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Abstract: Laser beam machining of various materials has found wide applications in the industry
due to its advantages of high-speed machining, no tool wear and no vibration, precision and accuracy,
low cost of machining, etc. Investigations into the laser beam machining of uncommon alloy are still
limited and more research is needed in this field. In this paper, an analysis of the laser beam machining
of tungsten alloy was performed, for cutting and drilling machining processes. First, an experimental
analysis of microhardness and microstructure on the laser-cut samples was performed, and then the
numerical simulation of the laser beam drilling process and its experimental validation was carried
out. The experiments were carried out on a tungsten alloy plate of two different thicknesses, 0.5 and
1 mm. No significant changes in the microhardness, nor in the microstructure characteristics in the
heat-affected zone (HAZ), were observed for the cutting conditions considered. A two-dimensional
axisymmetric mathematical model for the simulation of the laser beam drilling process is solved by a
finite volume method. The model was validated by comparing numerical and experimental results
in terms of the size of HAZ and the size and shape of the drilled hole. Experimental and numerical
results showed that HAZ is larger in the 0.5-mm-thick plate than in the 1-mm-thick plate under the
same drilling conditions. Good agreement was observed between the experimental and numerical
results. The developed model improves the understanding of the physical phenomena of laser beam
machining and allows the optimization of laser and process parameters.

Keywords: laser beam machining; tungsten alloy; microhardness; microstructure; finite volume method

1. Introduction

Laser beam machining can be applied to a wide range of materials, and this process
is a common method in the industry. Laser beam machining offers more advantages
over conventional machining processes due to its high-speed machining, the precision
of operation, no tool wear and no vibration, accuracy, and low cost of machining [1,2].
During laser beam machining, the laser beam focused on the workpiece surface causes
rapid heating of the workpiece material until its melting point. The molten material is then
ejected using an assist gas jet of high pressure. Due to the complexity of the laser beam
machining process, where a number of different physical phenomena are coupled with each
other, modeling and simulation remain a difficult task despite the strong efforts of scientists
in the past [3,4]. The finite element method [5–7], the artificial neural method [8–10], and
fuzzy expert systems [11,12] are common methods used in the modelling and simulation
of many machining processes, including the laser beam machining process.

The laser beam drilling process has gained a great deal of attention for achieving
economic efficiency in the drilling of small holes. An important factor in the modelling and
simulation of the laser drilling process is the fact that material is removed via evaporation
or/and melting, and the position of the boundary conditions consequently changes with
time [13,14]. Ganesh et al. [15] developed a 2D axisymmetric model based on the volume
of fluid approach in order to quantitatively analyze the influence of the fluid flow and

Metals 2022, 12, 1863. https://doi.org/10.3390/met12111863 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12111863
https://doi.org/10.3390/met12111863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0001-6024-067X
https://doi.org/10.3390/met12111863
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12111863?type=check_update&version=1


Metals 2022, 12, 1863 2 of 13

heat transfer in a laser-drilled hole in turbine airfoil material. Cheng et al. [16] developed
a model using the finite difference method in order to predict the size and shape of the
hole in the laser drilling of carbon fiber composites. The study indicated that carbon
fibers in the heat-affected zone (HAZ) around the drilled hole exhibited swelling up to
50% in diameter. Ho and Lu [17] developed a one-dimensional thermal model in order
to predict the erosion of depth in ceramics during the drilling process using a TEM00
(Transverse Electromagnetic Mode) 10 ns pulse Nd-YAG (Neodymium-doped Yttrium
Aluminum Garnet) laser. Yan et al. [18] developed a two-dimensional axisymmetric model
using the finite element method for the simulation of the temperature field and proceeding
with the hole formation during laser percussion drilling of thick-section alumina. The
results showed that the temperature and size of the melt front significantly influence the
formation of the hole diameter and the deposition of the spatter. Mishra and Yadava [19]
developed a prediction model for the laser percussion drilling process of thin aluminum
using the coupled methodology of the artificial neural method and the finite element
method. The radial point interpolation method was used in [20] for the prediction of
the temperature field and penetration depth in metal during the laser drilling process.
Digital image correlation was used to measure the small area deformation during the laser
drilling process of aluminum alloy [21]. It was confirmed that digital image correlation
combined with the laser drilling method can be used with equipment that is simple and
low-cost. The Taguchi Grey relation method was used in [22] to analyze the influence of
process parameters on surface performance during the laser drilling process of titanium
alloy. Results have shown that laser power has a high effect on surface roughness and taper
angle. Alsoruji et al. [23] utilized Taguchi Grey relational analysis to optimize the surface
roughness and material removal rate as a function of parameters in the laser drilling process
of Nickel Inconel 718 alloy. It has been found that surface topography with negligible
microcracks on the machined sample can be achieved under optimal process parameters.

