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Abstract: In this study, magnetostriction measurements were performed on the ferromagnetic Heusler
alloy, Ni2MnGa0.88Cu0.12, which is characterized by the occurrence of the martensitic phase and
ferromagnetic transitions at the same temperature. In the austenite and martensite phases, the alloy
crystallizes in the L21 and D022-like crystal structure, respectively. As the crystal structure changes
at the martensitic transition temperature (TM), a large magnetostriction due to the martensitic and
ferromagnetic transitions induced by magnetic fields is expected to occur. First, magnetization
(M-H) measurements are performed, and metamagnetic transitions are observed in the magnetic
field of µ0H = 4 T at 344 K. This result shows that the phase transition was induced by the mag-
netic field under a constant temperature. Forced magnetostriction measurements (∆L/L) are then
performed under a constant temperature and atmospheric pressure (P = 0.1 MPa). Magnetostriction
up to 1300 ppm is observed around TM. The magnetization results and magnetostriction measure-
ments showed the occurrence of the magnetic-field-induced strain from the paramagnetic austenite
phase to the ferromagnetic martensite phase. As a reference sample, we measure the magnetostric-
tion of the Ni2MnGa-type (Ni50Mn30Ga20) alloy, which causes the martensite phase transition at
TM = 315 K. The measurement of magnetostriction at room temperature (298 K) showed a magne-
tostriction of 3300 ppm. The magnetostriction of Ni2MnGa0.88Cu0.12 is observed to be one-third
that of Ni50Mn30Ga20 but larger than that of Terfenol-D (800 ppm), which is renowned as the giant
magnetostriction alloy.

Keywords: Heusler alloy; Ni2MnGa; ferromagnetism; shape memory alloy; magnetostriction; martensite

1. Introduction

Ferromagnetic Ni2MnGa-type Heusler alloys are known as highly functional materials
in applications such as smart actuators and robotics, which utilizes the magnetic field-
induced strain (MFIS) [1–30], and magnetic refrigeration, which utilizes the magnetocaloric
effect [31–36].

In our previous study, we performed thermal expansion, permeability, and magne-
tization measurements on Ni2MnGa0.88Cu0.12 [37], which is commonly characterized by
the occurrence of martensitic and ferromagnetic transitions at the same temperature. Its
permeability abruptly changes and shows a clear peak around the martensitic transition
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temperature, TM. The temperature dependence of the magnetization also shows a clear
decrease around TM. The value of TM obtained through linear expansion was 337 K. Fur-
thermore, TM and TR (reverse martensitic transition temperature from martensite phase to
austenite phase) increase gradually with increasing magnetic fields.

TM of the ferromagnetic Heusler alloy, Ni2MnGa0.88Cu0.12, in the magnetic field is
considered to shift according to the magnetic fields, and it is proportional to the difference
between the magnetization of austenite and martensite phases. The shift of TM was
estimated as dTM/d(µ0H) = 1.3 K/T. Khovailo et al. [38–40] discussed the correlation
between the shifts of TM of Ni2 + xMn1−xGa (0 ≤ x ≤ 0.19) using theoretical calculations.
The experimental values of this shift corresponded well with the theoretical calculation
results. In general, in a magnetic field, the Gibbs free energy is lowered by the Zeeman
energy −∆MB, which enhances the motive force of the martensitic transition. Thus, TM
of Ni2MnGa0.88Cu0.12 is considered to have shifted in accordance with the magnetic fields
because high magnetic fields are favorable to the ferromagnetic martensitic phases.

The dTM/d(µ0H) of Ni2MnGa0.88Cu0.12 is larger than that of other Ni2MnGa-type
Heusler alloys [18,38,40,41], indicating that the magnetic fields considerably affect the
martensitic transition of Ni2MnGa0.88Cu0.12 compared to that of other alloys.

