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Abstract: Femoral nails are used to provide fixation for fractured long bones. These constructs
simultaneously provide stability and union in nearly 10% of cases of premature failure. The goal of
this investigation was to develop and test different models of the femur using cephalomedullary nail
fixation. These models represent three different types of hip fractures (intracapsular, intertrochanteric,
and subtrochanteric fractures). By testing the different fracture types, one can determine the fracture
tolerance of the constructs from the resulting forces that occur due to the activities of daily living.
Understanding the effects that the loads will have on the integrity of the nail-bone construct may help
reduce the risks that could arise through its use. The computational simulations performed indicate
that an undamaged femur can withstand the forces of 4.4× the body weight of the average adult
male. A subtrochanteric femur fracture, however, can only withstand over 2.3× the same weight,
nearly 50% lower than the normal femur. Regarding this lower amount, it is not impossible that an
overloading scenario could occur. The data from the gait cycle show that, with a subtrochanteric
fracture, the nail experiences stress that is just within the fatigue limit of the material. Given the
collected data, subtrochanteric fractures are the most likely candidates for causing failures when
comparing fracture types. In general, understanding the effects that different loads have on the
integrity of the nail-bone construct may help reduce the risks that could arise through its use.

Keywords: cephalomedullary nail; finite element; intracapsular; intertrochanteric; subtrochanteric

1. Introduction

Every year in the US, about 300,000 senior citizens aged sixty-five and older are admit-
ted to the hospital due to hip fractures [1–3]. A total of 95% of these fractures are caused by
a falling [3] and generally fall into three categories: intracapsular, intertrochanteric, and
subtrochanteric [4]. Intracapsular fractures occur below the head or neck of the femur [5,6],
intertrochanteric fractures occur between the greater and lesser trochanter [7], and sub-
trochanteric fractures are located below the lesser trochanter [8]. In order to help patients
recover, various treatments exist, such as the use of internal fixation devices [9,10]. An
internal fixation device is classified as a medical device that can be implanted into the body
for the purpose of bone fracture stabilization and permitting the bone to heal [11].

The healing process can be interrupted if the medical device used fails. For femoral
cephalomedullary nail fixation devices, the failure rate can reach 10% when used for
subtrochanteric fractures [12–14]. In such cases, steps must be taken to prevent future
failures, including investigating the causes of the failure.

All medical devices have a risk of failure. Medical devices can fail for a variety
of reasons [15,16], including mechanical failure, electrical failure, software failure, and
material failure. When a device fails, it may no longer perform its intended function,
which can lead to catastrophic consequences for the patient. It is a possibility that a
medical device can become dysfunctional by physically breaking and can no longer fulfil its
purpose [12,17,18]. An instance of the former situation could be when a bone fracture does

Metals 2023, 13, 509. https://doi.org/10.3390/met13030509 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met13030509
https://doi.org/10.3390/met13030509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-6287-3187
https://orcid.org/0000-0001-6739-8162
https://doi.org/10.3390/met13030509
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met13030509?type=check_update&version=1


Metals 2023, 13, 509 2 of 17

not heal properly after a few months of the implanting of an intramedullary nail. Another
instance of the latter scenario could be the intramedullary nail breaking into two pieces due
to overloading. A failure analysis of the medical devices and finite element computational
simulations can provide valuable insight into the cause of the failure, which can help in
improving the device’s design and reducing the risk of future failures [19].

In order to understand how medical devices fail, there is a need for extensive efforts
to be made to collect evidence. These efforts include physical examinations, testing for
material and chemical properties, and numerical and computational simulations.

The main motivation of this research is to perform a computational simulation of a
femoral nail fracture and investigate the failure of the intramedullary nail. In an accom-
panying paper, we have reported the failure analysis of the femoral cephalomedullary
nail, including visual examination, observation under optical and scanning electron mi-
croscopes (SEM), chemical composition, and microstructure analysis [20]. In the current
study, different models for the femoral bone will be developed and tested. These models
will represent three different types of hip fractures. By testing different fracture types, it
can be determined how these fracture types affect the forces that the nail undergoes during
loading. Understanding the effect that the fractures have on the intramedullary nail can
help reduce the risks that could arise through its use.

