of a small amount of calcium fluoride was enough for the efficient decomposition
of scheelite. Figure 10 shows a favorable linear relationship between 1 − (1 − α)1/3 and t.
The apparent reaction order with respect to the fluoride ion concentration was determined
to be 0.11 based on the slope of the fitting line in Figure 11, indicating a weak dependence
on the fluoride concentration during the low-grade scheelite leaching process.
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3.5. Influence of Mineral Particle Size on the Leaching of Low-Grade Scheelite

The effect of mineral particle size on the low-grade scheelite leaching was investigated
with a sieved sample in the mixed solution, which contained Na3PO4 0.7 mol/L and NaF
0.16 mol/L at 80 ◦C, and the results are shown in Figure 12.

Metals 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 10. Relationship between 1 − (1 − α)1/3 and t at different fluoride ion concentrations. 

 
Figure 11. Plot of Ink and InCF. 

3.5. Influence of Mineral Particle Size on the Leaching of Low-Grade Scheelite 
The effect of mineral particle size on the low-grade scheelite leaching was investi-

gated with a sieved sample in the mixed solution, which contained Na3PO4 0.7 mol/L 
and NaF 0.16 mol/L at 80 °C, and the results are shown in Figure 12. 

 
Figure 12. Effect of mineral particle size on the leaching efficiency of tungsten. Figure 12. Effect of mineral particle size on the leaching efficiency of tungsten.

As shown in Figure 12, the particle size had a great influence on the tungsten leaching
efficiency. With the decrease in the mineral particle size, the leaching efficiency of tungsten
gradually increased. The experiment data were plotted according to Equation (4), and the
results presented a favorable linear relationship, as shown in Figures 13 and 14. This further
proved that the leaching of low-grade scheelite was controlled by a chemical reaction.
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3.6. Establishment of Kinetic Equation

According to the above results of low-grade leaching kinetic, the kinetic equation can
be expressed as:

1 − (1 − α)
1
3 = A0· exp(

−51222
RT

)·C0.49
Na3PO4

·C0.11
F ·r−1·t (7)

According to Equation (7), all the experimental data were fitted, and the results showed
a good linear relationship, with a correlation coefficient of 0.989. As shown in Figure 15,
the slope of the fitted straight line is 0.032. Therefore, the kinetic equation of leaching
low-grade scheelite can be expressed as:

1 − (1 − α)
1
3 = 3.2 × 10−2· exp(

−51222
RT

)·C0.49
Na3PO4

·C0.11
F ·r−1·t (8)
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3.7. Analysis of Leaching Residue of Low-Grade Scheelite

In order to study the microstructure of the leaching residue and verify the controlling
step of the low-grade scheelite leaching process, the leaching residue was analyzed using
XRD (Figure 16) and SEM (Figure 17). It can be seen that the leaching residue was mainly
composed of unreacted calcite (CaCO3) and the reaction product calcium fluorophosphate
(Ca5(PO4)3F). It can be seen from Figure 17 that the calcium fluorophosphate product was
a rod-like crystal and did not form a dense coating layer on the mineral surface, so the
diffusion process of the leaching reaction was not hindered. The analysis results of the
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leaching residue further confirmed the conclusion that the leaching process of low-grade
scheelite was controlled by a chemical reaction.
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4. Conclusions

In this study, the leaching kinetics of low-grade scheelite with sodium phosphate
and sodium fluoride was investigated. The experiment results showed that the leaching
rate and leaching efficiency of scheelite were greatly affected by the temperature and less
affected by phosphate and fluoride ion concentrations. Therefore, the leaching process of
low-grade scheelite can be effectively strengthened by increasing the temperature. Since the
concentrations of phosphate and fluoride ions have little effect on the leaching efficiency of
scheelite, it is suggested to use lower concentrations of phosphate and fluoride ions to leach
low-grade scheelite. The apparent activation energy E of the leaching low-grade scheelite
reaction was 51 ± 0.2 kJ/mol, and the apparent reaction orders of sodium phosphate and
fluoride ion were 0.49 and 0.11, respectively. The scanning electron microscope (SEM) and
the XRD analysis results of the leaching residue showed that the reaction product was a
loose, rod-like calcium fluorophosphate crystal, which would not hinder the mass diffusion
process. These experimental data are consistent with the shrinking core model, indicating
that the leaching process of low-grade scheelite was controlled by a chemical reaction.
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