Mendonça et al. investigated the magnetizations and magnetostrictions of off-
stoichiometric Ni2MnGa-type polycrystalline Ni2Mn0.7Cu0.3Ga0.84Al0.16 alloy [19]. At
a temperature slightly higher than TM, a magnetostriction, ∆L/L, caused by the magneto-
structural transition demonstrating a significant deformation of 26,000 ppm (2.6%) with
metamagnetic transition from the low-magnetic field austenite to the high-magnetic field
martensite phase was observed. Martensitic and ferromagnetic transitions occur at the
same temperature of TM = 293 K; this property is similar to that of Ni2MnGa0.88Cu0.12 [37].
The shift of TM was estimated as dTM/d(µ0H) = 1 K/T, which is of the same order as that
of Ni2MnGa0.88Cu0.12. The temperature dependence of the magnetization M-T curve of
Ni2Mn0.7Cu0.3Ga0.84Al0.16 indicated the presence of a metamagnetic-like large hysteresis at
298 K. This, in turn, indicates that at a constant temperature, re-entrant transitions occur
between the paramagnetic austenite phase and ferromagnetic martensite phase. In this
study, the M-T curve of Ni2MnGa0.88Cu0.12 indicated the metamagnetic-like large hysteresis
at 343 and 345 K, which are slightly higher than TM. Moreover, the metamagnetic behavior
suggests that Ni2MnGa0.88Cu0.12 can generate a large magnetostriction around TM.

In this study, we analyzed the magnetostriction of Ni2MnGa0.88Cu0.12 and compared
its characteristics with those of other MFIS alloys.

2. Materials and Methods
2.1. Materials

The polycrystalline Ni2MnGa0.88Cu0.12 sample was grown by repeated arc melting of
the constituent elements, namely 4N Ni, 4N Mn, 4N Cu, and 6N Ga, in an Ar atmosphere.
All reaction products were packed in evacuated silica tubes at 1123 K for 72 h and then
at 873 K for 24 h before being quenched into water [42,43]. The samples were character-
ized using X-ray powder diffraction measurements based on Cu-Kα radiation. At room
temperature, the crystalline structure was a tetragonal D022-like martensite. In addition,
the results of the X-ray diffraction indicated that the tetragonal phase with a D022-like
crystal structure coexists with the monoclinic phase of the monoclinic 14M structure (space
group: P2/m) at room temperature. The lattice parameters of D022 are aD022 = 0.38920 nm
and cD022 = 0.65105 nm. The details of the preparation and characterization of the sample
can be found in references [42,43]. As a result of having observed a sample by an optical
microscope at 298 K, there are some grains as large as 0.1 mm, which size was smaller than
that of polycrystalline Ni2Mn0.7Cu0.3Ga0.84Al0.16 alloy (grain size 0.5 mm) [19].

A Ni2MnGa-type single-crystalline alloy was purchased from Adaptamat Co., Ltd.
(Helsinki, Finland). The materials were analyzed using EDS (6010LA, JEOL Co., Ltd.,
Akishima, Japan) at the Faculty of Advanced Science and Technology, Ryukoku University.
The materials included 29.79 at.% Mn, 50.03 at.% Ni, and 20.18 at.% Ga. Therefore, the
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alloy was transcribed into Ni50Mn30Ga20. An alloy with similar lattice constants and
crystal structure as this sample has been presented in [5]. At room temperature, the crystal
structure was a 7-layered 7M martensite (which corresponds to the 14M structure and P2/m
space group) with lattice constants of a = 0.4219 nm, b = 0.5600 nm, and c = 2.0977 nm. At
324 K, the crystal structure was transformed into cubic-L21 austenite (space group Fm3 m)
with a lattice constant of a = 0.5837 nm.

2.2. Methods for Experimental Measurements

Magnetization measurements were performed using the SQUID magnetometer (MPMS-
XL7, Quantum Design Co., Ltd., San Diego, CA, USA) at the Center for Advanced High
Magnetic Fields, Osaka University. The sample size of Ni2MnGa0.88Cu0.12 for the magnetiza-
tion measurement was 1.4 × 1.4 × 1.4 mm. The magnetization process M-H measurements
were performed at temperatures ranging from 360 K to 330 K. Each measurement point took
30 s. Temperature dependence of the magnetization M-T measurements were performed
by warming the sample from 310 K to 400 K, followed by cooling from 400 K to 310 K. The
temperature sweep ratio was 0.016 K/s. Each measurement point took 60 s.

