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Abstract: The long-term operating strategy of nuclear plants must ensure the integrity of the vessel,
which is subjected to neutron irradiation, causing its embrittlement over time. Embrittlement trend
curves used to predict the dependence of the Charpy transition-temperature shift, ∆T41J, with neutron
fluence, such as the one adopted in ASTM E900-15, are empirical or semi-empirical formulas based
on parameters that characterize irradiation conditions (neutron fluence, flux and temperature), the
chemical composition of the steel (copper, nickel, phosphorus and manganese), and the product type
(plates, forgings, welds, or so-called standard reference materials (SRMs)). The ASTM (American
Society for Testing and Materials) E900-15 trend curve was obtained as a combination of physical
and phenomenological models with free parameters fitted using the available surveillance data from
nuclear power plants. These data, collected to support ASTM’s E900 effort, open the way to an
alternative, purely data-driven approach using machine learning algorithms. In this study, the ASTM
PLOTTER database that was used to inform the ASTM E900-15 fit has been employed to train and
validate a number of machine learning regression models (multilinear, k-nearest neighbors, decision
trees, support vector machines, random forest, AdaBoost, gradient boosting, XGB, and multi-layer
perceptron). Optimal results were obtained with gradient boosting, which provided a value of
R2 = 0.91 and a root mean squared error ≈10.5 ◦C for the test dataset. These results outperform
the prediction ability of existing trend curves, including ASTM E900-15, reducing the prediction
uncertainty by ≈20%. In addition, impurity-based and permutation-based feature importance
algorithms were used to identify the variables that most influence ∆T41J (copper, fluence, nickel and
temperature, in this order), and individual conditional expectation and interaction plots were used to
estimate the specific influence of each of the features.

Keywords: machine learning; neutron embrittlement; gradient boosting

1. Introduction

Nuclear reactor pressure vessel (RPV) steels are degraded by neutron irradiation. This
leads to an increase in strength and a decrease in toughness, which produces the ductile-to-
brittle transition temperature shift (TTS), ∆T41J that occurs over the operating lifetime of
the plant (T41J represents the temperature at which the energy absorbed in a Charpy test is
41J; this value is widely considered as a reliable definition for the location of the ductile-to-
brittle transition region). The long-term operation (LTO) strategy for a nuclear plant must
ensure the integrity of the vessel. To determine the TTS in advance, nuclear utilities conduct
surveillance programs that place capsules holding specimens fabricated with the same
steel as that of the vessel in the beltline region of the vessel. Thus, the specimen irradiation
history mimics the neutron spectrum, temperature history, and maximum neutron fluence
experienced by the reactor vessel inner surface. Low surveillance capsule lead factors
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(i.e., the ratio of the neutron fluence rate, E > 1 MeV, at the specimens in a surveillance
capsule to the neutron fluence rate, E > 1 MeV, at the reactor pressure vessel inside the
surface peak fluence location) of 3× to 5× support the assumption that the irradiation
response of the specimens in the capsules is representative of the steel in the vessel wall.
The objectives of a reactor vessel surveillance program are twofold: to monitor changes
in the fracture toughness properties and to make use of the data obtained to determine
the conditions under which the vessel can be operated throughout its service life. For
historical reasons [1], the Charpy test was selected in surveillance programs to monitor the
irradiation-induced degradation of the materials. More specifically, the parameter used in
most countries to measure the degree of embrittlement is the TTS at 41J absorbed energy.

The prediction of neutron irradiation embrittlement of RPV steels is of utmost impor-
tance for demonstrating the integrity of light water reactors. A number of embrittlement
trend curves (ETC) have been developed for this purpose [2–5]. Some of these [2,3,5]
addressed trends in national data sets and, as such, used smaller empirical data sets as
part of their calibration, However, in 2015 the ASTM subcommittee on Nuclear Structural
Materials approved ASTM Standard E900-15 [4] to predict the radiation-induced TTS in
reactor vessel materials based on an extensive database (nearly 1900 TTS measurements)
of surveillance information. The TTS proposed embrittlement correlation was developed
using the following variables: copper, nickel, phosphorus and manganese contents, irradia-
tion temperature, neutron fluence as well as the product type (forgings, plates and SRM
plates, and welds). Only power reactor (pressurized water reactors, PWR, and boiling
water reactors, BWR) surveillance data were used to calibrate this ETC. While E900-15 is an
empirical fit, it nevertheless adopts an equation form common to mechanistically guided
ETCs having two additive terms: one depending on copper and one independent of copper.

A significant part of the ASTM effort in developing E900-15 focused on the collection,
curation, and verification of a large international dataset on embrittlement quantified using
both TTS and yield strength increase (∆YS). These data came from surveillance reports on
light water reactors (LWR) and from the technical literature. Attention focused on steels of
the type used in LWRs of western design; ex-Soviet water-water energetic reactor (VVER)
steels were not considered. The final database (called “PLOTTER”) included 4438 TTS
or ∆YS data records (36% from PWR surveillance programs, 8% from BWR surveillance
programs, and 56% from material test reactor (MTR) research programs obtained at neutron
fluxes generally exceeding those common in PWRs). From these, a “BASELINE” data
subset was defined to develop what became the TTS equation in E900-15. The BASELINE
subset included steels of commercial grade having all known descriptive variables (copper,
nickel, manganese, phosphorus, fluence, flux, temperature, and product form). These steels
were exposed to neutron irradiation in a PWR or BWR, and had embrittlement quantified
by the TTS measured using full-size Charpy V-notch specimens. The BASELINE subset
included 1878 TTS surveillance data from 13 countries: Brazil, Belgium, France, Germany,
Italy, Japan, Mexico, The Netherlands, South Korea, Sweden, Switzerland, Taiwan, and the
United States.

