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Abstract: In this work, a novel heterojunction based on ZnSnO3/ZnO nanofibers was prepared by
a simple electrospinning method. The crystal, structural, and surface compositional properties of
ZnSnO3 and ZnSnO3/ZnO composite nanofibers were investigated by X-ray diffractometer (XRD),
scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron
spectrometer (XPS), and Brunauer–Emmett–Teller (BET). Compared to pure ZnSnO3 nanofibers, the
ZnSnO3/ZnO heterostructure nanofibers had high sensitivity and selectivity response with the fast
response toward ethanol gas at low operational temperature. The sensing response of the sensor
based on ZnSnO3/ZnO composite nanofibers was 19.6 toward 50 ppm ethanol gas at 225 ◦C, which
was about 1.5 times superior to that of pure ZnSnO3 nanofibers. It can be owed mainly to the oxygen
vacancies and the synergistic effect between ZnSnO3 and ZnO.

Keywords: electrospinning; ZnSnO3/ZnO nanofibers; sensing performance; n-n heterojunction

1. Introduction

In recent years, with the increasing demand for the detection of toxic gases, volatile
organic compounds, and clinical gas analysis, gas sensor research has become more exten-
sive. High sensitivity, fast response, excellent selectivity, and long-term stability are the
basic parameters of the highly sensitive gas sensors [1]. Semiconductor metal oxide gas
sensors have attracted widespread attention due to their advantages such as fast response,
low cost, simple structure, and good compatibility. Semiconductor metal oxide materials
(e.g., NiO [2], SnO2 [3,4], ZnO [5], CuO [6], etc.) are widely used for their high performance,
cost-effectiveness, and excellent gas-sensing properties. Still, these binary oxide materials
operate at high temperatures, so the search for a sensing material with low operating
temperature and high sensitivity has become a focus of current research.

At present, ternary transition metal oxides as new gas-sensitive materials have received
widespread attention due to their excellent gas-sensitive properties, structural stability,
especially their unique energy band structure, and unique physical and chemical properties.
However, due to its low exposure area and low electron transfer, many ternary metal oxides
tend to show lower gas sensitivity [7]. Among the ternary tin-based metal oxides, ZnSnO3
is a typical perovskite structure oxide material with Zn at the A-site and Sn at the B-site.
Compared to ZnO and SnO2, ZnSnO3 has been widely used in gas sensors for its high
chemical sensitivity and excellent electrical properties [8]. The spatial arrangement of the
atoms in the ZnSnO3 system is an octahedron. The unique crystal structure of ZnSnO3 has
a lot of oxygen vacancies, providing more oxygen adsorption sites, which can promote
the reaction with reducing gases, thus improving gas sensitivity [8]. Many studies have
focused on single-component ZnSnO3 as a gas sensing material. Wang et al. [9] reported
that the sensing response to 100 ppm H2S of hollow, cubic-structured ZnSnO3 samples were
up to 1418 at an optimum operating temperature of 335 ◦C. ZnSnO3 nanomicrospheres
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were prepared by the hydrothermal method, which had high selectivity for n-butanol at
200 ◦C [10]. Wang et al. found that ZnSnO3 samples prepared by co-precipitation and
heat treatment had a high sensing response to ethanol, reaching 147 [11]. Researchers
have also designed heterogeneous structures to improve the gas-sensing performance,
such as ZnSnO3/TiO2, SnO2/TiO2, WO3/SnO2, and ZnSnO3/ZnO [12–15]. To further
improve the gas-sensitive performance of ZnSnO3, Yu et al. [16] compounded ZnSnO3
with CuO and found a sensing response to ethanol of up to 131. Zhang et al. [17] and
Cheng et al. [18] reported that ZnSnO3 was compounded with SnO2; due to the excellent
physical and chemical properties of both SnO2 and ZnSnO3, the gas-sensitive properties
of the SnO2/ZnSnO3 composite were significantly improved compared to both SnO2 and
ZnSnO3 materials. The cubic ZnSnO3/ZnO heterostructure showed a much improved
response to 50 ppm triethylamine compared to pure ZnSnO3 (Ra/Rg = 21) [15]. These
results indicated that heterostructures composed of MOx and ZnSnO3 had great potential
for gas-sensing applications.