Magnetostriction measurements were carried out using strain gauges KFR-02-120-C1-16
(Kyowa Dengyo Co., Ltd., Chofu, Japan) under atmospheric pressure and without applying
any pre-stress. The base size of this strain gauge is 2.5 mm (parallel to the grid) × 2.2 mm.
The electrical resistivity of the strain gauges was measured using the four-probe method
and was measured by means of 2000/J digital voltmeter (Keithley Co., Ltd., Cleveland,
OH, USA). This digital voltmeter was connected to a CF-FX1 Laptop PC (Panasonic Co.,
Ltd., Kadoma, Japan) via a GPIB cable, and measured by means of Basic 98 program.
The sample size of Ni2MnGa0.88Cu0.12 is 3.5 × 3.0 × 3.0 mm. The magnetostrictions of
Ni2MnGa0.88Cu0.12 were measured parallel to the applied magnetic field (∆L/L)//H. The
sweep speed of the magnetic field during the magnetostriction measurement was 0.0125 T/s.
Each magnetostriction measurement at a specific temperature was measured after heating
the sample to 370 K, which is higher than TR, and then maintaining a constant temperature.
In order to estimate the error of the strain gauge, the strain gauge was fixed on Cu plate,
and the magnetoresistance of the strain gauge was measured in a magnetic field up to 10 T.
The error was estimated to be ±1 ppm at 5 T and ±3 ppm at 10 T.

The forced magnetostriction measurements for Ni2MnGa0.88Cu0.12 were performed
using a helium-free superconducting magnet up to 6 T at the Center for Advanced High
Magnetic Field Science, Osaka University, and up to 9.8 T at the High Field Laboratory for
Superconducting Materials, Institute for Materials Research, Tohoku University.

The forced magnetostriction measurement for Ni50Mn30Ga20 was performed using a
four-prove strain gauge method up to 1.5 T with a water-cooled electromagnet (Tamagawa
Seisakusho Co., Ltd., Sendai, Japan) at the Faculty of Advanced Science and Technology,
Ryukoku University. The sample size was 3.5 × 2.5 × 1.0 mm, and the longitudinal
direction of the sample was parallel to the c-axis. The magnetostriction was measured
along the c-axis in a magnetic field applied parallel to the c-axis, (∆L/L)//H//c.

3. Results and Discussions
3.1. Temperature and Magnetic Field Dependency of the Magnetization

Figure 1 shows the temperature dependence of the magnetization for Ni2MnGa0.88Cu0.12
in a magnetic field of µ0H = 0.1 T. The low- and high-temperature phases below and above
340 K indicate the ferromagnetic martensite and paramagnetic austenite phases, respectively.
This is consistent with the results of previous studies [37,42,43]. The reason of the dip of the
magnetization M-T curve around 325 K in cooling process, and the difference of the M-T
curve in cooling and heating processes shown in Figure 1, can be attributed to the alignment
of magnetic moments of Mn and Ni atoms parallel to the magnetic field just below TM and
the rearrangement of the 14M and/or DO22 tetragonal lattices by the magnetic moments.
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Figure 1. Temperature dependence of the magnetization, M vs. T, for Ni2MnGa0.88Cu0.12 in a
magnetic field of 0.1 T. The arrows show the process of the temperature.

The values of dM/dT shown in Figure 2 indicate magnetization with respect to temper-
ature. The peak temperature of dM/dT corresponds to the transition temperature, indicating
the martensitic transition temperature of TM = 338 K (austenite phase to martensite phase).
The reverse martensitic transition temperature is almost the same as TM, with a value of
337 K, which was obtained through linear expansion in our previous study [37]. Based
on the heating process of dM/dT, TR = 343 K (martensite phase to austenite phase). From
the dM/dT results shown in Figure 2, the martensitic transition start temperature TMs, the
martensitic transition finish temperature TMf, the reverse martensitic transition start tem-
perature TRs, and the reverse martensitic transition finish temperature TRf, was obtained
as TMs = 349 K, TMf = 335 K, TRs = 340 K, TRf = 353 K. The martensitic temperature TM as
338 K was obtained from the peak temperature of dM/dT during the cooling process. The
reverse martensitic transition temperature TR was obtained from the peak temperature of
dM/dT in the heating process.
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Figure 2. Differential magnetization at temperature, dM/dT vs. T, for Ni2MnGa0.88Cu0.12 in a magnetic
field of 0.1 T. TM and TR indicate the martensitic transition temperature and the reverse martensitic
transition temperature.

