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Abstract: This investigation employed different laser powers to conduct the laser welding–brazing
process of 5052 aluminum alloy to both Al-Si coated and uncoated 22MnB5 steel. The flux-cored
Zn-Al22 filler metal was employed during the procedure. The influence of Al-Si coatings on the
microstructure and corrosion resistance of Al/Steel welded joints was investigated using microstruc-
tural characterization and electrochemical tests. It was noted that the interfacial microstructure of
the laser Al/steel joints was significantly altered by the Al-Si coating. Moreover, the Al-Si coating
suppressed the formation and growth of the interfacial reaction layer. Electrochemical corrosion
tests showed that the impact of Al-Si coating on the corrosion resistance of laser joints depended on
the laser powers and thickness of the interfacial intermetallic compound (IMC) layer. The research
suggests that galvanic corrosion occurs due to the differences in corrosion potential between fusion
zone (FZ), steel, and Fe-Al-Zn IMCs, which accelerate the corrosion of the joint. The IMC layer acts as
a cathode to accelerate the corrosion of the FZ and as an anode to protect the steel from corrosion.

Keywords: corrosion resistance; laser welding–brazing; intermetallic compounds; microstructure;
Al/steel joints

1. Introduction

Lightweight design and manufacturing of automotive structures are fundamental for
the development of the motor industry [1–3]. Due to the advantages of being lightweight
and exceptionally resistant to corrosion, aluminum alloys have good prospects for appli-
cation in the weight reduction of automotive structures by replacing conventionally used
steels [4–6]. At the same time, to satisfy the demand for weight reduction and to improve
the safety and crashworthiness qualities of vehicles, automakers have made remarkable
advancements in the production of sophisticated high-strength steels (AHSSs), including
martensitic steel, dual-phase steel, and boron alloy steel to obtain higher strength and
thinner structural sizes [7]. The AHSSs have a higher strength than conventional mild
steels but have poor formability. The 22MnB5 is a boron-containing alloy steel. It has
a completely martensitic microstructure and offers unparalleled strength compared to
the AHSS currently employed in the industry. In order to eliminate the disadvantage of
low-formation properties, 22MnB5 steel is formed by a hot-forming process, so it was called
a hot stamping steel. The 22MnB5 steel shows a high ultimate tensile strength after hot
stamping [8,9].

Extensive research has been conducted to investigate different types of coatings,
including Al-Si and Zn coatings, to mitigate surface oxidation that may occur during high-
temperature procedures [10]. The Al-Si coatings leave no oxide stripping during heating on
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the steel surface, can be dispensed with shot blasting or sand blasting after stamping, and
possess a high corrosion resistance without nitrogen protection. Therefore, Al-Si coatings
have been more widely used in hot stamping and forming processes than Zn coating. It was
inevitable that scholars would consider the influence of Al-Si coating during the welding
process. A study conducted by Kim et al. [9] aimed to examine the effects of Al-Si coating in
laser welding on 22MnB5 steel (Martin Steel Inc., Huntington, WV, USA). The researchers
discovered that, when an Al-Si coating was present, the aluminum and silicon elements
dissolved into the weld. These elements primarily formed a solid solution within the weld.
Furthermore, the aluminum and silicon precipitated on the interface, leading to a weak
joint strength. Sun et al. [11] focused on the effect of Al-Si coating on the joint strength of
steel joints. According to this investigation, the ferrite generated by Al-Si coating exhibits a
low hardness and strength. It is beneficial for enhancing the joint’s fatigue life. Lin et al. [12]
observed an increase in the aluminum content in the fusion zone (FZ) of 22MnB5 steel
joints as a result of the Al-Si coating dissolving. Furthermore, aluminum promoted the
generation of δ-Fe during solidification, which weakened the joint’s mechanical properties.
In the case of dissimilar welding, Ding et al. [13] proposed to join Al/Al-Si coated steel by
refill friction stir spot welding and found that the Al5Fe2 (Si) existing in the Al-Si coating
can inhibit the formation of IMC in the joint. Zhang et al. [14] welded magnesium and
Al-Si coated 22MnB5 steels by resistance spot welding. They investigated the impact of
the Al-Si coating on the strength and microstructure of the joints. It was demonstrated that
the molten Al-Si eutectic promoted the evolution of the reaction, generating a new IMC
layer in the center of the weld, which significantly improved the mechanical properties
of the joint. There are many welding methods for dissimilar metals, such as friction stir
welding [15], explosion welding [16], gas tungsten arc welding (GTAW) [17], and laser
welding [18,19]. The advantages of laser welding are a high energy density, concentrated
energy, easy control of the heat source, deep weld seam, small welding deformation, and
high efficiency, which are promising for aluminum/steel dissimilar welding [20–22]. Yang
et al. [19] studied the association between laser power, interfacial microstructure, and joint
strength of Al/Al-Si coated 22MnB5 steel joints. The results of the study demonstrated
significant variations in the type and structure of intermetallic compounds (IMCs) within
the interfacial layer under different laser power conditions. These findings emphasize the
effect of laser power on the formation and characteristics of IMCs.

