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Abstract: High porosity phenomena of U-10Mo fuel foil appear in the U–Mo/Al monolithic fuel
plate under deep burnup. In this study, the fuel skeleton creep-based bubble growth model is
further improved with the intrusion effect of solid fission products, multiplying the reduction factor
in the bubble volume to obtain the bubble pressure. With the locally enhanced irradiation creep
of the Mo-depleted region considered, a simulation of the thermo-mechanical coupling behaviors
of the monolithic fuel plate L1P7A0 is carried out, based on the commercial finite element (FE)
analysis code ABAQUS. A fission-induced creep rate coefficient of 250 × 10−22 mm3/(fission·MPa) is
identified for the Mo-depleted region, with the predictions of porosity and the thickness deformation
of U–Mo fuel foil agreeing well with the experimental data. The research results indicate that:
(1) the locally enhanced fuel skeleton creep ability is responsible for the higher porosities near the
U–Mo/Zr interface; (2) the entrance of solid fission products into the fission bubbles at high burnup
is the dominant factor in inducing high porosity in the regions of the most heavily irradiated fuel
foil, especially near the fuel foil edge bearing the elevated external hydrostatic pressures; (3) with
the intrusion effect of solid fission products considered, the prediction of the porosity increases
from ~15% to ~35% near the fuel foil edge; (4) the intrusion of solid fission products leads to extra
differences between the bubble pressure and the external pressure, and simultaneously results in the
strengthened fuel skeleton creep deformation contributions to the bubble growth.

Keywords: Mo-depleted region; porosity; fission-induced creep rate coefficient; intrusion effect of
solid fission products

1. Introduction

Different from other energy sources [1–3], nuclear energy is a clean energy source,
which plays a significant role in the de-carbonization strategy and energy crisis [4]. U–
10Mo/Al monolithic fuel plates consist of U–10Mo fuel foil, Al alloy cladding and a Zr
diffusion barrier layer, regarded as the most potential candidates for advanced research and
test reactors due to their high uranium density and stable irradiation performance [5–7].
The post-irradiation examination indicates that the porosities near the U–Mo/Zr inter-
face are higher than those of the other parts, with gradually expanding differences with
the fission density [8–10]. In particular, a porosity of ~32% for the irradiated fuel plate
L1P7A0 [8] appears near the fuel foil edge subjected to enhanced constraints, with a maxi-
mum of ~35% surrounding the U–Mo/Zr interface. This high porosity results in mechanical
property deterioration [11–13], becoming an important potential fracture mechanism of
fuel foil [8–10].

The Mo-depleted zone near the U–10Mo/Zr interface has been observed in the mi-
crostructural analysis of the as-fabricated U–10Mo monolithic fuel plate [9,10], with the
presence of the α−U phase. It is known that the fuels dominated by α−U easily trigger
high fission gas swelling [9]. In addition, the concentration of the Mo element affects the
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thermo-mechanical properties of U–Mo alloys, including the elastic parameters [14–16], the
thermal conductivity [15,16], the tensile strength [14,15] and the creep behaviors [15,17]. At
lower Mo concentrations, the Young’s modulus and tensile strength of un-irradiated U–Mo
alloys are reduced [14], and the thermal conductivity and creep rate increase [15–17]. Con-
sequently, the local depletion of Mo is responsible for occurrences of cracking and enlarged
porosity near the U–Mo/Zr interface of the irradiated U–10Mo monolithic fuel plate [10].
However, the simulation and analysis of the thermo-mechanical coupling behaviors with
the Mo-depleted effects involved near the U–Mo/Zr interface have not been reported.