In Figure 3, the magnetic field dependence of the magnetization for Ni2MnGa0.88Cu0.12
at a constant temperature is shown. It can be observed that the martensite phase has larger
magnetization than that of the austenite phase. Metamagnetic-like hysteresis was observed
around 340 K. This indicates that, at the constant temperature, transition from low-magnetic
field paramagnetic austenite phase to high-magnetic field ferromagnetic martensite phase



Metals 2023, 13, 1185 5 of 13

occurred. This is similar to the re-entrant transition between paramagnetic austenite phase
and ferromagnetic martensite phase as shown in Ni2Mn0.7Cu0.3Ga0.84Al0.16 polycrystalline
alloy [19].
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The magnetostriction was measured to investigate the relation between the structural
phase transition and magnetic property.

3.2. Forced Magnetostriction

The forced magnetostriction measurements for Ni2MnGa0.88Cu0.12 were performed
from a higher temperature to a lower temperature compared to the martensite transition
temperature.

Figure 4 shows the magnetic field dependence of the forced magnetostriction, ∆L/L,
up to 6 T. First, we measured it at 352 K, which is higher than TM and then at a constant
temperature, while gradually cooling the sample. For the y-axis (∆L/L), an offset is applied.

The magnetostriction increases when the sample is cooled from 352 K, and reaches
its maximum at 1300 ppm near 343 K. Furthermore, the magnetostriction decreases when
the sample is cooled. These results indicate that large magnetostriction was observed
at a slightly higher temperature than the martensite transition temperature, TM = 338 K.
Furthermore, large hysteresis was observed at 345 and 343 K, which could be equivalent
to the hysteresis of magnetization; in addition, re-entrant transition occurred between the
paramagnetic austenite and ferromagnetic martensite phases.

As for Ni2MnGa alloys, the rearrangement of the martensite variants is responsible
for a large part of the magnetic field-induced strain. The large plastic strain observed
between 341 K and 345 K indicates that this effect plays a significant and important role.
In Figure 4, the magnetostriction curve at 352 K and 350 K, in the fully austenite phase,
which has a temperature lower than TMs = 349 K, indicates a small hysteresis. At 348 K,
the hysteresis of the magnetostriction curve is larger than that at 350 K. This indicates
that the temperature was slightly lower than TMs, and thus the martensitic transition took
place. At 345 K, the largest hysteresis was found. At this temperature, we expect that the
austenite parent phase at low magnetic fields would change into the martensite phase. The
result of thermal strain in the cooling process indicates a contraction of 1300 ppm (0.13%)
with a martensitic transition around TM [37]. The shrinkage value of the magnetostriction
curve is comparable to the contraction value of the thermal strain result observed in our
former study. For the isothermal magnetization process at 344 K, as shown in Figure 3,
the M-H curve for decreasing magnetic field returns to the initial phase before the field
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reaches zero, suggesting a considerable recovery of the austenite phase. Therefore, a large
magnetic field-induced strain with a large hysteresis and significant austenite recovery
at 345 K was observed. These results are consistent with those of Ni2.15Mn0.70Cr0.15Ga
polycrystal as shown in reference [20]. From the magnetization and the magnetostriction
results, the magnetic driving force is expected to be stronger than the potential barrier for
the martensitic transition from the austenite phase to the martensite phase.
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Ni2MnGa0.88Cu0.12. The arrows show the process of the magnetic field.

At 341 K, which is higher than TMf = 335 K, there are still some austenite regions in
zero magnetic field. Above 4 T, the strain value was almost constant, which indicates that
fully martensitic state was realized, and the variants were fully aligned in a high magnetic
field. As the magnetic field-induced martensitic transition occurred at high magnetic fields,
it is conceived that the recovery strain became small as it is difficult to exceed the potential
barrier in low magnetic fields.

At 338 K, a nearly fully martensite state was realized even at zero magnetic field,
resulting in small magnetostriction.