2. Materials and Methods
2.1. Design of the Failed Device

Three-dimensional representations of the femoral intramedullary nail and the screws
were generated using SolidWorks 2019 software. The models for the intramedullary nail
and helical screw were generated using the measurements from Hamandi et al. [20].
The information obtained provided important specifications for the recreation of the
cephalomedullary (CM) nail, including the length of the nail and screws, curvatures,
and orientation of the screws in relation to the femoral nail. Measurements were taken
from the intramedullary nail to gather the missing information needed to create the 3D
models (Figures 1 and 2).

2.2. Design the Femoral Bone

For the experiment, adult femur models were created using Mimics Research 19.0
and 3-matic Research 13.0. The models included a normal femur and ones that simulated
various hip fractures (intracapsular, intertrochanteric, and subtrochanteric). The models
were combined with the intramedullary nail, helical screw, and two-cortical-screw models
for finite element analysis. The process began with a computer tomography (CT) scan of
an adult right femur and the use of Mimics 19.0 software to generate masks and three-
dimensional models of the bone. The models were then imported into 3-matric 13.0 for
mesh generation and editing to simulate fractures. After the meshes were generated,
they were imported back into Mimics to assign material properties based on the bone’s
Hounsfield units (HU).

The femur model, created by compiling masks in Mimics software, was then trans-
ferred into 3-matric software for mesh generation and special condition editing (as shown
in Figure 3). Three femoral bone models were produced, from which the femurs that
simulated different types of common hip fractures were made. These fractures included
intracapsular, intertrochanteric, and subtrochanteric (as shown in Figure 4). This was
achieved by first mapping the fracture paths on the surface mesh and then making a sweep-
ing cut around the femur’s features by removing 1 millimetre of the bone at three different
levels. The mesh was then regenerated to produce the three models of fractured bones.
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Figure 4. Femur model with a subtrochanteric fracture (left), intertrochanteric fracture (middle), and
intracapsular fracture (right). Reprinted from Ref. [21].

After the meshes were created, the models were brought back into Mimics to assign
realistic material behaviour to the femurs. Human bones have anisotropic properties,
unlike the intramedullary nail, which means their properties vary depending on the area
under load due to differences in bone density. Equations for the modulus of elasticity and
Poisson’s ratio were assigned to the femur and distributed based on the corresponding HU
values of the bone [22].

2.3. Finite Element Analysis

The models of the intramedullary nail, helical screw, cortical screws, and femoral bones
were imported into ANSYS Workbench 2022 R1 for simulation. Before the simulation, the
material properties were assigned to the intramedullary nail and the screws, and boundary
conditions were assigned to all models. The material properties of the device parts were
assigned as those of the titanium alloys Ti-15Mo for the CM nail and Ti-6Al-7Nb for the
screws, as per ASTM F2066-18 and ASTM F1295-05 standards [23–25]. For the simplified
femur models, the cortical and cancellous parts were assigned a modulus of elasticity of
12.7 GPa and 0.9 GPa and a Poisson’s ratio of 0.3 and 0.2, respectively [26–29].

The intramedullary nail, the helical screw, and the two cortical screws were positioned
within the femur model, with the helical screw aligned along the femoral neck and its tip
near the centre of the femoral head (Figure 5). The axis of the helical screw model was
configured to match the axis of the cylindrical shaft in the CM nail, and the long body
of the nail was positioned as close to the centre of the long part of the femur as possible
without affecting the other boundary relationships. The intracapsular and intertrochanteric
fractures in the femur were divided along their fracture surfaces to allow for the addition of
friction coefficients between the fractured parts of the bone. With the geometry established,
the numerical simulation of the finite element analysis could proceed.

The four femur models were subjected to three different loading scenarios as part
of the finite element analysis. These scenarios were (1) axial compression load, (2) axial
compression load with torsion, and (3) gait cycle. The goal of the two compression tests
was to determine the amount of force needed to cause the nail to fail in order to assess the
likelihood of this happening under normal use. The gait cycle scenario was performed to
understand the stress and forces involved during the cycle and whether these forces are
sufficient for mechanical fatigue to occur. Before the simulations could be carried out, all
the boundaries had to be defined, and the meshes had to be generated for the models. The
number of nodes and elements created during the meshing process is listed in Table 1.
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Table 1. Number of nodes and elements per femur model.

