Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Apparatus and Method
2.3. Characterization Methods
3. Results
3.1. Effect of Iron Ore Fines on NOx Emission Characteristics in Pulverized Coal Combustion
3.2. Variation in Flue Gas Components during Oxidative Roasting of Iron-Bearing Pure Minerals
3.3. Influence of Iron-Bearing Pure Minerals on NOx Emission Characteristics in Pulverized Coal Combustion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, L.; Kim, H.; Lee, C.; Jung, S.M. Mechanism of NOx Formation from Nitrogen in the Combustion of the Coals Used in Sintering Process. Metall. Mater. Trans. B 2020, 51, 2068–2078. [Google Scholar] [CrossRef]
- Zhu, T.Y. Sintering Flue Gas Purification Technology; Chemical Industry Press: Beijing, China, 2009; pp. 231–252. [Google Scholar]
- Ni, W.; Li, H.; Zhang, Y.; Zou, Z. Effects of Fuel Type and Operation Parameters on Combustion and NOx Emission of the Iron Ore Sintering Process. Energies 2019, 12, 213. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhou, M.; Liu, Z.; Cheng, M.; Chen, J. Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation. Fuel 2016, 179, 322–331. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Z.; Wang, Z. Influence of CeO2 on NOx emission during iron ore sintering. Fuel Process. Technol. 2009, 90, 933–938. [Google Scholar] [CrossRef]
- Ping, L.; Hao, J.; Wei, Y.; Zhu, X.; Xin, D. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning. Fuel 2015, 170, 60–66. [Google Scholar]
- Mukherjee, S. Applied Mineralogy; Springer: Dordrecht, Germany, 2011; pp. 428–489. [Google Scholar]
- Chen, T.J. Theory and Technology of Modern Sintering and Agglomeration; Metallurgical Industry Press: Beijing, China, 2018. [Google Scholar]
- Fan, X.; Zhao, Y.; Ji, Z.; Li, H.; Gan, M.; Zhou, H.; Chen, b.; Huang, X. New understanding about the relationship between surface ignition and low-carbon iron ore sintering performance. Process Saf. Environ. 2021, 146, 267–275. [Google Scholar] [CrossRef]
- Speth, K.; Murer, M.; Spliethoff, H. Experimental Investigation of Nitrogen Species Distribution in Wood Combustion and Their Influence on NOx Reduction by Combining Air Staging and Ammonia Injection. Energy Fuels 2016, 30, 5816–5824. [Google Scholar] [CrossRef]
- Xu, M.X.; Li, S.Y.; Wu, Y.H.; Jia, L.S.; Lu, Q.G. Effects of CO2 on the fuel nitrogen conversion during coal rapid pyrolysis. Fuel 2016, 184, 430–439. [Google Scholar] [CrossRef]
- Gan, M.; Fan, X.; Lv, W.; Chen, X.; JI, Z.; Jiang, T.; Yu, Z.; Zhou, Y. Fuel pre-granulation for reducing NOx emissions from the iron ore sintering process. Powder Technol. 2016, 301, 478–485. [Google Scholar] [CrossRef]
- Gan, M.; Ji, Z.; Fan, X.; Zhao, Y.; Chen, X.; Fan, Y. Insight into the high proportion application of biomass fuel in iron ore sintering through CO-containing flue gas recirculation. J. Clean. Prod. 2019, 232, 1335–1347. [Google Scholar] [CrossRef]
- Wo, C.N. NOx Formation of Pulverized Coal under Pressure Oxygen-Enriched Combustion. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Lu, L. Iron Ore: Mineralogy, Processing and Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 640–658. [Google Scholar]