Figure 5 shows the magnetic field dependence of the forced magnetostriction, ∆L/L,
up to 9.8 T. At 345 K, the re-entrant transition is clearly identified. At 347 K, the transition
shrank almost linearly with increasing magnetic fields, demonstrating hysteresis. At 345 K,
the sample also shrank almost linearly with increasing magnetic fields. The shrinkage
decreased beyond 8 T. When the magnetic field decreased from 9.8 T, the length of the
sample remained almost the same, and below 6 T, the sample gradually lengthened. At
1.5 T, a soft kink was observed in ∆L/L. The result of magnetostriction at 345 K indicates that
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the magnetic-field-induced transition from the paramagnetic austenite to ferromagnetic
martensite phase occurred in increasing magnetic field process.
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In [42] and [43], regarding Ni2MnGa1-xCux, the magnetic field was conceived to shrink
because of the x dependence of Cu concentration of the unit-cell volume within the interval
0 ≤ x ≤ 0.25 at room temperature. The unit-cell volume decreases with increasing x.
Ni2MnGa1−xCux in the concentration range of 0 ≤ x ≤ 0.07 crystallize in the L21 cubic
structure at room temperature. The lattice parameter aL21 with x = 0.02 (L21 cubic structure)
was 0.58206 nm. For 0.10 ≤ x ≤ 0.25, the sample crystallizes as a D022-like martensite
structure, as mentioned in Section 2.1. At x = 0.12, the unit-cell volume defined through
X-ray diffraction was smaller than that of the extrapolation line at 0 ≤ x ≤ 0.07 (L21 cubic
structure) of the order of 0.200% (2000 ppm). The linear strain of a polycrystal is one-third
of the volume strain [44]. Therefore, 670-ppm shrinkage is expected because of the austenite
phase transition to the martensite phase. Moreover, in the martensite phase, the magnetic
easy axis is aD022, and a large shrinkage was observed with the applied magnetic field
parallel to the easy axis [15]. Therefore, negative magnetostriction could be observed
around TM for this study.

3.3. Comparation with Other Ferromagnetic Magneto-Structural Alloys

Now, we compare the magneto-structural properties of Ni2MnGa0.88Cu0.12 with
other Ni2MnGa-type ferromagnetic alloys, i.e., Ni2MnGa [17], Ni41Co9Mn31.5Ga18.5 [31],
Ni2Mn0.7Cu0.3Ga0.84Al0.16 [19], and Ni2.15Mn0.70Cr0.15Ga [20] polycrystalline samples, as
well as Ni45Co5Mn36.7In13.3 [7] and Ni50Mn30Ga20 [5] single crystalline samples.

Table 1 provides information on the crystal structure in the martensite phase, volume
change from the martensite phase to the austenite phase, and magnetostriction value of
varioys Ni2MnGa-type Heusler alloys.
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Table 1. Crystal structure, volume change, and linear magnetostriction (∆L/L)// value of the
Ni2MnGa-type Heusler alloys. All alloys have the L21 cubic crystal structure in the parent austenite
phase. Arrows indicate the transition direction of the magnetic and crystallographic phases.

Alloy Crystal Structure
(Martensite Phase)

Volume Change (ppm)
(Paramagnetic

Austenite
→Ferromagnetic

Martensite)

Linear
Magnetostriction

(∆L/L(Paramagnetic
Austenite

→Ferromagnetic
Martensite)

Ni2MnGa 14M 1 −330 1 −780 2

Ni2MnGa0.88Cu0.12
3 D022 + 14M −2000 −1300 (this study)

Ni41Co9Mn31.5Ga18.5
4 tetragonal 5700 1900

Ni45Co5Mn36.7In13.3
5 14M --- 30,000 (single crystal)

Ni2Mn0.7Cu0.3Ga0.84
Al0.16

6 L10 −55,000 −26,000

Ni2.15Mn0.70Cr0.15Ga 7 L10 −30,000 −8100

Ni50Mn30Ga20
8 5M −260 −3300 (single crystal)

(this study)
1 Ref. [45] 2 Ref. [17] 3 Ref. [37] 4 Ref. [31] 5 Ref. [7] 6 Ref. [19] 7 Ref. [20] 8 Ref. [5]. The arrows indicate the
transition direction of the magnetic and crystallographic phases.