The classical ‘model-driven’ paradigm in scientific research has been complemented
over the last decades with the so-called ‘data-driven’ approach [6]. Machine learning
(ML) methods enable the solution of problems that otherwise could not be addressed
by standard statistical/analytical fitting approaches. Rather than designing a complex
experiment or developing a numerical model, it is possible using ML to extract patterns
from large ensembles of data that are often heterogeneous and/or incomplete. These
techniques are progressively gaining use in scientific fields such as materials science [7–10].

This paper was aimed at obtaining a regression ML model that, using the information
provided by the PLOTTER database, enables prediction of the TTS. Prediction is important,
but understanding is of no less importance. For this reason, specific algorithms have been
implemented after fine-tuning the ML models to identify the variables that most influence
the TTS as well as to quantify their individual influence and the interaction between
variables. The remainder of the paper is organized as follows: the PLOTTER database, the
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ASTM E900-15 ETC [4] and the ML methods are described in Section 2. Section 3 is devoted
to presenting the results of the analysis. Finally, the interpretation and significance of the
results are discussed in Section 4.

2. Methods
2.1. The ASTM PLOTTER Database

The dataset employed to train the ML models corresponds to the BASELINE subset
from the PLOTTER database (described in Section 1), which contains 1878 observations. In
this data collection:

• The TTS is the target (or variable to be predicted).
• The predictor (or regressor) variable includes numeric vales to describe the chemical

composition (Cu, Ni, P, Mn) and irradiation conditions (neutron fluence, flux and
temperature) and also indicator/categorical variables describing the product type
(welds, plates, forgings, or SRM plates) and the reactor type (BWR or PWR).

Figure 1 shows the histograms of the numeric features, including the target response,
the TTS (Figure 1a), while the two categorical attributes are represented as barplots in
Figure 2. As can be seen, the database contains a larger proportion of PWR than BWR
vessels. Additionally, as made clear by both the plots of Figures 1 and 2, the data structure
is highly non-uniform; data are very dense in some regions and sparse (or non-existent)
in others. These characteristics of the data structure occur as a consequence of both
the specifications to which the RPV steels were procured as well as the operating and
design characteristics of both BWR (Boiling Water Reactors) and PWR (Pressurized Water
Reactors) reactors.

Figure 1. Cont.
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Figure 1. Histograms showing the distribution of the numeric features in the PLOTTER database.
(a) TTS, (b) copper, (c) nickel, (d) phosphorus, (e) manganese, (f) fluence, (g) flux and (h) temperature.

Figure 2. Barplots showing the distribution of the two nominal features in the PLOTTER database.
(a) Reactor type (PWR: pressurized water reactors or BWR: boiling water reactors) and (b) product
type (welds, plates, forgings and SRMs: standard reference materials).

2.2. The ASTM E900-15 Embrittlement Trend Curve

The ASTM effort to develop what became E900-15 [4] determined the following
analytical expression for TTS in ASTM E900-15 using the BASELINE dataset from the
PLOTTER database. The mean value of TTS, in ◦C, is calculated as follows (1)–(6):

TTS = TTS1 + TTS2 (1)

TTS1 = A
5
9

1.8943·10−12Φ0.5695
(

1.8T + 32
550

)−5.47

(
0.09 +

P
0.012

)0.216(
1.66 +

Ni8.54

0.63

)0.39( Mn
1.36

)0.3
(2)
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A =

 1.011 f or f orgings
1.080 f or plates and SRM plates

0.919 f or welds

 (3)

TTS2 =
5
9

max[min(Cu, 0.28)− 0.053, 0] M (4)

M = B max
{

min
[
113.87

(
ln(Φ)− ln

(
4.5·1020

))
, 612.6

]
, 0
}(1.8 T + 32

550

)−5.45

(
0.1 +

P
0.012

)−0.098(
0.168 +

Ni0.58

0.63

)0.73

(5)

B =

 0.738 f or f orgings
0.819 f or plates and SRM plates

0.968 f or welds

 (6)

In this equation, Cu, Ni, P and Mn are all expressed in weight percent, Φ is in n/m2

(E > 1 MeV), and T is in ◦C. This analytical model includes 26 free parameters that were
fitted using a maximum likelihood procedure from the data in the BASELINE dataset.
Relative to the calibration dataset, the model provides unbiased predictions and has a root
mean square error (RMSE) value of 13.3 ◦C. E900-15 adopts the following Formulation (7)
for standard deviation, which increases along with the predicted value of TTS:

SD =

 W : 7.681
P : 6.593
F : 6.972

× TTS[ W : 0.181 P : 0.163 F : 0.199 ] (7)

2.3. Machine Learning

The ML models have been developed and evaluated in the Python 3 programming lan-
guage using libraries such as Numpy, Pandas, Scikit-Learn, Matplotlib and Seaborn, among
others. The workflow of this ML project is summarized [11,12] in the following sections.

2.3.1. Scope of the Analysis

A regression analysis is aimed at predicting a numeric value for new input data.
Here, the target variable (that is, the variable to be predicted) is the TTS, ∆T41J. The
predictors correspond to the nine features included in the PLOTTER database (copper,
nickel, phosphorus, manganese, fluence, flux, temperature, product type and reactor type).
The dataset included 1878 instances.

2.3.2. Data Preprocessing

The ability to learn from ML models and the useful information that can be derived
may be extremely influenced by data preprocessing. This consists of cleaning the raw data
to enable the optimization of the model. Preprocessing includes the following stages [11,12]:

• Data outliers can result in longer training times and less accurate models. Outliers,
which were defined as data points beyond a z-score (see Formula (8) for the definition
of the z-score of the observation xi, where mx is the sample mean and sx is the sample
standard deviation) |z| > 3.0, were not observed in the PLOTTER BASELINE dataset.

zi =
xi − mx

sx
(8)

• Multicollinearity is potentially harmful for the performance of the model; it may
reduce its statistical significance and make it difficult to determine the importance of a
feature to the target variable. The Pearson’s correlation matrix (see Expression (9) for
the definition of the sample Pearson correlation coefficient, r) of the dataset, Figure 3,
was estimated to identify correlations between features. It was decided to remove one
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of the features of every couple with a correlation coefficient exceeding (in absolute
value) 0.60. Nevertheless, since the maximum correlations observed were between Cu
and P (r = 0.48), no features were eliminated.

r =
∑n

i=1(xi − mx)
(
yi − my

)√
∑n

i=1(xi − mx)
2
√

∑n
i=1
(
yi − my

)2
(9)

• Standardization/feature scaling of a dataset is mandatory for some ML algorithms and
advisable for others. In this study, features were scaled through the StandardScaler
provided by Scikit-Learn [13] which standardizes the features by removing the mean
and scaling to unit variance.