- Gan, M.; Fan, X.; Ji, Z.; Jiang, T.; Chen, X.; Yu, Z.; Li, G.; Yin, L. Application of biomass fuel in iron ore sintering: Influencing mechanism and emission reduction. Ironmak. Steelmak. Processes Prod. Appl. 2014, 42, 27–33. [Google Scholar] [CrossRef]
- Mo, C.L.; Teo, C.S.; Hamilton, I.; Morrison, J. Admixing Hydrocarbons in Raw Mix to Reduce NOx Emission in Iron Ore Sintering Process. ISIJ Int. 1997, 37, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.G.; Guo, Z.C.; Wang, Z. Application of Modified Coke to NOx Reduction with Recycling Flue Gas during Iron Ore Sintering Process. ISIJ Int. 2008, 11, 1517–1523. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.L.; Wang, J.Y.; Wei, S.S.; Guo, Z.G.; Yang, J.; Wang, Q.W. Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Appl. Energy 2017, 207, 230–242. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Fan, X.H.; Gan, M.; Chen, X.L.; Lv, W. NOx Reduction in the Iron Ore Sintering Process with Flue Gas Recirculation. JOM 2017, 69, 1570–1574. [Google Scholar] [CrossRef]
- Locci, C.; Vervisch, L.; Farcy, B.; Domingo, P.; Perret, N. Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling. Flow Turbul. Combust. 2017, 100, 301–340. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Baeyens, J.; Seville, J. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 2010, 34, 1393–1409. [Google Scholar] [CrossRef]
- Procházka, L.; Mec, P. Possibility of using fly ash after denitrification by SNCR as admixture in alkali-activated materials. Mater. Today Proc. 2021, 37, 42–47. [Google Scholar] [CrossRef]
- Chen, X.P.; Liu, Q.; Wu, Q.; Luo, Z.K.; Zhao, W.T.; Chen, J.J.; Li, J.H. A hollow structure WO3-CeO2 catalyst for NH3-SCR of NOx. Catal. Commun. 2021, 149, 106252. [Google Scholar] [CrossRef]
- Jiang, B.Q.; Zhao, S.; Wang, Y.L.; Wenren, Y.S.; Zhang, X.M. Plasma-enhanced low temperature NH3-SCR of NOx over a Cu-Mn/SAPO-34 catalyst under oxygen-rich conditions. Appl. Catal. B Environ. 2021, 286, 119886. [Google Scholar] [CrossRef]
- Xu, G.Y.; Guo, X.L.; Cheng, X.X.; Yu, J.; Fang, B.Z. A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 2021, 13, 7052–7080. [Google Scholar] [CrossRef] [PubMed]
- Carlos, L.; Moreno-Pirajan, J.C. Adsorption microcalorimetry Characterisation of activated carbons and their application in the study of NOx retention. J. Therm. Anal. Calorim. 2015, 121, 245–255. [Google Scholar]
- Song, Z.J.; Wang, B.; Yang, W.; Chen, T.; Sun, L. Research on NO and SO2 removal using TiO2 supported iron catalyst with vaporized H2O2 in a catalytic oxidation combined with absorption process. Environ. Sci. Pollut. Res. 2020, 27, 18329–18344. [Google Scholar] [CrossRef]
- Morioka, K.; Inaba, S.; Shimizu, M.; Ano, K.; Sugiyama, T. Primary Application of the "In-Bed-deNOx" Process Using CaFe Oxides in Iron Ore Sintering Machines. ISIJ Int. 2000, 40, 280–285. [Google Scholar] [CrossRef]
- Han, H.J.; Chen, Y.G.; Yu, F.M.; Li, J.L.; Wang, B.H. Simulation Investigation of NO Reduction by CO in Sintering Process. Adv. Mater. Res. 2013, 781–784, 2590–2593. [Google Scholar] [CrossRef]
- Pan, J. Theoretical and Process Studies of the Abatement of Flue Gas Emissions during Iron Ore Sintering. Ph.D. Thesis, Central South University, Changsha, China, 2007. [Google Scholar]
- Hao, Z.; Liu, Z.; Ming, C.; Zhou, M.; Liu, R. Influence of Coke Combustion on NOx Emission during Iron Ore Sintering. Energy Fuels 2015, 29, 974–984. [Google Scholar]