Furthermore, numerous research studies have focused on the investigation of the effect
of different process parameters on the laser cut surface quality. Chen et al. [24] analyzed the
characteristics of microstructure and solidification behavior of the recast layer during CO2
laser cutting of Al2O3 ceramic. Their results showed that the upper and lower parts of the
recast layer consist of equiaxed grains, while in the middle part, columnar grains dominate.
The effects of the process parameters on the microstructure and kerf size during laser beam
cutting of Inconel 738 have been investigated in [25]. It was found that the scanning speed
caused different morphologies of the microstructure on the cut surface from the top surface
to the base material. The Taguchi method was applied by El Aoud et al. [26] to optimize
the surface roughness and analyze the microstructure of the cut edge during the laser
cutting of titanium alloy. Voids and microcracks on the laser-cut surface of titanium alloy
were observed. The results also showed that by increasing the cutting speed, the number
and size of surface microcracks decrease. Li et al. [27] used a high-power fiber laser to
cut SiCp/Al composites. They observed different morphologies on machined surfaces
including vertical and slant striation, multi-directional striation, dross, and microcracks.

Tungsten alloys are widely used to fabricate shock absorbers, gamma ray shielding
material, kinetic energy penetrators, and so on, due to their properties of a high melt-
ing point, high density, low thermal coefficient of expansion, high hardness, and good
ductility [28,29]. Among tungsten alloys, W-Ni-Fe alloys have found wide application in
various industries, such as in the automobile industry, medical applications, the military,
the aircraft industry, and the nuclear sector, due to its stability in the absorption of gamma
rays and X-rays [29–31]. Many studies [32–35] have been conducted for the application of
laser technology such as the laser melting deposition (LMD) process, the selective laser
melting (SLM) process, and the laser powder bed fusion (L-PBF) to fabricate tungsten
alloys, while laser beam machining (such as laser cutting and laser drilling) of these alloys
is still insufficiently researched, especially regarding the microstructure and microhardness
of the laser cut parts. This study presents deeper insight into the microstructure and micro-
hardness of the laser-cut material. Laser beam machining of uncommon materials such as
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tungsten alloys is very interesting and is always a challenging task because the melting
temperature of these alloys is too high to be machined by a thermal process.

In this paper, an experimental analysis of the microstructure characteristics and mi-
crohardness of laser-cut tungsten alloy is investigated. We outlined the development of a
two-dimensional model for temperature-filled predictions during the laser drilling process
as well as the prediction of the heat-affected zone size and the shape and size of the drilled
hole. The model was solved by a finite volume method and validated by comparing the
numerical results with experimental results. The solution domain of moving boundaries
due to material melting makes this problem highly nonlinear, and the numerical treatment
of this nonlinearity is explained in detail.

2. Materials and Methods

In this section, the mathematical model for the prediction of the temperature field in
the workpiece material during laser drilling is described, and the numerical method based
on the finite volume method is outlined. The machining conditions and tungsten alloy
properties used in experiments and simulations are depicted.

2.1. Mathematical Model

The mathematical model for the prediction of the temperature field in the workpiece
material during the laser drilling process is based on the thermal energy balance equation.
Together with the appropriate initial and boundary conditions and constitutive equations,
it represents a closed system of equations.

The integral form of the equation of thermal energy balance is depicted:

∂

∂t

∫
V

ρcT dV =
∫
S

q·n dS +
∫
V

h dV (1)

and is valid for an arbitrary part of the volume continuum V bounded by the surface S with
normal vector n pointing outwards, where t is time, T is the temperature, ρ is the density of
the workpiece material, the specific heat is c, q is a vector of the heat flux, and h is the heat
sink that, in the case of the laser drilling process, simulates the latent heat.

The constitutive relation between the heat flux and temperature gradient is given by
Fourier’s law:

q = k grad T (2)

where k is the thermal conductivity.
In order to complete the mathematical model, initial and boundary conditions have to

be specified. At the initial time t = t0, the value of the dependent variable (in this case, the
temperature) has to be known at all points of the solution domain:

T = T0 (r), r ∈ V (3)

Boundary conditions have to be defined at all times at all solution domain boundaries.
It can be either Dirichlet boundary conditions (temperature):

T(rB, t) = g1(t), rB ∈ S, (4)

or Neumann boundary conditions (heat flux):

q(rB, t) = g2(t), rB ∈ S, (5)
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For the Neumann boundary regions, the balance of heat fluxes on the boundary
surfaces has to be specified. For the boundary regions subjected to the laser beam, the
surface heat fluxes balance equation is given as follows:

k
∂T
∂n

= qconv + qrad + qlas, (6)

where qconv is the heat flux due to convention, qrad is the heat flux due to radiation, and
qlas is the heat flux due to heating by the laser beam. For the other boundary regions that
are outside the laser beam, the last term on the right side of Equation (6) is omitted.