• Nominal categorical variables (reactor type and product id) were subjected to the
Scikit-Learn OneHotEncoder [13].

Figure 3. Pearson’s correlation matrix of the dataset.

2.3.3. ML Algorithms

As stated by Wolpert in his “No Free Lunch theorem” of ML, “[ . . . ] for any two
learning algorithms, there are just as many situations (appropriately weighted) in which
algorithm one is superior to algorithm two as vice versa, according to any of the measures
of superiority” [14]. In addition, “if an algorithm does particularly well on average for one
class of problems then it must do worse on average over the remaining problems. [ . . . ]
Thus, comparisons reporting the performance of a particular algorithm with a particular
parameter setting on a few sample problems are of limited utility” [15]. For this reason,
a wide range of ML regression algorithms has been implemented in this study: multiple
linear regression (MLR), k-nearest neighbors (KNN), classification and regression tree
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(CART), support vector regression (SVR), four ensemble methods (random forest, RF;
gradient boosting, GB; AdaBoost, AB; extreme gradient boosting, XGB) and artificial neural
networks (ANNs, in this case, multi-layer perceptron, MLP). A brief description of these
algorithms is as follows:

• In MLR, the relationship between the predictors and the response variable is fitted
through a multilinear equation to the observed data. MLR is considered as a baseline
algorithm for regression, i.e., a simple model with a reasonable chance of providing de-
cent results. Baseline models are easy to deploy and provide a benchmark to evaluate
the performance of more complex models. Many early approaches to embrittlement
modeling for RPV steels adopted a “chemistry factor” that was a weighted sum of the
contributions of different chemical elements to embrittlement [16]. The data fittings
needed to establish these chemistry factors were essentially multi-linear regressions.

• In KNN, regression is carried out for a new observation by averaging the target variable
of the ‘K’ closest observations (the neighbors) with weights that can be uniform or
proportional to the inverse of the distance from the query point. KNN is an example
of an instance-based algorithm that depends on the memorization of the dataset; then,
predictions are obtained by looking into these memorized examples. The distance
between instances is based on features (e.g., Cu, Ni, temperature) important to the
target variable (TTS) and is quantified through the Minkowski metric, which depends
on the power parameter, ‘p’. When p = 1, this is equivalent to using the Manhattan
distance and for p = 2, the Euclidean distance.

• CARTs were introduced in 1984 by Breiman et al. [17]. These “trees” may be thought
of as flowcharts; they have a branching structure in which a series of decisions is used
to make a prediction that either classifies the data (outputting a categorical value) or
regresses the data (outputting a continuous value). The CART splits the dataset to
form a tree structure; the branching decisions (called decision nodes) are guided by
the homogeneity of data. The resultant tree has “leaf nodes” at the end of the branches.
Ideally, each leaf represents a more-or-less uniform response of the target variable, be
it categorical or continuous. The Gini index and the entropy are the most common
scores to measure the homogeneity of the data and to decide which feature should be
selected for the next split. Building a decision tree requires finding the attribute that
returns the highest information gain (which is defined as the entropy of the parent
node minus the entropy of the child nodes after the dataset has been split on that
attribute) or the highest reduction in the Gini index. The main advantages of decision
trees are that the interpretation of results is straightforward and that they implicitly
perform a feature selection since the earliest (or top) nodes of the tree are the most
important variables within the dataset. The main limitation of a CART is that when a
decision tree grows and becomes very complex, it usually displays a high variance
and a low bias, which are evidence of overfitting. This makes it difficult for the model
to generalize and to incorporate new data.

• The support vector machine (SVM) algorithm was originally designed as a classi-
fier [18] but may also be used for regression, SVR, and feature selection [19]. In
classification, SVM determines the optimal separating hyperplane between linearly
separable classes maximizing the margin, which is defined as the distance between the
hyperplane and the closest points on both sides (the support vectors). For non-perfectly
separable classes, SVM must be modified to allow some points to be misclassified,
which is achieved by introducing a “soft margin” [20]. Datasets that are highly nonlin-
ear may in some cases be (linearly) separated after being (nonlinearly) mapped into
a higher dimensional space [21]. This mapping gives rise to the kernel, which can
be chosen by the user among different options such as linear, sigmoid, Gaussian or
polynomial. The appropriate kernel function is selected by trial and error on the test
set. In this case, SVM is referred to as kernelized SVM.

• Ensemble learning is a paradigm that focuses on training a large number of low-
accuracy models, which are called “weak learners,” and combining their predictions
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to obtain a high accuracy meta-model. Decision trees (as just described under CARTs)
are the most widely used weak learners. The idea behind ensemble learning is that if
the trees are not identical and they predict the target variable with an accuracy that is
slightly better than random guessing, a prediction based on some sort of weighted
voting of a large number of such trees will improve accuracy. Ensemble methods
are classified into bagging-based and boosting-based, which are designed to reduce
variance and bias, respectively.

# Bagging (which stands for bootstrap aggregation) is the application of the boot-
strap procedure (i.e., random sampling with replacement) to a high-variance
ML model (e.g., a regression tree). Many models are created, and every model
is trained in parallel. Each of the models is trained on a subset of the whole
dataset composed of a number of observations randomly selected with replace-
ment using a subset of features. The predicted value produced by bagging is
simply the average of the predictions from all the models. The most widely
used bagging-based ML algorithm is RF [22], which uses shallow classification
trees as the weak learners. The most important hyperparameters to tune in a
RF are the number of trees and the size of the random subset of the features
to consider at each split. By using multiple samples of the original dataset,
the variance of the ensemble RF model is reduced, as is the overfitting (see
Section 2.3.4).