Sakon et al. investigated the magnetostriction of polycrystalline sample of Ni2MnGa [17].
The magnetostriction was measured at T = 185 K in the martensite phase, where the tempera-
ture was just below TM = 193 K. The magnetostriction was measured parallel (∆L/L)// and
perpendicular (∆L/L)⊥ to the magnetic field. Furthermore, the obtained magnetostriction
values were (∆L/L)// = −780 ppm and (∆L/L)⊥ = 260 ppm. The volume magnetostriction
∆V/V can be obtained as follows [44–46]:

∆V/V= (∆L/L )// + 2 (∆L/L)⊥ (1)

The obtained ∆V/V was −260 ppm. Singh et al. [45] obtained the temperature
dependencies of the lattice constant and unit-cell volume based on a high-resolution
synchrotron X-ray powder diffraction. The volume change from a L21 cubic structure to a
monoclinic 14M structure was −330 ppm. Volume magnetostriction ∆V/V was 80% of the
volume change of the L21 → 14M martensite transition.

Ni41Co9Mn31.5Ga18.5 has a TM of 320 K and a Curie temperature, TC of 468 K [31]. The
L21 cubic ferromagnetic austenite structure and tetragonal ferrimagnetic martensite struc-
ture were obtained as magnetic and crystalline structure, respectively. Thermo-magnetic
M–T curves indicated that at 0.5 T, a sharp magnetization jump corresponding to the
thermal martensitic transition temperatures [martensite → austenite TR = 350 K (heat-
ing process) and austenite→ martensite TM = 320 K (cooling process)] was observed at
around room temperature. The TM decreased with increasing magnetic field at the ratio
of dTM/d(µ0H) = −12.6 K/T. The absolute value of dTM/d(µ0H) of Ni41Co9Mn31.5Ga18.5 is
10 times larger than that of Ni2MnGa0.88Cu0.12. Below TM, metamagnetic transitions were
observed for the magnetization processes (M-T curves). In addition, magnetostrictions
larger than 1000 ppm were observed at the temperature of 150 K ≤ T ≤ 290 K below TM,
corresponding to a metamagnetic transition. At 290 K, the total value of magnetostriction
was 1900 ppm. Assuming isotropic magnetostriction for this polycrystalline sample, the
total volume change can be estimated as 5700 ppm [31]. These results indicate that below
TM, a reverse martensite transition occurred from the ferrimagnetic martensite phase to
the ferromagnetic austenite phase with the increasing magnetic field. The experimental
and theoretical results show that the total energy of the ferromagnetic state is close to
that of the ferrimagnetic martensite state, and the magnetic-field-induced ferromagnetic
austenite phase is unstable in the ratio of the tetragonality (c/a) for 1.0≤ c/a≤ 1.1. Therefore,
metamagnetic transitions and large magnetostrictions were observed in the magnetic field.

A single crystal of Ni45Co5Mn36.7In13.3 indicates a large MFIS of 30,000 ppm (3.0%)
at 298 K when a compressive pre-strain of approximately 3% was applied in the direction
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plotted with a filled circle in the stereographic triangle, as shown in Figure 4 of Ref. [7].
The magnetic field was applied parallel to the compressive axis of the sample. The TM
was 290 K and TC was 382 K. Below this TM, the M-T curve indicated a clear metamag-
netic transition behavior. The TM decreased with increasing magnetic field at the ratio of
dTM/d(m0H) = −7 K/T, and an L21 cubic structure was achieved in austenite phase, and
a monoclinic 14 M layered structure was achieved in the martensite phase. Below TM,
the MFIS was observed to occur during the metamagnetic transition from the ferrimag-
netic martensite phase to ferromagnetic austenite phase. The strain from the L21 cubic
structure to monoclinic 14 M layered structure is significant, exceeding a few percent. For
example, Sozinov et al. experimentally studied the MFIS of a single-variant sample of an
orthorhombic seven-layered phase in the Ni48.8Mn29.7Ga21.5 single crystalline alloy at 300 K,
measuring it perpendicular to the magnetic field applied along the [100] direction [3]. They
observed a giant MFIS of approximately 95,000 ppm (9.5%) at an ambient temperature in a
magnetic field of less than 1 T in the Ni2MnGa orthorhombic seven-layered (7M structure,
which corresponds to 14M structure) martensite phase.

On the contrary, the crystal structure of Ni41Co9Mn31.5Ga18.5 is not a monoclinic 14 M
structure but a tetragonal structure, and the volume change due to the martensitic transition
is 5700 ppm. Therefore, a moderate magnitude magnetostriction was observed.