Currently, researchers have prepared ZnSnO3 nanofibers with different morphologies
(e.g., spherical, polyhedral, etc.) [19,20], but there are few reports on nanofiber samples
with ZnSnO3-based heterojunctions. The electrospinning method can obtain nanofiber
materials with high specific surface area and different morphologies. Based on the above
considerations, ZnSnO3 nanofibers and ZnSnO3/ZnO composite nanofibers were synthe-
sized by electrospinning in this paper. The results of gas-sensitive performance of ZnSnO3
nanofibers and ZnSnO3/ZnO nanofibers showed that the ZnSnO3/ZnO nanofibers had a
lower operating temperature (225 ◦C), a sensitivity response of 19.6 at 50 ppm in ethanol
atmosphere, and better stability than ZnSnO3. A possible enhanced gas-sensing mechanism
was proposed.

2. Experimental Section
2.1. Material Preparation

A combination of electrospinning and calcination was used to prepare ZnSnO3/ZnO
nanofibers. The experimental procedure was as follows: First, appropriate amounts of
stannous chloride (SnCl2·2H2O) and zinc chloride (ZnCl2) were dissolved in a mixed
solution of 8 g N, N-dimethylformamide (DMF) and 12 g anhydrous ethanol under constant
stirring so that the molar ratio of Sn4+ to Zn2+ was 1:1.2. Next, 2 g of polyvinylpyrrolidone
(PVP; average molecular weight of 1,300,000 g·mol−1) was added and stirred thoroughly
to finally obtain the precursor solution required for the electrospinning method. Then, the
electrospinning precursor solution was loaded into a plastic syringe with a 22-gauge needle,
and the advance rate of the syringe pump was set at 0.4 mL·h−1. A voltage of 15 kV was
applied between the needle and the collector, and a layer of aluminum foil was wrapped
around the rotating receiver 20 cm from the needle to collect the fibers. The collected
precursor fibers were calcined in air at 450 ◦C for 2 h to obtain ZnSnO3/ZnO nanofibers.

2.2. Characterization

The physical phases of the calcined samples were analyzed by X-ray powder diffrac-
tometer (XRD, Bruker D8 Advance, Bruker, Billerica, MA, USA) using a copper target Kα line
with a scanning range of 20–60◦ and a scanning speed of 6◦/min. The field-emission scanning
electron microscopy (FESEM; Merlin Compact, Carl Zeiss AG, Oberkochen, Germany) and
transmission electron microscope (TEM; JEOL 2100F, JEOL Ltd., Tokyo, Japan) were used
to characterize the morphology of the samples. Thermogravimetric (TG) tests were carried
out by a thermal analysis system (Diamond TG/DTA, Perkin Elmer S. A., Waltham, MA,
USA) to determine the calcination temperature of the precursors. The weight of the sample
was 4–6 mg during the test, and it was heated to 600 ◦C at a heating rate of 15 ◦C/min.
The elemental composition and valence states in the material were characterized using
an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha, XPS, Thermo Fisher
Scientific, Waltham, MA, USA). The specific surface area of the prepared nanofibers was
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tested by Brunner–Emmet–Teller (BET, Micromeritics ASAP 2020, Micromeritics Instrument
Corporation, Norcross, GA, USA).

2.3. Gas-Sensitive Performance Measurement

A 200 mg sample of ZnSnO3/ZnO nanofibers was mixed well with 0.2 mL of deionized
water in an agate mortar and ground to a paste. Then, the ground paste sample was
uniformly coated on the surface of the Ag-Pd forked finger electrode on an Al2O3 substrate
and dried for a certain period of time to obtain the gas-sensitive element required for the
test. Before testing, the dried gas-sensitive components were aged in the air for 10 h. The
sensitivity response, operating temperature, and stability of the preparations were tested on
the CGS-1TP Intelligent Gas Sensitive Analysis System (Beijing Elite Technology Co., Ltd.,
Beijing, China).