It can be obtained from the available simulation results that the influences of elastic
parameters and thermal conductivity on the thermo-mechanical behaviors of fuel plates
are slight [18]. According to the fuel skeleton creep-influenced volume growth model
for U–10Mo fuels [19], it is understandable that the bubble volume growth could be
strengthened by the augmented irradiation creep rate coefficient of the Mo-depleted zone,
due to its enhanced creep deformation ability [15,17]. The measured porosity values of the
irradiated fuel plate L1P7A0 [8] cannot be predicted by the available fission gas swelling
models [19–21], and the predictions under high burnup levels would be much lower than
the experimental data near the fuel foil edge due to the cladding constraint-induced high
hydrostatic pressure. As a result, the high porosity phenomena of U–Mo fuel foil under deep
burnup would have some other influencing factors. The post-irradiation examination [8]
demonstrates that the solid fission product Neodymium (Nd) intruded into the fission gas
bubbles is proposed as the driver of fission bubble interconnection under deep burnup.
The intrusion of solid fission products into the bubbles occupies the volume of fission
gas atoms, leading to higher bubble pressures and possibly inducing additional bubble
growth [19]. Hence, it is necessary to combine the relevant experimental data to improve
the newly developed bubble growth model [19], involving the important intrusion effect
of solid fission products. Thus, further numerical simulation of the irradiation-induced
thermo-mechanical behaviors of monolithic fuel plates should be performed, to reveal the
mechanism of high porosity near the U–Mo/Zr interface and fuel foil edge.

In this study, the fuel skeleton creep-based bubble growth model is further improved to
allow for the intrusion effect of solid fission products. With the locally enhanced irradiation
creep characteristics of the Mo-depleted region fully considered, the irradiation-induced
thermo-mechanical behaviors of monolithic fuel plates are numerically investigated. The
irradiation creep coefficient of the Mo-depleted region is identified by making the predic-
tions of porosity match the experimental data. The mechanism of high porosity in the
heavily irradiated U–10Mo fuel foil is discussed.

2. Improved Fuel Skeleton Creep-Based Volume Growth Model for U–Mo Fuels

The fuel skeleton creep-based volume growth strain increment model for U–Mo fuels
was developed in our previous work [19], based on the equivalent spherical model as
shown in Figure 1. The homogenized volume growth strain increment ∆εvg was obtained
with a multi-scale correlation method, including the contributions of thermal expansion,
fission solid swelling and fission-induced creep of the fuel skeleton, expressed as: [19]

∆εvg = ∆εsws
m + ∆εth

m + ṽt∆ε
g
local (1)

where ṽt is the current volume fraction of the bubble-contained region [19]; ∆εsws
m and

∆εth
m are the logarithmic strain increments of the fuel skeleton, induced by the solid fission

products and the thermal expansion; ∆ε
g
local denotes the local strain increment contributed
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from the fuel skeleton creep for the bubble-contained region. These strain increments were
obtained using: [19]

∆εsws
m = 1

3 ln
(

1+θt+∆t
ss +θt

th
1+θt

ss+θt
th

)
∆εth

m = 1
3 ln
(

1+θt+∆t
ss +θt+∆t

th
1+θt+∆t

ss +θt
th

)
∆ε

g
local =

3A
.
f φt

l ∆t
8(1−φt

l )

(
Pt − Ht

p + Pt+∆t − Ht+∆t
p

) (2)

where θth is the thermal expansion-induced volumetric strain [19]; θss is the volumetric
strain, induced by the solid fission products [19]; A is the creep rate coefficient of U–Mo fuel
skeleton in mm3/(fission·MPa);

.
f is the fuel fission rate in fission/(mm3·s); ∆t is the time

increment in s; P is the bubble pressure in MPa; Hp is the macroscale external hydrostatic
pressure in MPa for porous fuels; and φt

1 is the local porosity of the bubble-contained region
at time t, expressed as: [19]

φt
l =

Vt
bubble

Vt
bubble + V0

(
vt+∆t

r + v0
r

(
1 − vt+∆t

r

))(
1 + θt

ss + θt
th

) (3)

where V0 denotes the original volume of the equivalent spherical grain; vt+∆t
r is the volume

fraction of the recrystallized zone [21]; v0
r is the volume fraction of the bubble-contained

region in the rest of the un-recrystallized zone [19]; and Vt
bubble is the bubble volume in a

grain at time t.
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Figure 1. The sketch of the multi-scale equivalent spherical model.