# Boosting consists of using the original training data and iteratively creating
multiple models by using a weak learner, usually a regression tree. Each
new model tries to fix the errors made by previous models. Unlike bagging,
which aims at reducing variance, boosting is mainly focused on reducing bias.
In adaptative boosting, AB, and in GB, the ensemble model is defined as a
weighted sum of weak learners. The weights are placed more heavily on the
data that were poorly predicted by the initial weak learners, thereby gradually
improving the accuracy of the overall model. XGB is an algorithm that uses
a GB framework developed in 2016 by Chen and Guestrin [23]. Among its
advantages, it provides a good combination of performance and processing
time through systems optimization and algorithmic enhancements (such as
parallelized implementation).

• ANNs are used for data classification, regression and pattern recognition. A basic
ANN contains a large number of neurons arranged in layers. An MLP begins with
an input layer, which contains one or more hidden layers that are trained to make
decisions, and an output layer. The nodes of consecutive layers are connected, and
these connections have weights associated with them. During training, weights are
initially assigned randomly. Known data are then fed forward through the network
from the input nodes, through the hidden nodes (if any), and to the output nodes. The
output of every neuron is obtained by applying an activation function to the linear
combination of inputs (weights) to the neuron; sigmoid, tanh and rectified linear unit
(ReLu) are the most widely used activation functions. MLPs are trained to produce
better answers through backpropagation. During backpropagation, the network is
provided with feedback concerning outputs that have been incorrectly predicted. The
network then changes the weights associated with the nodes in the hidden layers to
produce a more accurate output. Gradient descent, Newton, conjugate gradient and
Levenberg–Marquardt are different algorithms used to train an ANN.

2.3.4. Evaluation of Machine Learning Algorithms

Before undertaking any preprocessing [11,12], 25% of the observations were randomly
extracted to form a test dataset that was used to provide an unbiased evaluation of the
performance of the models. Models were trained, and the hyperparameters were refined
using the remaining 75%, i.e., the train dataset. This train/test separation was conducted
by stratifying the two categorical variables (REACTOR_TYPE and PRODUCT_ID) to
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ensure the representativeness of both the train and test datasets to the reactor types and
product forms represented by the PLOTTER BASELINE data. Threefold cross-validation,
conducted with GridSearchCV, was used for hyperparameter tuning; these concepts are
briefly described in the next paragraph.

The hyperparameters of an ML model are those parameters that are determined prior
to training, either specified by the practitioner or using some heuristics. For example, in a
parametric model such as polynomial regression, the degree of the polynomial has to be
set somehow before training; then, after training, the coefficients of the polynomial (which
represent the parameters of the model) are obtained. The most commonly used method is
grid search, which consists of providing a list of values for each hyperparameter of interest
and trying all possible combinations among them to finally select the optimal one [11,12]
(see Figure 4). To make this decision, an option would be to choose the combination
providing best scores on the 25% test set described in the previous paragraph; however,
in that case, the test set should not be used to assess how good the model is because it is
potentially contaminated with information used for training (in this case, for training to set
the hyperparameters). An alternative approach to resolve this problem is to split the data
into three sets: the 75% training set is itself divided into two parts: one part is used to build
the model while another part (the validation set) is used to tune the hyperparameters of the
model. The 25% test set is used to obtain an unbiased estimation of the actual performance
of the model on fresh data. The K-fold cross validation process achieves Step A. Here, the
75% training set test is randomly split into K distinct subsets called folds. At each iteration,
a different fold is chosen as the validation set, and the model is trained on the other K-1
folds; this process is schematically depicted in Figure 4.

Figure 4. Schematic description of the procedure followed in this research for hyperparameter tuning.
Grid search was used to obtain the combinations of the values of the hyperparameters. Then, a
threefold cross validation method was implemented for hyperparameter tuning.

The goal of supervised learning is to build a model on the training data to make
accurate predictions on new, unseen data (provided they have the same characteristics
as the training set). When a model makes accurate predictions on unseen data, it is said
that it generalizes from the train set to the test set. The test/train split evaluates the ML
model accuracy by assessing the propensity of each ML model for both overfitting and
underfitting [11,12].

If a model overfits the data, it performing well on the training data but less accurately
on the test set. Complex models are likely to detect patterns in the noise itself. Obviously,
these models will not generalize to new instances. Underfitting is the opposite of overfitting:
it occurs when the model is too simple to represent the underlying structure of the data.
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The following three scores were used to measure the quality of the regression ML model,
namely, the coefficient of determination, R2, the root mean square error, RMSE, and the
mean absolute error, MAE.

3. Results
3.1. Selection of the Optimum Algorithm

In the first stage, the nine algorithms implemented were trained using the default
options for their hyperparameters i.e., without conducting any tuning strategy (these
default parameters can be consulted in the web page of Scikit-Learn). The results are
shown in Table 1; the default hyperparameters are collected in Table 2. As can be seen,
systematically the scores for the train set are better than for the test set. This is particularly
so for those algorithms that are more prone to overfitting, such as the CART or the RF. As
can be observed, the various metrics all convey the same trends. In absolute terms, best
results in the test set are provided by the GB, XGB and RF algorithms, respectively. Figure 5
shows two scatterplots where the relative overfitting of the measures of scatter, RMSE and
MAE, respectively, is represented against the relative overfitting in terms of the coefficient
of determination. This representation shows that, in relative terms, CART, RF and KNN are
the algorithms that display a larger overfitting. Taking these arguments into consideration,
the GB algorithm was selected for hyperparameter tuning.

Table 1. Scores (R2, RMSE and MAE) obtained in the train and test datasets for the nine algorithms
implemented without tuning. MLR: multiple linear regression. KNN: k-nearest neighbors. CART:
classification and regression tree. SVR: support vector regression. RF: random forest. AB: AdaBoost.
GB: gradient boosting. XGB: extreme gradient boosting. MLP: multi-layer perceptron.