Femoral Model Number of Nodes Number of
Elements

Normal femoral bone model 24,317 13,154

Femoral bone model with Subtrochanteric fracture 27,783 15,254

Femoral bone model with Intertrochanteric fracture 52,461 29,053

Femoral bone model with Intracapsular fracture 48,945 26,967

For the finite element analysis, the friction coefficients were defined between the
different objects. The coefficient of friction between the nail and the screw, as well as
between the device and the bone, was set to 0.35 and 0.4, respectively [26]. For the
femoral bone models with fractures, a coefficient of 0.4 was given between the fractured
surfaces [9,30]. The cortical and cancellous parts of the femur that were divided for
assigning different material properties were considered bonded. In the simulations of the
combined compression and torsion to failure, the boundary conditions for the models were
almost identical, with both the fixed support and compressive forces applied as before.
Additionally, a bending moment was applied to the nail body, with the rotational force
ranging from 5 Nm to 45 Nm, increasing by 5 Nm per step. With these conditions, the
simulations were run to collect the same data as the compression-only tests.

The final tests evaluated the impact of the gait cycle on the intramedullary nail. These
tests involved different types of forces than the previous tests, as the gait forces are three-
dimensional and have different magnitudes in the x, y, and z directions for each step taken.

2.4. Comparison with Experimental Work

The experiments conducted at the biomechanics laboratory located at Miami Valley
Hospital in Dayton, Ohio, USA, included 28 pairs of cadaveric femurs with fixation devices
(Figure 6) [31], which were compared with the current study models. Although, only the
models with long titanium nails (7 pairs) were included in the evaluation. To validate the
computational simulation, the comparison focused on comparing the impact on the femoral
bone and the CM nail, with a particular emphasis on exploring the differences between
the simulation and experimental results in terms of bone stiffness, taking into account the
material used in the device.
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Figure 6. The femoral bone with the nail testing setup in the EnduraTEC BOSE machine (left). Model
failure due to torsion (right). Reprinted from Ref. [31].

3. Results and Discussion

The data were gathered from the four different models under three different conditions
of loading.

A physical examination of the models was beneficial in identifying areas with high
levels of stress. The visual representation was a helpful tool in assessing the validity of the
results. Figures 7–12 represent the von Mises stress, total deformation, and shear stress
distribution on the femoral model and on the nail and the helical screw in the intracapsular
fracture under axial compression and torsion scenario.
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Figure 12. Shear stress distribution on the nail and the helical screw from the model of an intracapsular
fracture under axial compression and torsion scenario.

In order to analyse the stress, total deformation, equivalent elastic strain, and shear
stress, data were gathered. In order to determine the highest values for these data sets, we
needed to calculate the loads at the area of femoral CM nail failure. The collected data were
input into JMP Pro 13 software for analysis. The software plotted the data in Newtons and
Newton metres on the x-axis and the stresses on the y-axis. After plotting the data, the
program determined a linear fit equation for the data set.

Equations for stress in axial compression loading to failure are presented in Table 2.

Table 2. Equations for stress in axial compression loading to failure.

The Model Equations for Stress for Axial
Compression Loading to Failure

Normal femoral bone model σ = 38.931412 + 0.2591927 × N

Femoral bone model with subtrochanteric fracture σ = −37.83904 + 0.5619352 × N

Femoral bone model with intertrochanteric fracture σ = −64.32084 + 0.4833329 × N

Femoral bone model with intracapsular fracture σ = 4.1232507 + 0.3602025 × N

Equations for stress in axial compression loading and torsion to failure are presented
in Table 3.

Table 3. Equations for stress in axial compression loading and torsion to failure.

The Model Equations for Stress in Axial Compression
Loading and Torsion to Failure

Normal femoral bone model σ = 7.051 + 0.298 × N
σ = 7.051 + 29.707 × Nm

Femoral bone model with subtrochanteric fracture σ = −88.432 + 0.619 × N
σ = −88.432 + 61.938 × Nm

Femoral bone model with intertrochanteric fracture σ = −86.413 + 0.529 × N
σ = −86.413 + 52.954 × Nm

Femoral bone model with intracapsular fracture σ = 4.123 + 0.360 × N
σ = 4.123 + 36.020 × Nm
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Equations were also generated for total deformation, equivalent elastic strain, and
shear stress by using the same methods.