It is noted that the local strain increment ∆ε
g
local is dependent on the creep rate coef-

ficient of the fuel skeleton and the pressure difference between the bubble pressure and
the macroscale hydrostatic pressure. It was mentioned in Section 1 that the solid fission
product Nd would intrude into the fission gas bubbles. Hence, due to the intrusion of
Nd [8], the space where the fission gas atoms reside is condensed, enlarging the bubble
pressure and changing the solid fission product contribution, as shown in Figure 1. In fact,
a part of solid fission product contribution is transferred to the bubble growth, represented
by ∆ε

g
local, and the original contribution ∆εsws

m should therefore be adjusted. Given that
the predicted results of the total irradiation swelling [19] agree well with the experimental
data [22], when the fission density is lower than ~7 × 1027 fission/m3, the improved models
for the bubble pressure and fission solid swelling in the study are displayed as:

P =


NΣkT

Vbubble−hsbv NΣ
Fd < 7 × 1027fission/m3

NΣkT
Vt+∆t

bubble· fb−hsbv NΣ
Fd ≥ 7 × 1027fission/m3 (4)
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θss =

{
0.04Fd Fd < 7 × 1027fission/m3

0.28 + fs(Fd − 7) Fd ≥ 7 × 1027fission/m3 (5)

where k is the Boltzmann constant; T is the temperature in K; hs is the fitting parameter [23];
bv is the van der Waals constant for a Xe atom [19]; NΣ is the number of fission gas atoms
in all the bubbles of the equivalent spherical grain [19,20]; Fd is the fission density in
1027 fission/m3; fb is the reduction factor of the actual bubble volume; and fs is the factor
to describe the intrusion of the solid fission product into the gas bubbles.

As a result, the bubble volume Vt+∆t
bubble, macroscale porosity φt+∆t and local porosity

φt+∆t
l for the porous fuels can be updated as: [19]

Vt+∆t
bubble = Vt

bubblee
3(∆εth

m+∆εsws
m +

∆ε
g
local
φt

l
)

φt+∆t =
Vt+∆t

bubble
Vt+∆t

bubble+V0(1+θt+∆t
ss +θt+∆t

th )

φt+∆t
l =

Vt+∆t
bubble

Vt+∆t
bubble+V0(vt+∆t

r +v0
r (1−vt+∆t

r ))(1+θt
ss+θt

th)

(6)

Detailed information on the idea and derivation process for the volume growth strain
model can be found in ref. [19].

3. Finite Element Modeling of the In-Pile Thermo-Mechanical Coupling Behaviors in
the Fuel Plate L1P7A0
3.1. Finite Element Model

The fuel plate L1P7A0, consisting of the U–Mo fuel foil, Al alloy cladding and Zr
alloy diffusion barrier in the RERTE-12 campaign, was chosen to be simulated [24]. The
U–10Mo fuel foil was prepared using hot rolling followed by cold rolling [25]. The Zr
diffusion barrier layers were co-rolled on both surfaces of the fuel foil using a hot co-
rolling process [25]. Then, the Al cladding was subsequently bonded to the fuel foil by hot
isostatic pressing (HIP) [9,11,25]. Hence, the interfaces of the fuel plate were well-bonded
and stable [26]. According to ref. [8], the zone with a thickness of 0.015 mm, close to the
U–Mo/Zr interface, was assumed to be the Mo-depleted region, as shown in Figure 2a.
According to the symmetries in the boundary conditions and geometric structure, half of
the whole fuel plate was selected as the finite element model. The corresponding boundary
conditions and mesh grid figure are given in Figure 2b and Figure 2c, respectively. The
non-homogenous mesh grid was applied in both the length and width directions of the fuel
plates, with a maximum size of 0.5 mm and minimum size of 0.15 mm. There were ten layers
of cladding, two layers of the Zr alloy barrier diffusion layer, three layers of the Mo-depleted
region and six layers of the U–10Mo region. The whole finite element model contained
1,082,488 nodes and 1,022,511 elements of the type C3D8RT (8-node thermally coupled
brick, tri-linear displacement and temperature with reduced integration and hourglass
control), satisfying convergence. It should be mentioned that the numerical convergence
was controlled by the results of important stresses and strains. The average fission density
and neutron flux evolutions are displayed in Figure 3, obtained according to the information
in ref. [24]. The corresponding average fission rate was derived from the total average
fission density and irradiation time. The local fission rates were interpolated based on the
ratios of the local fission rates to the average value in the 2D Gradient Maps [24].
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3.2. Modeling Approach