In the case of Ni2MnGa0.88Cu0.12, the value of the magnetostriction (1300 ppm) is the
same order as that of Ni41Co9Mn31.5Ga18.5 (1900 ppm). The tetragonal phase of the D022-like
crystal structure coexists with the monoclinic phase of the monoclinic 14M structure (space
group: P2/m) in the martensite phase at room temperature. The volume change from the L21
cubic structure to monoclinic 14M structure was −330 ppm for Ni2MnGa [45]. Therefore,
−1300 ppm magnetostriction, which is smaller than that of Ni41Co9Mn31.5Ga18.5, the
crystal structure of which is a tetragonal martensite, is suitable for the Ni2MnGa0.88Cu0.12
polycrystalline alloy.

As mentioned earlier, for Ni2Mn0.7Cu0.3Ga0.84Al0.16, TM = 293 K and the martensitic
and ferromagnetic transitions occur at the same temperature, as confirmed by the magneti-
zation and magnetostriction measurements [19]. In addition, the results of X-ray powder
diffraction measurement indicated that the crystal structure was L21 cubic austenite at
312 K. Moreover, at 298 K, which is slightly higher than TM = 293 K, the austenitic L21 cubic
structure and martensitic L10 non-modulated tetragonal structure were observed to coexist.
Finally, below 257 K, the L10 structure was achieved.

The unit-cell volume of Ni2Mn0.7Cu0.3Ga0.84Al0.16 calculated by the lattice parameters
showed the volume difference between the austenite L21 phases and martensite L10 phase
as approximately −55,000 ppm (−5.5%). Therefore, a giant magnetostriction was expected
around −18,000 ppm (−1.8%) for the polycrystalline sample. However, the experimental
results showed magnetostriction of ∆L/L = −26,000 ppm (−2.6%.), which is larger than the
expected value. Therefore, the effect of the alignment of the variant of martensite must be
considered. The magnetostriction is irreversible during the experimental temperatures of
297.4 K ≤ T ≤ 304 K. Partial recovery was observed only at 305 K.

In the case of Ni2MnGa0.88Cu0.12, the value of the magnetostriction was one-tenth
that of Ni2Mn0.7Cu0.3Ga0.84Al0.16. However, an 85% recovery strain was observed at 345 K.
The existence of recovery strain at atmospheric pressure is advantageous for the alloy’s
application in sensors and actuators.

Mendonça et al. [20] performed the magnetostriction measurements on the Ni2.15Mn0.70
Cr0.15Ga polycrystalline alloy with TM = 299 K. In addition, the martensitic and ferromag-
netic transitions occurred at the same temperature, as confirmed by the magnetization and
magnetostriction measurements. The resulting crystal structure in the parent austenite
phase was the L21 cubic structure. The martensite phase is an L10 non-modulated tetragonal
structure. The unit-cell volume of Ni2Mn0.7Cu0.3Ga0.84Al0.16 calculated from the lattice pa-
rameters showed that the volume difference between the austenite L21 phases and marten-
site L10 phase is approximately −30,000 ppm (−3.0%). The magnetostriction results indi-
cated a reversible strain around −8100 ppm (−0.81%) under 0–9 T, which is slightly lesser
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than one-third the volume difference (−10,000 ppm,−1.0%). Mendonça et al. [20] overcame
the weak point of large hysteresis in the magnetostriction of Ni2Mn0.7Cu0.3Ga0.84Al0.16.
The characteristic of a magneto-structural transformation at room temperature with low
hysteresis is advantageous for the alloy’s application in functional magnetic materials. In
this experimental study, the value of the magnetostriction of Ni2MnGa0.88Cu0.12 is one-sixth
of that of Ni2.15Mn0.70Cr0.15Ga. However, it is advantageous for its industrial application
and possesses smaller magnetostriction than that of Ni2.15Mn0.70Cr0.15Ga.