- Lv, W.; Fan, X.; Min, X.; Gan, M.; Chen, X.; Ji, Z. Formation of Nitrogen Mono Oxide (NO) during Iron Ore Sintering Process. ISIJ Int. 2017, 58, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Que, Z.; Ai, X. Effects of Iron Ores on the Combustion Behavior of Coke and NOx Emission during Sintering Process. ISIJ Int. 2021, 5, 1412–1422. [Google Scholar] [CrossRef]
- Cho, S.; Rocha, L.T.D.; Chung, B.J.; Jung, S.M. Effects of Adding Calcined Dolomite and Mill Scale to Sinter Mix on the Formation of NO and SO2 in Iron Ore Sintering Process. Metall. Mater. Trans. B 2022, 53, 1936–1947. [Google Scholar] [CrossRef]
- Que, Z.G.; Ai, X.B.; Wu, S.L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int. J. Miner. Metall. Mater. 2021, 28, 1453–1461. [Google Scholar] [CrossRef]
- Chen, Y.G.; Guo, Z.C.; Wang, Z. Simulation of NO Reduction by CO in Sintering Process. J. Iron Steel Res. 2009, 21, 6–9. [Google Scholar]
- Sugimoto, Y.; Kawashima, H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification. Fuel 2003, 82, 2057–2064. [Google Scholar]
- Shi, B.; Wan, J.; Chen, T.; Zhou, X.; Luo, Y.; Liu, J.; Hu, M.; Wang, Z. Study on Double-Layer Ignition Sintering Process Based on Autocatalytic Denitrification of Sintering Layer. Minerals 2022, 12, 33. [Google Scholar] [CrossRef]
Raw Materials | TFe | FeO | SiO2 | CaO | Al2O3 | MgO | MnO2 | V2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|
Iron Ore Fines | 61.47 | 2.88 | 5.4 | 0.16 | 1.52 | 0.08 | 0.31 | 0.008 | 5.14 |
C | H | N | S | Mad | Aad | Vad | Fcad |
---|---|---|---|---|---|---|---|
83.73 | 0.725 | 0.645 | 0.186 | 1.45 | 15.06 | 3.63 | 79.86 |
Test Conditions | X(NOx)/ppm | P(NOx) | R(NOx) |
---|---|---|---|
Coal | 244 | 1 | 1.00 |
Iron ore fines | 30 | 0.12 | 0.05 |
Coal and iron ore fines (minus the amount of NOx produced by iron ore fines) | 515 | 2.11 | 1.89 |
Test Conditions | X(NOx)/ppm | P(NOx) | R(NOx) |
---|---|---|---|
Coal | 244 | 1 | 1.00 |
Hematite | 9 | 0.04 | 0.04 |
Magnetite | 27 | 0.11 | 0.05 |
Specularite | 9 | 0.04 | 0.03 |
Siderite | 28 | 0.11 | 0.12 |
Limonite | 51 | 0.21 | 0.12 |
Test Conditions | X(NOx)/ppm | P(NOx) | R(NOx) |
---|---|---|---|
Coal | 244 | 1 | 1.00 |
Coal + Hematite | 408 | 1.63 | 1.26 |
Coal + Magnetite | 327 | 1.23 | 0.84 |
Coal + Specularite | 343 | 1.37 | 1.02 |
Coal + Siderite | 346 | 1.31 | 0.97 |
Coal + Limonite | 537 | 1.99 | 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Chen, T.; Zhou, X.; Liu, J.; Shi, B.; Wang, Z.; Li, L. Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process. Metals 2022, 12, 1206. https://doi.org/10.3390/met12071206
Wan J, Chen T, Zhou X, Liu J, Shi B, Wang Z, Li L. Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process. Metals. 2022; 12(7):1206. https://doi.org/10.3390/met12071206
Chicago/Turabian StyleWan, Junying, Tiejun Chen, Xianlin Zhou, Jiawen Liu, Benjing Shi, Zhaocai Wang, and Lanlan Li. 2022. "Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process" Metals 12, no. 7: 1206. https://doi.org/10.3390/met12071206
APA StyleWan, J., Chen, T., Zhou, X., Liu, J., Shi, B., Wang, Z., & Li, L. (2022). Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process. Metals, 12(7), 1206. https://doi.org/10.3390/met12071206