Equations for total deformation in axial compression loading to failure are presented
in Table 4.

Table 4. Equations for total deformation in axial compression loading to failure.

The Model Equations for Total Deformation in Axial
Compression Loading to Failure

Normal femoral bone model d = −0.041909 + 0.0005042 × N

Femoral bone model with subtrochanteric fracture d = −0.071 + 0.0006796 × N

Femoral bone model with intertrochanteric fracture d = 0.0459699 + 0.0004033 × N

Femoral bone model with intracapsular fracture d = 0.0694474 + 0.0004262 × N

Equations for elastic strain in axial compression loading to failure are presented in
Table 5.

Table 5. Equations for elastic strain in axial compression loading to failure.

The Model Equations for Elastic Strain in Axial
Compression Loading to Failure

Normal femoral bone model ε = 0.0003788 + 2.307 × 10−6 × N

Femoral bone model with subtrochanteric fracture ε = −0.000353 + 4.9582 × 10−6 × N

Femoral bone model with intertrochanteric fracture ε = −0.000538 + 4.2512 × 10−6 × N

Femoral bone model with intracapsular fracture ε = 0.0006202 + 1.8964 × 10−6 × N

Equations for shear stress in axial compression loading to failure are shown in Table 6.

Table 6. Equations for shear stress in axial compression loading to failure.

The Model Equations for Shear Stress in Axial
Compression Loading to Failure

Normal femoral bone model τ = 11.111765 + 0.0839675 × N

Femoral bone model with subtrochanteric fracture τ = −23.2806 + 0.1699704 × N

Femoral bone model with intertrochanteric fracture τ = −37.69338 + 0.2084864 × N

Femoral bone model with intracapsular fracture τ = 37.124356 + 0.0477092 × N

Equations for total deformation in axial compression loading with torsion to failure
are presented in Table 7.

Table 7. Equations for total deformation in axial compression loading with torsion to failure.

The Model Equations for Total Deformation in Axial
Compression Loading with Torsion to Failure

Normal femoral bone model d = −0.043 + 0.001 × N
d = −0.043 + 0.047 × Nm

Femoral bone model with subtrochanteric
fracture

d = −0.079 + 0.001 × N
d = −0.079 + 0.071 × Nm

Femoral bone model with intertrochanteric
fracture

d = 0.073 + 0.0004 × N
d = 0.073 + 0.043 × Nm

Femoral bone model with intracapsular
fracture

d = 0.069 + 0.0004 × N
d = 0.069 + 0.043 × Nm
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Equations for elastic strain in axial compression loading with torsion to failure are
presented in Table 8.

Table 8. Equations for elastic strain in axial compression loading with torsion to failure.

The Model Equations for Elastic Strain in Axial
Compression Loading with Torsion to Failure

Normal femoral bone model ε = 8.885 × 10−5 + 2.631 × 10−6×N
ε = 8.885 × 10−5 + 0.0003 × Nm

Femoral bone model with subtrochanteric
fracture

ε = −0.001 + 5.457×10−6 × N
ε = −0.001 + 0.001 × Nm

Femoral bone model with intertrochanteric
fracture

ε = −0.001 + 4.759 × 10−6 × N
ε = −0.001 + 0.001 × Nm

Femoral bone model with intracapsular
fracture

ε = 0.001 + 1.898 × 10−6 × N
ε = 0.001 + 0.0002 × Nm

Equations for shear stress in axial compression loading with torsion to failure are
presented in Table 9.

Table 9. Equations for shear stress in axial compression loading with torsion to failure.

The Model Equations for Shear Stress in Axial
Compression Loading with Torsion to Failure

Normal femoral bone model τ = 1.251 + 0.086 × N
τ = 1.251 + 8.591 × Nm

Femoral bone model with subtrochanteric
fracture

τ = −24.096 + 0.152 × N
τ = −24.096 + 15.236 × Nm

Femoral bone model with intertrochanteric
fracture

τ = −48.757 + 0.227 × N
τ = −48.757 + 22.746 × Nm

Femoral bone model with intracapsular
fracture

τ = 37.124403 + 0.047685 × N
τ = 37.124403 + 4.7684961 × Nm

Using the above equations, we can calculate the force needed to cause failure and the
time of failure, as shown in Figure 13 and Table 10. The results for the force at the time
of failure can be used in the equations to find the maximum values of total deformation,
equivalent elastic strain, and shear stress at the time of failure (Tables 11 and 12). The
maximum values during the gait cycle simulations are presented in Table 13.
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Table 10. Max stress from the loading simulations, where BW is the body weight.