Based on the above literature, it can be summarized that Al-Si coatings have a signifi-
cant impact on the microstructure and mechanical properties of welds. However, there is
still little literature on the effect of Al-Si coatings on the corrosion resistance of dissimilar
Al/steel joints. Al-Si coating can improve the corrosion resistance of 22MnB5 steel surface,
but the impact on the corrosion resistance of Al/steel dissimilar joints is unclear. Corrosion
between Al/steel dissimilar joints is more prone to occur, which is caused by the difference
in self-corrosion potential between the two materials. Hence, investigating the effect of
Al-Si coating on the corrosion resistance of Al/22MnB5 steel joints is necessary. In the
present study, the interfacial microstructure was comparatively analyzed in Al/22MnB5
steel joints with and without Al-Si coating. In order to study the effect of coatings on the
corrosion resistance of the joints, self-corrosion current density, self-corrosion potential,
and impedance of Al-steel joints were measured by electrochemical tests. The morphology
of the joints after corrosion was analyzed, and illustrated the corrosion mechanism of the
Al/steel joints. This will provide theoretical support for enhancing the security and stability
of Al/steel welded construction products in the manufacturing industry.

2. Experimental Design

The thickness of the base metals, AA5052 aluminum alloy (Guangdong Xingfa Alu-
minium Co., Ltd., Guangdong, China) and 22MnB5 steel (with or without Al-Si coating),
used in this experiment were 2.0 mm and 1.8 mm, respectively. These base metals had
dimensions of 100 mm× 50 mm. For this experiment, the Zn-Al22 wire was chosen as the
filler metal, which had a diameter of 1.6 mm. Table 1 provides the elemental content of
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the the22MnB5 steel (Baosteel Co., Ltd., Shanghai, China), AA5052 aluminum alloy, and
Zn-Al22 filler wire (Shandong Szeshang Welding Materials Co., Ltd., Shandong, China).
Figure 1 shows the microstructure of the 22MnB5 steel with and without coating. In terms
of uncoated steel, pearlite and ferrite were observed (Figure 1a), while only martensite
was observed due to the hot stamping process inducing phase transformation [14]. In
addition, the Al-Si coating with the thickness of 28 ± 2 µm was clearly observed on the
steel substrate (Figure 1b). This coating consisted of an Al-Si eutectic phase and Fe2Al7Si
intermetallic compound, where the IMCs were continuously distributed between the Al-Si
eutectic phase and steel substrate with the thickness of 7 µm [23–25].

Table 1. Chemical composition of base metals and filler metal (wt. %).