Train Dataset Test Dataset

Regressor R2 RMSE
(◦C) MAE (◦C) R2 RMSE

(◦C) MAE (◦C)

MLR 0.736 18.87 18.87 0.725 20.91 15.34

KNN 0.881 12.66 12.66 0.810 17.39 12.51

CART 0.995 2.59 2.58 0.830 16.44 12.44

SVR 0.579 23.85 23.85 0.597 25.32 16.45

RF 0.972 6.10 6.10 0.872 14.26 10.34

AB 0.810 16.01 16.01 0.779 18.77 14.50

GB 0.927 9.94 9.94 0.896 12.87 9.81

XGB 0.924 10.10 10.10 0.888 13.36 10.06

MLP 0.874 13.03 13.03 0.863 14.76 10.76

Table 2. Hyperparameters used in the train and test datasets for the nine algorithms implemented
without tuning.

Regressor Hyperparameters

MLR N/A

KNN n_neighbors = 5, weights = ‘uniform’, algorithm = ‘auto’, leaf_size = 30, p = 2,
metric = ‘minkowski’

CART criterion = ‘squared_error’, splitter = ‘best’, min_samples_split = 2,
min_samples_leaf = 1

SVR kernel = ‘rbf’, degree = 3, gamma = ‘scale’, tol = 0.001, C = 1.0, epsilon = 0.1,
shrinking = True, cache_size = 200, verbose = False, max_iter = −1
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Table 2. Cont.

Regressor Hyperparameters

RF
n_estimators = 100, criterion = ‘squared_error’, min_samples_split = 2,

min_samples_leaf = 1, max_features = ‘auto’, bootstrap = True,
oob_score = False, verbose = 0, warm_start = False

AB n_estimators = 50, learning_rate = 1.0, loss = ‘linear’

GB

oss = ‘squared_error’, learning_rate = 0.1, n_estimators = 100, subsample = 1.0,
criterion = ‘friedman_mse’, min_samples_split = 2, min_samples_leaf = 1,
max_depth = 3, alpha = 0.9, warm_start = False, validation_fraction = 0.1,

tol = 0.0001

XGB ‘objective’: ‘reg:squarederror’, ‘importance_type’: ‘gain’, ‘n_estimators’: 100

MLP

hidden_layer_sizes = (100), activation = ‘relu’, solver = ‘adam’, alpha = 0.0001,
batch_size = ‘auto’, learning_rate = ‘constant’, learning_rate_init = 0.001,

power_t = 0.5, max_iter = 200, shuffle = True, tol = 0.0001, verbose = False,
momentum = 0.9, nesterovs_momentum = True, early_stopping = False,
validation_fraction = 0.1, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8,

n_iter_no_change = 10, max_fun = 15,000

Figure 5. This scatterplot provides an estimation of the relative performance between the test and
train datasets in terms of the coefficient of determination and the two scores employed to measure the
scatter, the RMSE and MAE, respectively. The arrow superimposed on the figure shows the direction
of increasing overfitting.

3.2. Regression with Gradient Boosting

Hyperparameters are parameters that are not directly learned within estimators. In
this study, they were tuned for the GB algorithm using a grid search and cross-validation
schemes to obtain the best values of R2 (highest), RMSE and MAE (lowest) for the train
dataset. The optimal hyperparameters are as follows: n_estimators = 500, max_depth = 4,
learning_rate = 0.1, max_features = 8, min_samples_leaf = 5, min_samples_split = 3. As
can be seen in Table 3, a moderate but acceptable amount of overfitting exists as evidenced
by the inferior values of R2, RMSE, and MAE for the test dataset, especially considering
that all attempts to reduce the complexity of the model have also penalized the accuracy
in the test dataset. For the sake of completeness, the normalized root mean squared error
(NRMSE), which is defined as the RMSE divided by the standard deviation, has also been
included in the table to provide a comparison between datasets with different scales.
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Table 3. Scores (R2, RMSE, NRMSE and MAE) obtained with the tuned GB model in the train, test
and train + test datasets. The last column shows the scores obtained using the predictive model of
ASTM E900-15.

Train Test Train + Test ASTM E900-15

R2 0.977 0.914 0.963 0.875

RMSE (◦C) 5.73 10.54 7.24 13.32

NRMSE 0.159 0.277 0.198 0.364

MAE (◦C) 4.23 8.37 5.26 10.12

The scatterplots in Figure 6 represent the TTS predicted with the tuned GB model as a
function of the experimental values for the train (a) and test (b) datasets. For comparison,
the corresponding information obtained from the ASTM E900-15 model [4] has been
represented in (c).

Figure 6. The scatterplots compare the experimental shift with the predicted values obtained from
the optimized GB model in the train set (a) and test set (b). In (c), the predictions of the ASTM
E900-15 [4] model are represented. All pictures have been represented with the same scale to facilitate
the comparison. A 1:1 black dotted line as well as two red dotted lines vertically separated from the
former by a distance equal to the RMSE have been included in the figure.

Figure 7 provides a comparison of the residuals obtained from the GB and the ASTM
E900-15 models for the three sets previously mentioned. In all scenarios, the ML-based
approach outperforms the analytical model of the ASTM E900-15 standard [4]. This is true
even when the GB model is faced with fresh data, that is, data not used in the training
process. Indeed, Figure 7b shows a substantial improvement for observations with higher
residuals, those higher (in absolute value) to 25 ◦C (its presence is appreciable in the
analytical model, but testimonial in the ML model).
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Figure 7. Comparison of residuals obtained from the GB algorithm and the ASTM E900-15 ETC.
(a) Train dataset, (b) test dataset, (c) all data.