2.2. Numerical Method

The Equation governing the energy balance (1) is discretized using the finite volume
method (FVM) that is described in detail in [14]. As with all numerical methods, it consists
of time, space, and equation, discretization. Due to the removal of material from the
machining zone, the position of the solution domain boundaries changes over time as
shown in Figure 1, making the problem highly nonlinear.
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If the heat sink in a certain cell is equal to the latent heat, and if the temperature of this
cell is equal to the liquid temperature, then this cell is removed from the finite volume mesh
because this cell is melted and ejected using an assist gas jet. So, the new domain boundaries
are set and the boundary conditions are changed based on these domain boundaries.

In the boundary regions that are subjected to the laser beam during the drilling process,
the boundary conditions are defined by Equation (6), or:

k
∂T
∂n

= λ(T∞ − T) + εσ
(

T4
∞ − T4

)
+ αI(r, t), (7)

where λ is the coefficient of heat transfer by convection, T∞ is the ambient temperature,
T is the boundary temperature, σ is the Stefan–Boltzmann constant, ε is the coefficient of
radiation emission, α is the coefficient of absorption, and I(r, t) is the laser intensity.

In this study, for a uniform Gaussian distribution of laser intensity, a two-dimensional
model is considered. The laser intensity is given by:

I(r, t) =
2P(t)
πr2

f
exp

(
−2r2

r2
f

)
(8)
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where P(t) is the laser power, r is the radial coordinate, and rf is the radius of the focus point.
For numerical simulation, the laser power was considered a time-dependent parameter,
and it is defined as follows:

P(t) =

{
KPa

tt
t for t < tt

KPa for t ≥ tt
(9)

where K is the laser beam quality factor, Pa is the default laser power, (KPa) is the actual
laser power, and tt is the required time to achieve the actual laser power. In this study, for
numerical calculation, the actual measured laser power was taken as input data.

In order to calculate the boundary temperature on the face coinciding with the solution
domain boundary, it was assumed that the north cell face is the boundary region that is
subjected to the laser beam, as shown in Figure 2.
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After introducing constitutive relation (2) into Equation (1), the discretized form of
this equation for the 2D control volume shown in Figure 2 can be written as follows:

1
δt

[
(ρcTV)m

P − (ρcTV)m−1
P

]
=
(

k S
δx1

)
e
(TE − TP) +

(
k S

δx1

)
w
(TW − TP) +

(
k S

δx2

)
B
(TB − TP)+

+
(

k S
δx2

)
s
(TS − TP) + hPVP

(10)

where superscript m and (m − 1) denote the value at two successive instants of time, δt is
the time step, and subscript P refers to the cell P. Integrals in the thermal energy balance
equation are calculated by employing the Mid-Point rule, and the linear spatial variation of
dependent variables is assumed, resulting in second-order accurate spatial discretization.
For temporal variation, a two-time-level linear variation of temperature with time assumed,
and physical properties and variables on the right side of Equation (10) are evaluated at
the time instant m, i.e., a fully implicit time differencing scheme was employed. TE, TW,
and TS are temperature values at the center of the neighboring cells to cell P, and TB is the
boundary temperature.

The boundary temperature TB in Equation (10) is unknown, and it can be obtained
from the discretized surface heat fluxes balance Equation (7):
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k
TB − TP

δx2B
= λ(T∞ − TB) + εσ

[
T4

∞ −
(

T(n−1)
B

)4
]
+ αI(r, t), (11)

Equation (11) is linearized in the manner that the non-linear term in this equation
is taken as a known value from the previous iteration during the iterative process of
solving the linearized system of equations. From Equation (11), the temperature TB can be
expressed as:

TB =
k

k + λ·δx2B
TP +

λ·δx2B
k + λ·δx2B

T∞ +
qrB·δx2B

k + λ·δx2B
+

δx2B
k + λ·δx2B

·αI(r, t), (12)

where

qrB = εσ

[
T4

∞ −
(

Tn−1
B

)4
]