As a reference sample, we measured the magnetostriction of the Ni2MnGa-type
(Ni50Mn30Ga20) alloy manufactured by Adaptamat Co., Ltd. [4,5], which is shown in
Figure 6. This alloy causes martensite phase transition at TM = 315 K. Magnetostriction
of Ni50Mn30Ga20 was measured parallel to the magnetic field, which was parallel to the
c-axis. Magnetostriction of −3300 ppm was observed at an atmospheric pressure and
298 K. Almost 100% recovery strain was observed. The value of the magnetostriction
of Ni2MnGa0.88Cu0.12 was one-third that of Ni50Mn30Ga20. However, the value of the
magnetostriction of Ni2MnGa0.88Cu0.12 is larger than that of Terfenol-D (800 ppm), which
is renowned as the most commonly used magnetostrictive alloy [47,48].
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As mentioned above, a shrinkage of −3300 ppm was observed at 298 K in the marten-
site phase. This result is comparable to magnetostriction of Ni2MnGa single crystal at
atmospheric pressure (unstressed crystal) measured by Ullakko et al. [1]. The martensitic
transition temperature, TM, was 275 K. In the martensite phase at 265 K, a magnetostriction
value of the [001] axis (c-axis in a martensite phase) strain in response to magnetic field
applied along c-axis was—1000 ppm in an applied magnetic field of 1 T. Ullakko et al.
mentioned that the strain occurs fully within the martensitic phase and is due to the motion
of twin boundaries. The magnetostriction is only a small fraction of the lattice constant
change (∆c/c = 6.56% = 65,600 ppm). They also mentioned that this small strain is caused
by the strain accommodation through different twin variant orientations. In the martensite
phase, applying the magnetic field to the single variant material causes the other twin
variants to appear and grow [3,4]. When magnetic field strength increases the boundaries
between twins move, and the preferentially oriented twin variants grow at the expense of
the other twin variants. It is interesting that the magnetostriction of Ni50Mn30Ga20 (this
study) and Ni2MnGa [1] was almost fully reversible. Currently, we cannot explain why the
recovery of strain occurred in the martensite phase. It is conceived that the rearrangements
of the twin variants would occur when increasing a magnetic field, and afterwards, during
the decreasing magnetic field process, elastic recovery may act and come back to the origi-
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nal state. However, the exact reason for this recovery is currently not clear. Recently, Wu
et al. simulated the ferromagnetic domain structure and martensite variant microstructure
of Ni2MnGa-type shape-memory alloy [12]. They found −0.28% (−2800 ppm) magnetic
field induced strain and also found 100% recovery strain at 285 K below TM = 300 K. This
value is comparable with our result of Ni50Mn30Ga20 alloy. We retrieve this model helps
explanation of the recovery strain.

4. Conclusions

In this study, magnetostriction measurements were performed on the ferromagnetic
Heusler alloy Ni2MnGa0.88Cu0.12. One characteristic of this alloy is that its martensitic and
ferromagnetic transitions are caused at the same temperature. In the austenite and marten-
site phases, the alloy crystallizes with L21 and D022-like crystal structures, respectively.
Metamagnetic transition was observed in the magnetic field of µ0H = 4 T at 344 K. This result
showed that the occurrence of phase transition was induced by the magnetic field under con-
stant temperature. Forced magnetostriction measurements (∆L/L) were performed under
constant temperature and at an atmospheric pressure of P = 0.1 MPa. Magnetostriction up to
1300 ppm was observed around the TM. The magnetization and magnetostriction measure-
ment results showed that the magnetic-field-induced strain from the paramagnetic austen-
ite phase to ferromagnetic martensite phase occurred. In the case of Ni2MnGa0.88Cu0.12,
the value of the magnetostriction was one-tenth that of Ni2Mn0.7Cu0.3Ga0.84Al0.16, which
has a tetragonal L10 martensite structure. However, 85% recovery strain was observed
at 345 K. The value of the magnetostriction of Ni2MnGa0.88Cu0.12 was one-sixth that of
Ni2.15Mn0.70Cr0.15Ga, which has low hysteresis and reversible strain in magnetic fields.
The existence of a recovery strain at atmospheric pressure is advantageous to the alloy’s
application to sensors and actuators.

For reference, we measured the magnetostriction of the Ni2MnGa-type (Ni50Mn30Ga20)
alloy made in Adaptamat Co., Ltd. The magnetostriction of −3300 ppm was observed at
298 K, and almost 100% recovery strain was observed. The value of the magnetostriction
of Ni2MnGa0.88Cu0.12 was one-third that of Ni50Mn30Ga20. However, the value of the
magnetostriction of Ni2MnGa0.88Cu0.12 is larger than that of Terfenol-D (800 ppm).
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