3. Results and Discussion
3.1. Microstructure and Morphology

To determine the calcination temperature of the ZnSnO3 precursor obtained by elec-
trospinning methods, TG tests were carried out on the ZnSnO3 precursor under an air
atmosphere in the temperature range of 30–600 ◦C with a heating rate of 15 ◦C/min; the
results are shown in Figure 1a. Figure 1a shows an 8 wt % drop in sample mass at 300 ◦C.
This is due to the evaporation of organic solvents and the evaporation of gases and moisture
adsorbed on the surface of the ZnSnO3 precursor. The sharp decrease in sample mass
around 350 ◦C can be attributed to the decomposition of the precursor, while the significant
drop in the curve around 400 ◦C can be attributed to the decomposition of PVP. In addition,
no significant weight changes are observed above 450 ◦C, which proves that all organic
matter in the precursor decomposes at 450 ◦C and that calcination of the precursor at
temperatures higher than 450 ◦C is sufficient. Figure 1b shows the XRD results of the
ZnSnO3 and ZnSnO3/ZnO precursors after 2 h of calcination at 450 ◦C. A comparison
with the standard card (PDF No. 28–1486) shows that the XRD diffraction peaks at 2θ of
26.5◦, 33.7◦, 37.7◦, 51.6◦, and 54.6◦ correspond to the (012), (110), (015), (116), (018), and
(214) crystal planes of the ZnSnO3, respectively. The remaining XRD diffraction peaks
are compared with the standard card (PDF No. 65–3411) and are found to correspond to
(100), (101), (102), and (110) crystal planes at 2θ of 31.7◦, 36.3◦, 47.5◦, and 56.6◦, respectively.
The XRD diffraction peak corresponding to the standard card (PDF No. 65–3411) is the
diffraction peak of ZnO. The results show that ZnSnO3 and ZnSnO3/ZnO nanofibers are
successfully synthesized after calcination in air at 450 ◦C for 2 h.
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Figure 1. (a) TG results of ZnSnO3 precursors; (b) XRD patterns of ZnSnO3 and ZnSnO3/ZnO
calcined at 450 ◦C.

Figure 2a,b show the SEM results of the ZnSnO3 samples prepared after calcination
at 450 ◦C for 2 h in an air atmosphere. From Figure 2a, the ZnSnO3 samples after calci-
nation at 450 ◦C for 2 h in an air atmosphere are coarse and uniformly fibrous, with no
breakage of the continuous fibers. The average diameter of the ZnSnO3 sample is about
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300–400 nm, as shown in Figure 2b. Figure 2c,d show the SEM results of ZnSnO3/ZnO
samples prepared after calcination at 450 ◦C for 2 h in an air atmosphere. As can be seen
in Figure 2c, the ZnSnO3/ZnO samples exhibit uniformly coarse and fine fibers with no
fracture in the fiber continuity. The average diameter of the ZnSnO3/ZnO nanofibers
is even smaller, around 200 nm, as shown in Figure 2d. The TEM image in Figure 2d
indicates that the ZnSnO3/ZnO nanofibers have a hollow structure. According to the
results of Li et al. [21], the morphology of nanofibers or nanotubes is mainly dependent
on the calcination temperature. During calcination, PVP is gradually removed as the tem-
perature increases. The decomposition of the drug and the evaporation of the solvent will
generate a variety of gases. When the calcination temperature reaches 450 ◦C, the rate of
gas production from the decomposition of pharmaceuticals is too fast, and the pressure
difference between the interior and exterior of the nanofibers is more considerable, so the
hollow structure is formed [21]. The above experiments show that the diameter of the
ZnSnO3/ZnO nanofibers obtained by compounding ZnSnO3 with ZnO is significantly
reduced compared to the ZnSnO3 nanofiber samples. The BET analysis shows that the
specific surface area of the ZnSnO3/ZnO nanofibers (31.24 m2·g−1) was substantially larger
than that of pristine ZnSnO3 nanofibers (20.15 m2·g−1), as shown in Figure 2e,f.
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set in (d) TEM image of ZnSnO3/ZnO; (e,f) N2 adsorption–desorption isotherms of ZnSnO3 and
ZnSnO3/ZnO nanofibers.
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XPS is carried out to study the elemental composition and valence states in ZnSnO3/ZnO,
and the results are shown in Figure 3. Figure 3a shows the full XPS spectrum of the
ZnSnO3/ZnO nanofibers; we can observe that the obtained ZnSnO3/ZnO nanofibers con-
tain the elements Zn, Sn, C, and O. The peak at 284.8 eV corresponds to the spin-orbit peak
of C 1s. The broad XPS spectrums of the Zn 2p range, Sn 3d, and O 1s range are shown in
Figure 3b–d. In the case of the Zn 2p spectrum, the Zn 2p peak can be distributed into two
signals, as shown in Figure 3b. The Zn-2p3/2 and Zn-2p1/2 signals are focused at 1021.1 eV
and 1044.1 eV, respectively, which indicates that the chemical valence of Zn in the system is
+2 [22]. As shown in Figure 3c, the two peaks at 486.8 and 495.1 eV correspond to the Sn
3d5/2 and Sn 3d3/2 spin-orbit peaks, respectively. The bimodal spin-orbit shows a split value
of approximately 8.3 eV, indicating the presence of Sn4+ cations [23]. The O 1s spectrum
of the ZnSnO3 and ZnSnO3/ZnO is illustrated in Figure 3d,e, which is deconvolved into
three characteristic peaks by Gaussian fitting [16,24]. The three fitting peaks are attributed
to three essential oxygen species [25], which are denoted as OL, OV, and OC, respectively,
corresponding to O2− species in the lattice oxygen species, vacancy oxygen species (VOS),
and chemically adsorbed or dissociated oxygen species, respectively [26]. The three char-
acteristic peaks of O 1s in the ZnSnO3 nanofibers are located at 530.06 eV, 531.65 eV, and
533.13 eV. In contrast, the distinct peaks of O 1s in the ZnSnO3/ZnO nanofibers are located
at 529.99 eV, 531.33 eV, and 532.27 eV, which can be ascribed to the three significant oxygen
species, represented as OL, OV, and OC, respectively [17,27]. It must be pointed out that
the gas-sensing properties may be highly dependent on the type of VO (vacancy oxygen)
present on the semiconductor surface [28]. The proportion of oxygen species in the obtained
ZnSnO3 and ZnSnO3/ZnO nanofibers are shown in Figure 3f and Table 1. The results of
Figure 3f and Table 1 clearly indicate that compared with the percentage of Ov of ZnSnO3
nanofibers, that of ZnSnO3/ZnO nanofibers is substantially larger.
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Table 1. The proportion of oxygen species in obtained ZnSnO3 and ZnO/ZnSnO3 nanofibers.