The Model Load to
Failure (N)

Failure Per Average
Body Weight

Axial Compression Load
with Torsion to Failure

(N + Nm)

Failure Per Average
Body Weight

w/Torsion

Normal femoral bone model 3900.83 N 4.88 BW 3510.78 N + 35.11 Nm 4.389 BW

Femoral bone model with
subtrochanteric fracture 1935.88 N 2.42 BW 1838.02 N + 18.38 Nm 2.3 BW

Femoral bone model with
intertrochanteric fracture 2305.49 N 2.88 BW 2146.05 N + 21.46 Nm 2.68 BW

Femoral bone model with
intracapsular fracture 2903.58 N 3.63 BW 2903.58 N + 29.04 Nm 3.63 BW

Table 11. Max deformation, strain, and shear in axial compression load to failure scenario.

The Model
Total Deformation in Axial

Compression Load to Failure
(mm)

Elastic Strain in Axial
Compression Load to Failure

(mm/mm)

Shear Stress in Axial
Compression Load to Failure

(MPa)

Normal femoral bone model 1.924 0.009378 338.66

Femoral bone model with
subtrochanteric fracture 1.245 0.009245 305.76

Femoral bone model with
intertrochanteric fracture 0.976 0.009263 442.97

Femoral bone model with
intracapsular fracture 1.307 0.006126 175.65

Table 12. Max deformation, strain, and shear in axial compression load with torsion to failure
scenario.

The Model

Total Deformation at Axial
Compression Load with

Torsion to Failure
(mm)

Elastic Strain at Axial
Compression Load with

Torsion to Failure (mm/mm)

Shear Stress at Axial
Compression Load with
Torsion to Failure (MPa)

Normal femoral bone model 1.613 0.009325 302.85

Femoral bone model with
subtrochanteric fracture 1.218 0.009239 255.95

Femoral bone model with
intertrochanteric fracture 0.988 0.009358 439.39

Femoral bone model with
intracapsular fracture 1.307 0.006127 175.58

Table 13. Max deformation, strain, and shear in gait cycle scenario.

The Model Max Deformation (mm) Max Stress (MPa) Max Strain (mm/mm) Max Shear (MPa)

Normal femoral bone model 0.68012 420.61 3.7521 × 10−003 120.28

Femoral bone model with
subtrochanteric fracture 0.74314 586.66 5.2314 × 10−003 155.04

Femoral bone model with
intertrochanteric fracture 0.49534 518.11 4.6686 × 10−003 153.99

Femoral bone model with
intracapsular fracture 0.64256 512.61 3.4559 × 10−003 109.23
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The data produced from the finite element analysis can provide a comparison of how
fracture type influences the internal forces in the nail. Using the weight of the average
adult male, 800 N [32], and the average torsion experienced during walking, 13 Nm [33],
the data can be expressed as a ratio of average body weight and average torsion. A femur
with a complete subtrochanteric fracture fairs the worst, only being able to withstand
1935.88 N, just 2.42 times the average weight of an adult male. When factoring in the
torsion that would be present in a realistic loading scenario, the loading needed to fail
was reduced to 3510.78 N, a 10% decrease. The subtrochanteric fracture again shows the
largest change, decreasing to 1838.02 N. That is a 5% reduction with only being able to
withstand 2.3 times the body weight of an adult male. The information generated also
gives some insight into how different fractures influence the stress produced within the
intramedullary nail. When comparing the fracture types to the normal femur model, the
subtrochanteric, intertrochanteric, and intracapsular have a 50%, 41%, and 26% decrease
in max load-to-failure, respectively. The data also show that when adding torsion, the
intracapsular fracture demonstrated almost no change in the load to failure. The added
torsion did, however, have a significant effect on decreasing the load to failure in the other
fracture types. When considering the effect of the gait cycle on the nail, the data show that
all the femur models were experiencing loads of up to 420–580 MPa, depending on the
fracture type. The fatigue limit of the titanium alloy Ti-6Al-7Nb is 580 per 106 cycles [34].
When considering that there is only one fracture type that produces stress in this range, it
is possible that the subtrochanteric fracture loads the nail beyond the fatigue limit of the
material. When loading is at the threshold, it will take 10 million loading cycles before
the material fails. This would take more time than what is needed for the nail to heal the
fracture, as these types of internal fixation devices are not designed to be used indefinitely.
It is important to note that these tests consider that the nail is without any damage. While
the device is not likely to fail from the cyclic loading from walking on its own, this could
change if the device is damaged.