To investigate the in-pile thermo-mechanical coupling behaviors of the U–10Mo/Al
monolithic fuel plate and obtain the porosity of U–Mo fuel foil, a commercial finite element
(FE) analysis code ABAQUS (version 6.13, Abaqus Inc., Providence, RI, USA) was utilized.
Three-dimensional incremental constitutive relationships and stress update algorithms
were developed for the U–Mo fuel foil, Al alloy cladding and Zr alloy diffusion barrier
layers [19]. The user subroutines of UMAT and UMATHT were utilized to define their
thermo-mechanical constitutive relations. The models of the thermal expansion, irradiation-
affected plasticity, creep, elastic constants and thermal conductivity for the Al alloy cladding
can be found in refs. [17,27,28]. Regarding the Zr alloy diffusion barrier layer, the models of
thermal expansion [29], irradiation creep [29], irradiation-affected plasticity [30], irradiation
growth [30], elasticity [29,31] and thermal conductivity [29] were involved.

As shown in ref. [19], in the mechanical constitutive relation for the U–Mo fuel foil,
the total deformation contributions for a macroscale material point were composed of
elastic strain, volume growth strain and deviatoric stress-related macroscale irradiation
creep strain. It is noted that the creep deformation of the fuel skeleton results in macroscale
volume growth strain, induced by the macroscale hydrostatic pressure (negative of the
macroscale spherical stress). Simultaneously, the macroscale deviatoric stresses lead to
the macroscale creep strains, with the macroscale irradiation creep rate related to the
macroscale porosity, expressed as: [17,19,32]

.
ε

cr
= A

(
1 + 1250φ2

)
σ

.
f (7)

where
.
ε

cr is the macroscale rate of U–Mo fuel in s−1; φ depicts the macroscale porosity;
A denotes the creep rate coefficient of U–Mo fuel skeleton in mm3/(fission·MPa);

.
f is

the fission rate in fission/(mm3·s); and σ is the von Mises stress in MPa. Using the creep
constitutive theory and the trapezoidal integration yields:

ε
cr(t+∆t)
ij = ε

cr(t)
ij +

3
(

St
ij + St+∆t

ij

)
4

× A
(

1 + 1250(φt)
2
) .

f ∆t (8)

where εcr
ij are the macroscale creep strain components and Sij are the deviatoric stresses.

It should be mentioned that the creep rate coefficient for the Mo-depleted region
needs to be identified, as it is different from the U–10Mo creep rate coefficient of
180 × 10−22 mm3/(fission·MPa) [19,20]. The other properties of the Mo-depleted region
are assumed to be consistent with those of U–10Mo alloy.

4. Results and Discussion

The creep rate coefficient for the Mo-depleted region and the model parameters of fb
and fs in Equations (4) and (5) are identified by making the predictions agree well with
the experimental results in ref. [8]. In this section, the calculated results of macroscale
porosity and thickness deformation (∆H/H0) are firstly presented and compared with the
experimental data, with various values for the creep rate coefficient of the Mo-depleted
region and the model parameters fb and fs. Subsequently, the underlying mechanism
analysis of high porosity in the U–10Mo monolithic fuels at high burnup is discussed.