Sample OL (%) OV (%) OC (%)

ZnSnO3 26.2% 32.4% 41.4%
ZnSnO3/ZnO 10% 44.3% 45.7%
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3.2. Gas-Sensitive Performances of ZnSnO3/ZnO Nanofibers

It is well known that changes in operating temperature can highly influence the gas-
sensing performances of sensing materials. To verify this, the response of the ZnSnO3
nanofibers and ZnSnO3/ZnO composite nanofibers toward 50 ppm ethanol gas is tested
at different temperatures, and the results are shown in Figure 4. For n-type devices, the
response value (S) of the reducing gas sensors are defined as S = Ra/Rg, where Ra is the
resistance of the sensor in air, and Rg is the resistance of the device in the target gases.
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Figure 4a shows that the response of the ZnSnO3 sample increases with increasing
temperature until the temperature rises to 300 ◦C; the maximum response value is 13.4.
Then, as temperature increases, the response decreases. Figure 4b shows the sensing re-
sponse of the ZnSnO3/ZnO composite nanofibers toward 50 ppm ethanol gas at different
temperatures. The results show that the optimum operating temperature and the maximum
sensing response value for ZnSnO3/ZnO composite nanofibers are 225 ◦C and 19.6, respec-
tively. The optimum operating temperature of the ZnSnO3/ZnO composite nanofibers is
significantly lower than that of the ZnSnO3 nanofibers. The sensing response has also been
improved, with a 46.3% increase in the sensing response.

To further investigate the gas-sensing performance of the ZnSnO3/ZnO composite
nanofibers, the response of the ZnSnO3 and ZnSnO3/ZnO nanofibers in the different
concentrations of ethanol and the stability of the response to 50 ppm ethanol was tested at
the optimum operating temperature, respectively. The results are shown in Figure 5. As
shown in Figure 5a, the response of the ZnSnO3 nanofibers increases with increasing ethanol
concentration because with increasing ethanol concentration, more ethanol molecules react
with the oxygen ions adsorbed on the surface of the material, resulting in a higher carrier
concentration and thus a subsequent increase in the response of the material. Figure 5b
shows that the response of the ZnSnO3/ZnO composite nanofibers increases with increasing
ethanol concentration. In contrast, the response of the ZnSnO3/ZnO samples is higher than
that of the ZnSnO3 samples at the same concentration of ethanol.

Figure 5c,d show the response stability of the ZnSnO3 sample and the ZnSnO3/ZnO
samples under ethanol atmosphere at 50 ppm, respectively. As can be seen from Figure 5c,d,
the ZnSnO3 and ZnSnO3/ZnO samples show no significant fluctuations in response af-
ter six repeated exposures to ethanol at 50 ppm, indicating that both the ZnSnO3 and
ZnSnO3/ZnO samples have good stability. The above experimental results show that the
ZnSnO3/ZnO samples have a lower working temperature, higher response, and better
stability for ethanol atmosphere than that of the ZnSnO3 samples.
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3.3. Gas-Sensing Mechanism