Fatigue analysis was carried out, and stiffness was modelled with respect to the
number of cycles for all the models under the torsion scenario during cyclic loading.
Figure 14 illustrates that stiffness follows a two-stage behaviour where most of the stiffness
reduction occurred during the first 103 cycles, following a plateau after that.
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Damage accumulation was analysed using the relationship between it and axial
stiffness, as used previously by Hamandi et al. [31]. Figure 15 shows that damage versus
the number of cycles follows a two-stage mechanism and is modelled by a nonlinear
regressive Michaelis-Menten equation, as discussed in our previous work [31], where
we performed an experimental investigation on 28 pairs of cephalomedullary nails with
damage accumulation and found that damage follows stage I and stage II behaviour and is
modelled by Michaelis-Menten equation.
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A comparison with previous experimental work was performed, and stiffness and dis-
placement were measured for all the models under the torsion scenario. The experimental
work, which was performed at a biomechanics laboratory, included 28 pairs of cadaveric
femurs with fixation devices. Although, only the models with long titanium nails (7 pairs)
were included in the evaluation. This comparison focuses on comparing the effect on the
bone and nail, as it was essential to explore the computational simulation variations in
bone stiffness with the experimental results to validate the simulation when taking the
material of the device into consideration. In order to measure the stiffness of the femoral
bone model with intertrochanteric fracture, data were generated from 29,053 elements and
were then analysed. The same procedure was performed on all the other models. It appears
that the mean stiffness of the normal femoral bone model was 5735.503 N/mm; for the
femoral bone model with subtrochanteric fracture, it was 2605 N/mm; for the femoral bone
model with intertrochanteric fracture, it was 4654.359 N/mm, and for the femoral bone
model with intracapsular fracture, it was 4518.769 N/mm. On the other hand, if we look
into the stiffness of the undamaged bone, it would be 4864 N/mm [27], which is in good
agreement with the current computational simulation results. The results illustrate that
the load to failure was 37% higher in the experimental work than in the normal model
computational simulation and 48% higher than in the intracapsular model simulation.
Additionally, the results demonstrate that the stiffness was 30% higher in the experimental
work than in the subtrochanteric model simulation and 22% lower than in the intracapsular
model computational simulation. The difference in stiffness could be a consequence of the
deformation between the grips in the experimental work and the point-to-point in the finite
element simulations. Despite this, the results can be considered satisfactory with a degree
of confidence, and the finite element simulations were in good agreement with the previous
experimental work, as shown in Figures 16 and 17. Furthermore, Figure 16 demonstrates
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that the highest stiffness in the normal model computational simulation and the decrease
in stiffness as the fracture moves away from the head of the femur are the lowest in the
subtrochanteric model.
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computational finite element simulations results under the torsion scenario.
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Figure 17. The stiffness for the experimental work performed by Hamandi et al [34] versus the
computational finite element simulations results under the torsion scenario.

4. Conclusions

This study tested different femur models to represent three different types of hip
fractures (intracapsular, intertrochanteric, and subtrochanteric). By evaluating the different
fracture types, the tolerance of the constructs to the forces of daily activities could be
determined. The computational simulations demonstrate that an undamaged femur can
withstand forces equivalent to 4.4 times the body weight of the average adult male. How-
ever, a subtrochanteric femur fracture can only withstand over 2.3 times that weight, which
is nearly 50% lower than a normal femur, making an overloading scenario possible. The
gait cycle data show that the nail experiences stress close to the fatigue limit of the material
with a subtrochanteric fracture. Based on the data, subtrochanteric fractures are the most
likely cause of failures among the various fracture types. In general, understanding the
effects that different loads have on the integrity of the nail-bone construct may help reduce
the risks that could arise through its use.
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