. (13)

and the superscript (n − 1) denotes the value in the previous iteration.
Substituting Equation (12) into Equation (10), the discretized thermal energy equation

for a 2D model for each control volume (CV) can be written in the following form:

aPTP −∑
F

aFTF = b, (F = W, E, S) (14)

where summation is to be performed over all three cells of neighboring cell P, and coeffi-
cients aF and aP, and term b have the following form:

aF =

(
k

S
δxj

)
f

,
(F = W, E, S) ( f = w, e, s)

(j = 1 for f = w, e; and j = 2 for f = s)
(15)

aP = ∑
f

aF +

{
1

δtm
(ρcV)P

}
+

{
λ

(
k

S
k + λ·δx2

)
B

}
, (16)

b = hPVP +

{
1

δtm
(ρcTV)m−1

P

}
+

{(
k

S
k + λ·δx2

)
B

λT∞

}
+

{(
k

S
k + λ·δx2

)
B

qrB

}
+

{(
k

S
k + λ·δx2

)
B

αI(r, t)
}

(17)

where all variables in Equations (15)–(17) refer to the current time instant, unless indicated
otherwise.

In the boundary regions that are outside the influence of the laser beam, the boundary
conditions are defined as follows:

k
∂T
∂n

= λ(T∞ − T) + εσ
(

T4
∞ − T4

)
(18)

In this case, Equations (12) and (17) do not contain the last term on the right side.

2.3. Experimental Setup

The experiments were conducted using a CO2 Laser System, with a nominal laser
power of 2000 W. The material of the machined workpiece used in the experiments was
tungsten alloy (93 wt% W with the rest comprised of Ni and Fe) plates with two different
thicknesses, 0.5 mm and 1 mm. Nitrogen was used as an assist gas in the laser drilling
process. Oxygen, nitrogen, and air were used as assist gases during the laser cutting process,
because these are the most commonly used gases in laser metal cutting. The process
parameters and thermo-physical properties of tungsten alloy are given in Tables 1 and 2,
respectively.
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Table 1. Laser drilling conditions used in the experiment and simulation.

Parameter Symbol Values

Default laser power Pa 1000 W
Actual laser power KPa 974 W

The required time to achieve the actual laser power tt 5 × 10−3 s
The drilled time td 8 × 10−3 s

Radius of the focus point rf 0.105 mm
Nitrogen assist gas pressure p 6 bars

Table 2. Properties of tungsten alloy used in the simulation.

Parameter Symbol Values

The liquidus temperature TL 3100 ◦C
The ambient temperature T∞ 20 ◦C

The latent heat HL 250 kJ kg−1

The coefficient of absorption α 0.86
Material density ρ 17,600 kg m−3

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

The coefficient of heat transfer by convection λ 25 W m−2 K−1

In Table 1, td is the drilled time, and in Table 2, TL is the liquid temperature and
HL is the latent heat. The initial temperature of the workpiece material was the same as the
ambient temperature. The thermal conductivity k and the radiation emission coefficient ε
were considered temperature-dependent parameters. These parameters are defined in [36].
The temperature-dependent specific heat c used in the simulation is given in Table 3.

Table 3. The specific heat used in the simulation.

T, (◦C) 100 200 300 400 500 600 700 800 900 1000 1100 >1100

c, (J kg−1 K−1) 163 168 166 166 166 165 167 167 167 175 180 180

The Vickers hardness tester was used for microhardness measurements, and an optical
microscope was used to capture images of the microstructure.

3. Results and Discussion

In this section, experimental and numerical results are presented for laser beam
machining of tungsten alloy. The microhardness and microstructure of the laser-cut samples,
the size of the heat-affected zone, and the shape and size of the drilled hole are shown.

3.1. Microhardness of the Cut Sample

Microhardness measurements according to ISO 6507 were performed in the heat-
affected zone and in the base material outside the heat-affected zone. Vickers microhardness
was measured in eight different points, as shown in Figure 3. The distance between the
microhardness indentations was 150 µm. The first microhardness indentation was taken at
a distance of 50 µm from the cut edge.

Dissipation of the hardness values in the HAZ and in the base material outside the
HAZ for all of three assist gases used during laser cutting of tungsten alloy is shown in
Figure 4. It can be observed that the hardness values are more dissipated in the heat-affected
zone than in the base material for all three assist gases used. However, in general, it can
be concluded that no significant changes in the microhardness were observed for all three
assist gases used.
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3.2. Microstructure of the Cut Sample

In order to determine eventual changes in the microstructure during laser cutting of
tungsten alloy, the microstructure in the base material (Figure 5) was compared with the
microstructure in the heat-affected zone (Figure 6).