An examination of the distribution of residuals is always a good practice in descriptive
statistics. The residuals plot provided by the GB algorithm for the train and test datasets
represented in Figure 8a exhibits a random pattern, and no clear trend is appreciated.
Particularly remarkable are the large residuals that can be seen for low values of the TTS,
these being associated with the errors inherent in determining TTS from a limited number
(generally 8–12) of Charpy tests. The mean value of the residuals is 0.3 ◦C, which indicates
an unbiased estimation. For comparison, the residuals obtained using the ASTM E900-15 [4]
ETC are represented in Figure 8b; in this case, the bias is −0.1 ◦C.



Metals 2022, 12, 186 14 of 24

Figure 8. (a) Residuals plot obtained through the GB algorithm for the train and test datasets,
(b) residuals plot provided by the ASTM E900-15 ETC.

To complete the graphical representations, in Figure 9a the experimental values and
the predictions of the GB algorithm are compared again in the form of a scatterplot. In this
case, the data have been represented as a color map based on the density of points, and
contour lines have been superimposed. The relative scarcity of values with TTS > 60 ◦C
(24.8% of the database) and the existence of observations having a large residual for small
embrittlement are noticeable in both Figures 8 and 9. An equivalent scatterplot based on
the predictions provided by the ETC of ASTM E900-15 [4] is shown in Figure 9b; as can be
appreciated, the dispersion of data is significantly larger.
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Figure 9. Scatterplot relating the experimental and predicted TTS. (a) Gradient Boosting, (b) ASTM
E900-15 [4].

3.3. Assessment of Importance of the Features

Tree-based models such as GB provide metrics that can be used to evaluation the
relative importance of the different features (e.g., copper, nickel, fluence) of the model.
These metrics include a mean decrease in impurity, which is the splitting criterion [13]
and a permutation feature importance, which is defined to be the decrease in a model
score when a single feature value is randomly shuffled [13]. This procedure breaks the
relationship between the feature and the target variable TTS, thus the drop in the model
score is indicative of how much the model depends on the feature. This technique benefits
from being model agnostic (it can be used with any model, not only CARTs or ensembles
of trees) and can be calculated many times with different permutations of the feature [13].

Figure 10 compares the results obtained using the (a) impurity-based and (b) permutation-
based feature importance. Even though the numeric values differ (because they are mea-
suring different things), both procedures suggest that copper, fluence, and temperature
are the most important features in estimating TTS, while features such as phosphorus and
manganese play minor roles.
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Figure 10. (a) Impurity-based and (b) permutation-based feature importance obtained from the
optimized GB model.

3.4. Individual Conditional Expectation Plots and Interaction Plots

An individual conditional expectation (ICE) plot shows the dependence between the
target variable (the TTS in this case) and an input feature of interest, as predicted by the ML
model selected (GB in this case). An ICE plot usually includes one line per sample, but here,
to facilitate the examination of the figure, the distribution of samples around the central
trend was represented using error bars (with a length equal to ±1 standard deviation) [13].
Figures are sorted in Figure 11 based on their permutation importance (see Figure 10b). As
was seen in the feature importance plots (Figure 10), some features (copper, fluence, nickel,
temperature) exert a much greater influence on the target (TTS) than do others (manganese,
flux, phosphorus).

Figure 11. Cont.
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Figure 11. ICE plots showing the impact of each of the features of interest on the TTS. (a) Cu,
(b) Fluence, (c) Ni, (d) Temperature, (e) Mn, (f) Flux and (g) P.

ICE plots describe the average contribution of each feature to the target response
but ignore the possible interaction between features. Two-dimensional (2D) interaction
plots [24] enable visualization of interactions among couples of attributes; the interaction
between two features quantifies the change in the prediction that occurs by varying the
features after considering the individual feature effects. Figure 12 collects the 2D interaction
plots, represented through color maps, between the couples existing between the four
most important features: Cu, fluence, Ni and T (the rest of combinations have not been
represented because in these cases, one of the four previously mentioned features clearly
overwhelms the other one). Each color in Figure 12 represents the same TTS (“iso-TTS”
regions). Some basic ideas may help to understand these figures. Suppose that features
‘X’ and ‘Y’ are being represented in the horizontal and vertical axes, respectively. Vertical
iso-TTS lines mean that feature Y does not exert any influence on the TTS; conversely,
horizontal iso-TTS lines are associated with a negligible impact of the X feature.

For the sake of clarity and completeness, Figure 13 shows a magnified version of the
2D interaction plot between the two most relevant features, Cu and fluence. Several regions
can be distinguished in the map. Thus, for fluence < 1023 n × m−2, region 1, embrittlement
is basically dominated by the fluence, regardless of the copper content (iso-TTS lines are
approximately horizontal in this zone). For fluence > 1023 n × m−2 and Cu < 0.12%, region
2, there is a clear interaction between these features. Finally, the behavior in region 3
is significantly noisy, although the influence of the fluence on the TTS seems to prevail.
This analysis is but an example of the type of information that can be obtained from a 2D
interaction plot.
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Figure 12. 2D Interaction plots between the four most relevant features: Cu, fluence, Ni and T.

Figure 13. D Interaction plots between the two most relevant features, Cu and Fluence.
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4. Discussion

Invoking the “No Free Lunch” theorem [14,15], a number of ML algorithms were
trained for this study. The scores (R2, RMSE and MAE) obtained in the test dataset demon-
strate that, in general, good results are obtained by means of ensemble-type algorithms (RF,
XGB and, specifically, GB) as well as with the MLP. Without questioning the validity of
the “No Free Lunch” theorem, experience shows that ensemble methods provide highly
competitive results in shallow learning settings (for example, this can be verified in the
popular ML competition website Kaggle, http://kaggle.com, last access on 12 January
2022). As stated by Chollet [25] regarding GB, “the use of the GB technique results in
models that strictly outperform RF most of the time, while having similar properties. It may
be one of the best, if not the best, algorithm for dealing with nonperceptual data today.”