4.1. Predictions of the Macroscale Porosity and the Thickness Deformation for the Fuel Foil

The FE results of macroscale porosity on the 137.2th day are presented in Figure 4
for three cases. The case with fb = 0.4 and fs = −0.4 considers the intrusion of solid
fission products into the gas bubbles, described with Equations (4) and (5). The case
with fb = 1.0 and fs = 0.4 denotes that the volume growth strain model is identical to the one
in ref. [19]. Simultaneously, the contour plots in Figure 4a,b are obtained with a larger creep
rate coefficient of 250 × 10−22 mm3/(fission·MPa) for the Mo-depleted region, and those in
Figure 4c are acquired with the same creep rate efficient of 180 × 10−22 mm3/(fission·MPa)
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for the whole fuel foil. One can find that higher macroscale porosities appear around the
bottom of the fuel foil, due to the larger fission densities there. The comparison results
between Figure 4a,b demonstrate that the achieved macroscale porosities for the high-
burnup region are greatly affected by the intrusion of solid fission products. The maximum
value in Figure 4a becomes ~45% higher than that in Figure 4b. It is known that the
thickness deformation of the fuel foil is constrained by the cladding rails, resulting from the
higher external hydrostatic pressures [19]. As a result, the predicted macroscale porosities
in Figure 4b can be much lower. However, when the intrusion effect of solid fission products
is considered, the macroscale porosities around the fuel foil edges are also considerable,
implying that the increases in bubble volume are also distinct there. It can be also seen that
the porosities near the U–Mo/Zr interface are evidently higher than those in the mid-plane
of the fuel foil, which is consistent with the experimental phenomena [9,10]. Comparing
the results in Figure 4a,b to those in Figure 4c, it can be seen that the enhanced creep rate
coefficient of the Mo-depleted region leads to higher values of porosity near the U–Mo/Zr
interface than the values of the mid-plane porosities. Comparing Figure 4b with Figure 4c,
one can observe that the high macroscale porosities around the high-burnup region are
dominated by the intrusion of solid fission products into the gas bubbles.

In order to compare the predictions with the experimental results, Path 1 in Figure 4a
was selected to output the simulation results. Figure 5 gives the distribution results of
the porosity and thickness deformation of U–Mo fuel foil on the 137.2th day along Path 1,
together with the experimental data [8]. It can be seen that the predictions of porosity and
thickness deformation match well with the post-irradiation examination data [8], when the
creep rate coefficient for the Mo-depleted region is set as 250 × 10−22 mm3/(fission·MPa),
and the parameters fb and fs are set to the values of 0.4 and −0.4, respectively. It should
be mentioned that many attempts were performed, and ultimately the above values were
identified. From Figure 5a, one can observe that the predicted porosities for the other
two cases cannot reach the value of ~35% near the path origin [8]. Without considering the
intrusion effect, this porosity prediction is a small value of ~15%, and the predictions of the
other two points become much smaller than the experimental results [8]. From Figure 5b,
one can observe that the thickness deformations near the path origin both agree well with
the experimental data [8], excluding those across the failure region. It is noted that the
predictions are affected slightly by the different creep rate coefficients for the Mo-depleted
region, as displayed in Appendix A. It should be mentioned that the fracture behavior of
fuel plate L1P7A0 was not taken into account in this study, therefore, the experimental
results from the un-failed region close to the fuel foil edge were used to validate the
improved models. The predicted results of the thickness deformation in the failure region
are higher than the experimental data [8], owing to the fact that the release of fission gas
atoms leads to the shrinkage of the bubble volume and the thinning of the fuel foil.

Point B and Point C in Figure 4a were chosen to output the evolution results of
macroscale porosity, as shown in Figure 6. It should be mentioned that a creep rate
coefficient of 250 × 10−22 mm3/(fission·MPa) is used for the Mo-depleted region. It can
be seen that, for the case considering the intrusion effect of solid fission products, similar
evolution results appear for the two points, with the values for Point B being a little higher
than those for Point C. It can be found that the growth rates of macroscale porosity are
enhanced with the increase in fission density. The rate acceleration can be found after the
grain recrystallization initiation, corresponding to the acceleration of fission gas swelling. In
particular, an elevated growth rate can be evidently observed at higher fission densities with
the intrusion effect involved, indicating that the intrusion effect of solid fission products
has a great impact on the volume growth of fission gas bubbles. Simultaneously, it can be
found that the predictions without the intrusion effect at the fission densities exceeding
7 × 1027 fission/m3 are much lower, demonstrating the dominant effect of the solid fission
product intrusion into the fission gas bubbles.
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Figure 4. The contour plots of macroscale porosity within the U–Mo fuel foil on the 137.2th day for
(a) the case with fb = 0.4, fs = −0.4 and a creep rate coefficient of 250 × 10−22 mm3/(fission·MPa)
for the Mo-depleted region; (b) the case with fb = 1.0, fs = 0.4 and a creep rate coefficient
of 250 × 10−22 mm3/(fission·MPa) for the Mo-depleted region; and (c) the case with fb = 0.4,
fs =−0.4 and the creep rate coefficient of 180 × 10−22 mm3/(fission·MPa) for the whole fuel foil.