Based on the microstructure shown in Figure 5, the following can be stated:

• The basic constituent of the microstructure is tungsten crystals.
• Tungsten crystal boundaries are clearly visible.
• The binding material is located at the crystal boundaries.
• In some places, the voids are observed at the crystal boundaries.

Based on the microstructure shown in Figure 6, the following can be stated:

• The orientation of the tungsten crystals has not been changed.
• No changes in the crystal size.
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• There was a change within the boundaries of the crystal grain in terms of a change in
the binding material’s consistency. The binding material melted/vaporized as a result
of the input of high laser energy [32,33]. It spilled out and filled the space within the
boundaries of the crystal grains;

• Microcracks are located at the very border of the heat-affected zone. Microcracks are
trans-crystalline.
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3.3. Numerical Results and Experimental Validation

In this section, experimental and numerical results were compared in terms of the size
of the heat-affected zone and the size and shape of the hole during the laser drilling process
of tungsten alloy, 0.5 mm and 1 mm in thickness. The experimental results and numerical
results for a 1-mm-thick tungsten alloy plate are shown in Figure 7. The total drilling time
was 8 ms.
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Experimental results (Figure 7a) show that the size of the heat-affected zone is non-
uniformly distributed along the cross-section of the sample. The size of the HAZ is larger
at the entrance side of the laser beam into the workpiece. Furthermore, a variation in the
hole diameter along the depth of the hole was observed. Thus, a conical-shaped hole was
obtained. The hole diameter on the entrance side of the laser beam into the workpiece is
approximately 60% larger than the hole diameter on the exit side of the laser beam. Results
show good agreement between experimental (Figure 7a) and numerical (Figure 7b,c) results
for the size of the HAZ and the shape and size of the drilled hole achieved.

Figure 8 presents the experimental and numerical results for a 0.5-mm-thick tungsten
alloy plate. Furthermore, the total drilling time was 8 ms.

The experimental results, depicted in Figure 8a, show that the size of the heat-affected
zone is less non-uniformly distributed along the sample cross-section than in the case of
a sample thickness of 1 mm (Figure 7a). A variation in the hole diameter along the hole
depth was also observed, but this variation was significantly less than in the sample with a
thickness of 1 mm. In this case, the hole diameter at the entrance side of the laser beam into
the workpiece is approximately 32% larger than the hole diameter at the exit side of the
laser beam. Moreover, good agreement between the experimental and numerical results for
the HAZ size and the shape and size of the drilled hole was achieved.
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For the same drilling conditions, experimental and numerical results showed that the
HAZ was larger in the 0.5-mm-thick plate than in the 1-mm-thick plate. Thus, due to the
input of the same amount of heat into the plates, it resulted in a larger heat-affected zone
when laser drilling the thinner plate. Furthermore, a variation of the hole diameter along
the hole depth was observed for both plate thicknesses, but this variation was significantly
less in the thinner plate.

Based on the obtained results, it can be concluded that the accuracy of the calculation is
such that the numerical results can be used in the optimization of the laser drilling process.

4. Conclusions

In the present study, an experimental investigation into the microhardness and mi-
crostructure of the laser cut of tungsten alloy was successfully conducted. In addition, an
experimental investigation and mathematical modelling of the heat-affected zone and the
shape of the hole during the laser drilling process of a 0.5 mm and 1 mm thick tungsten
alloy were successfully performed.

Based on the experimental results, it can be concluded that there were no significant
changes in the hardness values in the heat-affected zone during the laser cutting of tungsten
alloy. Furthermore, no changes were observed in the characteristics of the microstructure in
the heat-affected zone. In some laser-cut samples, there was the appearance of microcracks
at the very border of the heat-affected zone. In any case, it is necessary to carry out other
methods of microstructure analysis to detect microcracks.

A very nonlinear mathematical issue due to the highly nonlinear equations of the
mathematical model, the presence of latent heat, and the constant change in the spatial
domain as a result of the hole formation was solved y using the finite volume method.
A highly nonlinear discretized governing equation was efficiently solved by an iterative
solver using the conjugate gradient method for each iteration to solve the linearized
discretized equations.

The presented numerical method gives very good results in the prediction of the heat-
affected zone and the shape of the hole during the laser drilling process, which indicates
that the numerical results can be used for practical purposes to optimize the laser drilling
process of any materials.
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In future work, more detailed discussions on the effect of different process parameters
such as the laser energy per pulse, the drilling time, and the type of material will be
considered, as well as numerical simulation of the laser cutting process.
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