The scores (R2, RMSE, MAE) obtained through the optimized GB algorithm were
(0.977, 5.73, 4.23) in the train set, (0.914, 10.54, 8.37) in the test set and (0.963, 7.24, 5.26) in
the combined set. Therefore, strictly speaking, the model displays a whiff of overfitting.
To correct for overfitting, a series of attempts were made to improve the generalizability
of the model (i.e., reducing the differences observed between the scores in the train and
test sets) by decreasing its complexity. All of them were unsuccessful and reduced the
predictive capacity of the model in the test set; for this reason, these alternatives were
rejected. To evaluate this model, it is important to consider the intrinsic uncertainty in a
TTS measurement. The uncertainty in determining T41J from a set of 8–12 Charpy data is
between 5–6 ◦C [26], which makes the experimental uncertainty on the TTS approximately
between (52 + 52)0.5 ≈ 7.1 ◦C and (62 + 62)0.5 ≈ 8.5 ◦C, which is an absolute lower limit for
any (not overfitted) ETC. By comparison, the RMSD for the test dataset was 10.5 ◦C. This
value exceeds 7–8.5◦ C, suggesting that overfitting is not a significant issue. The RMSD for
the GB model developed herein was also 21% lower than for the analytical model of ASTM
E900-15, suggesting good improvement in prediction accuracy.

Lee et al. [27] previously developed an ETC using ML methods. They trained several
regression models using the ASTM PLOTTER database described in Section 2.1. They
implemented the XGB, Cubist and SVM algorithms and used the RMSE to evaluate the
performance of the models. Best results were obtained with XGB (which agrees well
with the rationale exposed above emphasizing the general superiority of GB for shallow
learning), with RMSE = 11.9 ◦C. This result outperforms the prediction ability of the ASTM
E900-15 nonlinear regression model, where RMSE = 13.3 ◦C. Thus, Lee’s results and those
presented herein are comparable

It is hard to overstate the importance of properly splitting the available data into
three sets: training, validation, and test. The model is trained on the training data and
its hyperparameters are tuned on the validation set. Finally, the actual unbiased quality
of the model is measured on the test data. This procedure avoids information leaks
because during hyperparameter tuning, significant amounts of information may be leaked
from the validation set into the model, producing a regressor/classifier that performs
artificially well on the validation data but whose performance on completely new data is
unknown [11,12,25].

According to the values of impurity-based and permutation-based feature importance,
four of the features exert a clear influence on the TTS: Cu, fluence, Ni and temperature. The
ICE plots depicted in Figure 11 can be intuitively interpreted as the expected target TTS as a
function of the input features of interest [13]. Therefore, they provide valuable information
about the patterns associated with each variable. The ICE plot of Cu in Figure 11a shows
a marked influence on the embrittlement of the material. Other things being equal, the
average difference between steels with low and high Cu content can be greater than 80 ◦C of
TTS. Furthermore, it is possible to glimpse three regions on the ICE curve. A first region for
Cu < 0.075% with a moderate slope, a second approximately linear embrittlement region for
0.075% < Cu < 0.275%, and a final saturation region when Cu > 0.275%. This result is very
consistent with the regression model of the ASTM E900-15 standard [4], which describes
the influence of copper with a linear model for the region defined by the inequality 0.053%

http://kaggle.com
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< Cu < 0.28%, as well as with the Kirk model [28], which considers a linear response in the
interval 0.07% < Cu < 0.30%. In both cases, the influence of Cu is considered null out of this
range. The average influence of fluence, Figure 11b, can lead to differences in TTS greater
than 100 ◦C between steels exposed to low or high levels of neutron irradiation. To facilitate
the inspection of the figure, it has been represented on a logarithmic scale (see Figure 11b).
As can be seen, the impact of fluence is markedly linear in this representation in the range
between 3.38 × 1023 n/m2 and 1.24 × 1024 n/m2 (the logarithmic fitting conducted in this
interval provides an R2 = 0.9859). When fluence is out of this range, its influence seems to
be reduced. Specifically, the ICE plot shows a plateau beyond 1.24 × 1024 n/m2: this result
must be interpreted carefully because, as previously noted by Lee et al. [27], extrapolation
for tree-based ML models (such as GB) provides a constant value. Again, it is worth noting
that both the analytical models proposed by the ASTM E900 [4] and by Kirk [28] describe
the impact of fluence on the TTS through a logarithmic expression. In turn, the influence of
Ni, as represented in Figure 11c, can also be described by means of a linear model restricted
to an interval, in this case, approximately 0.5% < Ni < 1.3%. Outside of this range, its
influence seems negligible. Finally, as suggested by Figure 11d, all else being equal, on
average a higher temperature produces a lower TTS: this effect is moderate (on average,
−0.32 ◦C/◦C with a 95% confidence interval of (−0.46, −0.19) ◦C/◦C)), but statistically
very significant (the p-value for the slope is p = 7.10 × 10−05). The interpretation of the
rest of the variables, Mn, flux and P, may not be so evident in a visual inspection. To
assess their impact on the TTS, a regression linear fitting (on a semi-logarithm plot) of
the mean ICE (see Figure 14) was carried out for these attributes. The p-values of the
corresponding slopes were, respectively, p(Mn) = 4.084 × 10−07, p(Flux) = 5.081 × 10−07

and p(P) = 2.53 × 10−02. Therefore, in all cases, they were statistically significant at the 0.05
significance level. However, in all cases too, the slopes were small, producing a TTS change
of 9 ◦C per percentage increase in Mn, 12 ◦C per 1.0 × 1016 n·m−2·s−1 of flux and 14 ◦C per
percentage increase in P.

Figure 14. The graph shows the average influence of the fluence on the TTS. A linear relation with
R2 = 0.9859 can be observed for fluences between 3.38 × 1023 and 1.24 × 1024 n m−2.