It should be mentioned that the identification of the creep rate coefficient and the
model parameters of fb and fs is heavily dependent on the measured data of porosities
using scanning electron microscopy (SEM). It was reported that the porosity analysis is
sensitive to the SEM voltage. In the range from 5 KV to 30 KV, a relative difference about
~30% in the total porosity was recorded at a sample cut from a full-size dispersion plate
irradiated at the Belgian Reactor 2 (BR2) [33]. The porosity experimental data of fuel plate
L1P7A0 used in this study were measured at a voltage of 14 KV. Whether this was the
optimal measurement voltage is unknown at present. However, the critical fission density
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of 7 × 1027 fission/m3, corresponding to the start of the intrusion effect of solid fission
products, is also figured out using the available experimental data. As a result, some
uncertainties in the parameters of the newly developed models may exist.
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4.2. The Underlying Deformation Mechanism of Higher Porosity of the Fuel Foil at High Burnup

From Equation (8), it can be noted that the macroscale creep rate is related to the
macroscale porosities (or the bubble volume), which is affected by the fission solid swelling,
thermal expansion, irradiation-induced creep of fuel skeleton and the initial bubble volume,

increasing with ∑ ∆εth
m, ∑ ∆εsws

m , ∑
∆ε

g
local
φt

l
and the initial bubble volume, as indicated in Equa-

tion (6). Inversely, the macroscale creep behavior of U–Mo fuel foil affects the interaction
between the U–Mo fuel foil and Al alloy cladding, impacting the macroscale hydrostatic
pressure of the fuel foil and the creep behavior of the fuel skeleton, ultimately affecting the
growth of bubbles. The degradation of elastic properties also affects the interaction among
the fuel parts, impacting the stress of U–Mo fuel foil and the values of the creep rate. It is
assumed that the fission rate is identical across the thickness of fuel foil. Hence, the volume
growth strains induced by the solid fission products are close to each other for Point B and
Point C. It should be mentioned that the temperature values in the mid-plane are evidently
higher than those near the U–Mo/Zr interface, resulting in the larger initial bubble volume
and local porosity of Point C. Table 1 gives the initial bubble volume and local porosity
of Point B and Point C at the fission density of 1.2 × 1026 fission/m3, calculated using

the model in ref. [19]. From our previous study [19], it is known that the result of ∑
∆ε

g
local
φt

l
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plays a dominant role in the bubble growth over the other two contributions of ∑ ∆εth
m

and ∑ ∆εsws
m .

Table 1. The initial bubble volume and local porosity of Point A and Point B.

Parameter Point B Point C

Bubble volume (10−20 m3) 3.99047 0.14677

Local porosity (%) 4.10474 0.150874

Figure 7 gives the evolution results of ∑
∆ε

g
local
φt

l
with the fission density for Point B

and Point C. It should be mentioned that the following results are based on the creep rate
coefficient of 250 × 10−22 mm3/(fission·MPa) for the Mo-depleted region. One can find

that the results of ∑
∆ε

g
local
φt

l
show a significant increase with the fission density. Quicker

growth rates appear when the fission density exceeds 7 × 1027 fission/m3, compared to
those without the intrusion effect. Due to the exponential growth relationship of bubble

volume with ∑
∆ε

g
local
φt

l
, the macroscale porosities are greatly enhanced in Figure 6, despite

the reduction in ∑ ∆εsws
m at higher fission densities. It can be found that the values of

∑ ∆εsws
m are less than 0.1 from Figure 7, resulting in a much lower contribution than that

from ∑
∆ε

g
local
φt

l
. However, the results of ∑

∆ε
g
local
φt

l
for Point B (near the U–Mo/Zr interface) are

larger than those for Point C (in the mid-plane), leading to the relatively higher porosity
near the U–Mo/Zr interface.
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Figure 7. The evolution results of ∑
∆ε

g
local
φt

l
with the fission density.