The sensing mechanism based on the metal oxide semiconductor gas sensor is the
changed resistance caused by the adsorption and desorption of the target gas molecules on
the surface of sensing materials, which depends mainly on the concentration and mobility
of the charge. Therefore, the gas-sensitive mechanism of the ZnSnO3 and ZnSnO3/ZnO
composite nanofibers can be understood simply as a surface-controlled mechanism. The
change in resistance depends on the type and amount of oxygen chemisorbed on the surface.
In air atmosphere, the resistance of ZnSnO3 and ZnSnO3/ZnO composite nanofibers is
primarily controlled by the concentration of adsorbed oxygen (O−, O−2 , and O2−). The
variation in response for ZnSnO3 nanofibers is mainly related to the adsorption–desorption
reaction of ethanol gas on the surface of ZnSnO3 samples. ZnSnO3 is a typical N-type
semiconductor material, when it is in the air, oxygen molecules adsorbed on the surface of
ZnSnO3 gain electrons and thus convert into O−, O−2 , and O2− ions (Equation (1)). When a
certain amount of oxygen ions accumulated on the material surface reaches equilibrium,
an electron depletion layer (EDL) is formed on the material surface, which results in a
high sensor resistance (Ra) and a relatively high potential barrier, as shown in Figure 6a.
However, when ZnSnO3 is placed in an ethanol atmosphere, the ethanol molecules react
with oxygen ions (Equation (2)). As shown in Figure 6b, the consequent decrease in
potential barrier height and the narrowing of the EDL width result in a reduction of the
sensor resistance (Rg). The equations for the above process reaction are as follows [29]:

O2(gas)↔ O2(ads) O2+e− → O−, O−2 , O2− (1)

C2H5OH + 6O2−(ads)↔ 2CO2 + 3H2O + 12e− (2)
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According to reference [15], since both ZnSnO3 and ZnO are N-type semiconductor
materials, ZnO is successfully compounded with ZnSnO3 to form a homotypic hetero-
junction (i.e., N-N junction); this N-N junction is a critical factor in improving the ethanol
gas sensitivity between ZnSnO3 and ZnO. There were differences in the Fermi energy
levels of the two connected semiconductor compounds. The transfer of electrons from
higher energy states to lower energy states until equilibrium is reached at the Fermi energy
level resulted in the formation of a depletion layer in the interface region. In contrast to
ZnSnO3, the electrons on the ZnSnO3 conduction band in the ZnSnO3/ZnO sample are
transferred to the ZnO conduction band to be trapped by oxygen molecules, resulting in
the formation of a large number of oxygen anions. At the same time, the electron depletion
layer appears near the surface of ZnSnO3/ZnO, which is an essential component of the
gas-sensing process. In an air environment, the increased height of the potential barrier of
the ZnSnO3/ZnO heterostructured composite makes electron transfer more difficult (as
shown in Figure 6c), which also leads to a significant increase in sensor resistance (Ra). In an
ethanol environment, the reaction of ethanol molecules with oxygen ions releases electrons
back into the ZnSnO3/ZnO heterojunction, resulting in an increase in electron concentra-
tion. This reduces the potential barrier height of ZnSnO3 and ZnO, considerably reducing
the sensor resistance (Rg), as shown in Figure 6d. The analysis of the above gas-sensitive
properties reveals that compared to the ZnSnO3 nanofibers, the heterogeneous structure
of the ZnSnO3/ZnO composite nanofibers enhances electron transport and enables the
effective separation of electrons and holes. According to Equation (1) and Equation (2), the
larger specific surface area of ZnSnO3/ZnO facilitates the adsorption of more oxygen on its
surface, producing a large amount of oxygen ions, thus resulting in higher sensor resistance
(Ra) and the lower sensor resistance (Rg). So, the gas-sensing response of ZnSnO3/ZnO
composite nanofibers increases.

Compared to ZnSnO3 nanofibers, ZnSnO3/ZnO composite nanofibers have a larger
VOs of 44.3%, which is almost 1.5 times that of ZnSnO3 nanofibers, which is conducive to
improving the sensing performance of gas-sensitive materials [30]. It is also suggested that
in the “chemical sensitization” mechanism established by the spillover effect, ZnO plays a
vital role in activating the dissociation rate of molecular oxygen [31].
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4. Conclusions

In conclusion, ZnSnO3 nanofibers and ZnSnO3/ZnO composite nanofibers were
successfully prepared using a simple electrospinning method. The average diameter of
the ZnSnO3/ZnO composite nanofibers was approximately 200 nm. Compared to ZnSnO3
nanofibers, ZnSnO3/ZnO nanofibers had a lower operating temperature (225 ◦C), higher
response (19.6), and better stability in an ethanol atmosphere, which can be owed mainly
to the presence of oxygen vacancies and the synergistic effect between ZnSnO3 and ZnO.
The results confirmed that the ZnSnO3/ZnO nanofibers could be an outstanding potential
candidate for ethanol detection.
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