Figure 12 shows noticeable interactions between the following couples of attributes:
Cu-fluence, Cu-Ni and fluence-Ni. In the case of Cu and fluence, it is observed that, except
for low values of the fluence (less than ~0.7 × 1023 n·m−2), Cu exerts a minor influence
on the TTS and the embrittlement is dominated by the level of irradiation. For fluences
above that limit, two regions can be distinguished: when Cu is approximately lower than
0.10–0.15%, it plays an important role in the embrittlement of the steel. On the other hand,
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for Cu > 0.15%, it is the fluence that mostly explains the TTS. With regards to the interaction
between Cu and Ni, the influence of Ni is only significant for Ni > 0.5%; specifically,
in the range 0.5 < Ni < 1.1%, the value of the TTS is influenced by the content of Ni
when Cu > 0.20%, approximately. A similar pattern can be appreciated for the interaction
between fluence and Ni. The latter plays a role when 1.1 < Ni < 1.3%. Finally, no interaction
seems to be observed between temperature and any of Cu, fluence or Ni.

To finish this discussion, it is necessary to note the possible limitations of our study.
First, as mentioned above, the dataset we used comprises the 1878 observations of the
PLOTTER database obtained from the surveillance programs of nuclear power reactors.
Therefore, our model includes only a limited quantity of observations with very high
values for fluence or flux, such as those that can be obtained in experimental reactors.
Regarding the representativeness of PLOTTER to make predictions for long-term operation,
this dataset includes fluences up to ~1 × 1024 n·m−2, with an acceptable population of
observations up to ~5 × 1023 n·m−2. As reported by ASTM, see [29], the fluence achieved at
the end of a particular operational duration depends on several factors, including, among
others, reactor design, fuel loading and capacity factor. In [29], estimates of 80-year fluences
for reactors now operating in the USA are given for BWRs that range from ~2 × 1021 to
2 × 1023 n/m2 (median value ~3 × 1022 n/m2), and for PWRs that range from ~2 × 1023 to
2 × 1024 n/m2 (median value ~7 × 1023 n/m2). Thus, while some reactors will experience
fluences at the upper end of the range where surveillance data now exist, many will not.
Likewise, [29] reports note that some new reactor designs will experience high fluences
(e.g., the Westinghouse AP-1000 has a 60-year design fluence of ~9 × 1023 n/m2). These
figures guarantee the representativeness of the range of fluence values in the PLOTTER
database and, at the same time, demonstrate the need to incorporate new data with higher
fluence to guarantee an adequate assessment of structural integrity under very long-term
operation. Undoubtedly, information coming from experimental reactors could be of great
value to obtain models based on machine learning algorithms to develop embrittlement
trend curves that provide more robust predictions for high fluence power plants during
life extension. In a complementary way, this underlines the importance of increasing the
population of observations available in PLOTTER because, as pointed out earlier, roughly
75% of the data correspond to TTS values under 60 ◦C.

From a practical perspective, it is worth considering the possibility of developing
codes and standards or regulatory guidance based on machine learning algorithms. The
information presented herein, as well as the similar study by Lee [22], suggests that modern
machine learning tools can achieve improved predictive accuracy relative to the analytical
ETC models traditionally used. Specifically, our study showed a 20% improvement in
TTS prediction accuracy relative to the ASTM E900-15 analytical model. One approach
would be to provide the complete code in Python; however, this may be impractical and
restrict potential users to those skilled in this programming languages as well as in machine
learning methods. Alternatively, a friendly application accessible for any user could be
developed. This approach has been used by one of the authors of this paper in a recent
contribution [30] where an application was created on the Microsoft.Net platform.

It should, however, be noted that from a theoretical perspective, predicting the TTS of
new observations is not a straightforward task, whether using ML or more conventional
analytical techniques. Kirk and Todeschini [31] have pointed out that the distribution of
the data available in PLOTTER is sparse in some regions, which may hinder the ability to
make predictions for specific plants. Different solutions can be implemented to avoid blind
decision-making. For example, Kirk et al. [32] have analyzed the possibility of developing a
local fitting using the KNN algorithm. In addition, there are specific methods developed to
decide whether a new observation belongs to the same distribution as existing observations
(it is an inlier), or should be considered as different (it is an outlier). In the latter case, the
application of the developed model may be questionable and/or counterproductive.
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5. Conclusions

The ASTM PLOTTER database that was used to inform the ASTM E900-15 TTS
was employed to train and validate a number of machine learning regression models
(multilinear, k-nearest neighbors, decision trees, support vector machines, random forest,
AdaBoost, gradient boosting, XGB, and multi-layer perceptron). The main conclusions are:

• Best results in the test set were provided by the GB algorithm, which provided a value
of R2 = 0.91 and a root mean squared error ≈10.5 ◦C for the test dataset. These results
outperformed the prediction ability of existing trend curves, including ASTM E900-15,
reducing the prediction uncertainty by ≈20%.

• The impurity-based and the permutation-based feature importances obtained from
the optimized GB model suggest that copper, fluence, and temperature are the most
important features in estimating TTS, while features such as phosphorus and man-
ganese play minor roles, in accordance with existing atomistic, physical and empirical
models on neutron embrittlement.

• Noticeable interactions between Cu-fluence, Cu-Ni and fluence-Ni were observed
• The individual conditional expectation (ICE) plot for Cu yielded a classification of low

Cu and high Cu consistent with the regression model of the ASTM E900-15.
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Abbreviations

∆YS Yield strength increase
AB AdaBoost
ANN Artificial neural networks
BWR Boiling water reactor
CART Classification and regression tree
ETC Embrittlement trend curve
GB Gradient boosting
ICE Individual conditional expectation
KNN K-nearest neighbors
LTO Long-term operation
LWR Light water reactor
MAE Mean absolute error
ML Machine learning
MLP Multi-layer perceptron
MLR Multiple linear regression
MTR Material test reactor
NRMSE Normalized root mean square error
PWR Pressurized water reactor
r Sample Pearson correlation coefficient
R2 Coefficient of determination
ReLu Rectified linear unit
RF Random forest
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RMSE Root mean square error
RPV Reactor pressure vessel
SVR Support vector regression
TTS Transition temperature shift
XGB Extreme gradient boosting
VVER Water-water energetic reactor
z z-score
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