From Equation (2), it can be realized that the accumulated creep strains of ∑
∆ε

g
local
φt

l
are

essentially dependent on the creep rate coefficient of the fuel skeleton, the local porosity
φl and the pressure difference Pt − Ht

p + Pt+∆t − Ht+∆t
p , having positive correlations with

them. Figure 8a displays the pressure differences between the bubble pressure and the
macroscale hydrostatic pressure. One can see that the pressure differences show an evident
decrease before the grain recrystallization, due to the gradual increase in bubble volume.
With the intrusion effect involved, the pressure differences firstly increase fast and then
decrease with the fission density. The maximum value of ~35 MPa for Point B is achieved
at the start of the intrusion effect, becoming nearly ~6 times greater than the value without
considering the intrusion effect. Meanwhile, the local porosities are also heavily enhanced
by the intrusion effect, as shown in Figure 8b, with an increase from ~0.22 to ~0.38 for
Point B. The maintained larger local porosity and the higher pressure difference leads

to the more rapid rise of ∑
∆ε

g
local
φt

l
for Point B. However, it can be found that the pressure
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differences for Point B (near the U–Mo/Zr interface) are lower than those for Point C
(in the mid-plane), but the local porosities of Point B are always greater than those of
Point C, induced by the large creep rate coefficient for Point B. It can be obtained from
Equations (2) and (6) that the locally enhanced fuel skeleton creep ability for the Mo-
depleted region should be responsible for the higher porosity near the U–Mo/Zr interface.
It is reported that the thickness of the U–Mo/Zr interface increases after heat treatment,
which influences swelling and blistering in the Mo-depleted region, as the porosity here is
locally enhanced at low burnup [34]. The material properties degrade severely with the
high porosity [35], possibly inducing a fracture of the fuel plate during irradiation. If the
occurrence of fractures in the Mo-depleted region during manufacturing or irradiation can
be lessened or suppressed, the irradiation performance of the U–10Mo fuel plate in the
reactor may be more stable.
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Essentially, the creep deformations of materials are a kind of plastic deformation,
contributed by the motion of vacancies and dislocations in microscale. The accumulation of
plastic deformations may result in the formation of voids and the initiation of cracks [36,37],
degrading the strength of materials. At present, the internal link between the failure and
deformation behaviors of U–10Mo fuel foil during irradiation and its microscale creep
behaviors is not clear yet, which requires further research.

5. Conclusions

In this study, the fuel skeleton creep-based bubble growth model is further improved
with the consideration of the intrusion effect of solid fission products. With the locally
enhanced irradiation creep of the Mo-depleted region considered, the irradiation-induced
thermos-mechanical behaviors of monolithic fuel plate L1P7A0 are numerically investi-
gated. The predictions of porosities and thickness deformation for U–Mo fuel foil are
obtained. The mechanism of high porosity in the heavily irradiated U–10Mo fuel foil is
discussed. The main conclusions can be drawn as follows:

(1) The simulation results produce the best-fit creep rate coefficient of 250 × 10−22 mm3/
(fission·Mpa) for the Mo-depleted region, and the parameters of fb = 0.4 and
fs = −0.4 for the improved bubble growth model, by comparing the predicted re-
sults of macroscale porosities and thickness deformation of the U–Mo fuel foil with
the experimental results.

(2) The intrusion of solid fission products, leading to the extra differences between the
bubble pressure and the external pressure, is the dominant factor to induce the high
porosity in most regions of heavily irradiated fuel foil.

(3) The locally enhanced fuel skeleton creep ability is responsible for the higher porosities
near the U–Mo/Zr interface.
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Figure A1. Finite element simulation results of (a) macroscale porosity and (b) thickness defor-
mation of U–Mo fuel foil on the 137.2th day with the different creep rate coefficients of the Mo-
depleted region considering the intrusion effect of solid fission products.(data from Ref. [8]) 
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