Materials Mg Fe Al Cr Cu Zn Mn Si C B

22MnB5 steel - Bal. 0.05 0.20 - - 1.18 0.25 0.2 0.005
AA5052 Al 2.2–2.8 0.4 Bal. 0.2 0.1 0.1 0.1 0.25 - -

Zn-Al22 - - 22 - 0.8 Bal. - - - -
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with ethanol after being smoothed by sandpaper to remove scraps and oils before weld-
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experimental parameters need to be optimized before the beginning of the test. Table 2 
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Figure 1. Microstructure of 22MnB5 steel: (a) without coating; (b) with coating.

The IPG YLS-5000 fiber laser system (IPG Photonics, Oxford, MA, USA), capable
of producing a maximum output power of 5 kW, was utilized to conduct the welding
procedure. A visual representation of the Al/steel laser welding–brazing process can be
observed in Figure 2. To ensure the cleanliness of the workpieces, the base metal was
wiped with ethanol after being smoothed by sandpaper to remove scraps and oils before
welding. The welding joint determined the lap joint, the steel was placed on the bottom of
aluminum, and the width of the overlap was 10 mm. The filler metal was fed from the front
of the laser beam at an angle of 45◦. The angle between the laser beam and the workpiece
was approximately 90◦. The filler metal was fed from the front of the laser beam at an
angle of 45◦. A total of 99.99% pure Ar shielding gas was used to prevent oxidation during
welding with a flow rate of 15 L/min. The angle between the workpiece and the protective
gas feed nozzle was set at 30◦. In order to obtain a wider laser irradiation area, the laser
defocus parameter can be set to +35 mm. To obtain a satisfactory weld appearance, the
experimental parameters need to be optimized before the beginning of the test. Table 2
shows the optimized parameters for the dissimilar laser welding–brazing.
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Table 2. Optimized parameters of laser welding–brazing.

Laser Power
/W

Welding Speed
/m·min−1

Wired Feed Speed
/m·min−1

Defocused Amount
/mm

Shielding Gas Flow
/L·min−1

1500
0.3 1.9 +35 151700

1900

After welding, the laser joints were cut along the direction perpendicular to the
laser movement and subjected to microstructure analysis. The samples were sequentially
ground with 400#, 800#, 1200#, and 1500# metallographic sandpapers for coarse and
fine grinding, and polished with 1 µm diamond suspension until becoming scratch-free.
Then, metallographic specimens were ultrasonically cleaned in acetone. The welding
samples were observed using an optical microscope (OM, Olympus 4XCJZ, Olympus
Group, Milwaukee, WI, USA) and scanning electron microscope (SEM, Hitachi S3400-
N, ATA Scientific Pty Ltd., Caringbah, Australia) in order to analyze the microstructure
and ascertain the chemical composition of the interfacial phases. The scanning electron
microscope was also equipped with energy-dispersive X-ray spectroscopy (EDS, Nogales,
AZ, USA) analysis for further investigation.

A CS350H electrochemical workstation (Wuhan Corrtest Instruments, Wuhan, China)
and three-electrode system were used for the electrochemical corrosion testing, as shown
in Figure 3. The saturated calomel electrode was used as the reference electrode. The
electrochemical corrosion sample was used as the working electrode, and the platinum
electrode was used as the counter electrode. A neutral solution of 0.35 mol/L NaCl was
used in the electrochemical corrosion. In the electrochemical corrosion test, except for the
polished cross-section, the rest of the material was covered with epoxy resin, and only the
cross-section of the sample was retained as the surface to be tested. The samples were
immersed in the NaCl neutral solution for 30 min to obtain uniform corrosion. After the
open-circuit potential (OCP) became stabilized, the potential dynamic polarization curve
test scanned from negative potential to positive potential, and the applied potential varied
in the range of −1.5 to +1 V. The scan speed and sampling frequency during the test were
2 mV/s and 2 Hz, respectively. The electrochemical impedance spectroscopy (EIS) was
conducted when the open-circuit potential is relatively stable, with the amplitude of the
sinusoidal voltage set to 10 mV and the frequency set to 1000 to 0.1 Hz.
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Figure 3. Schematic diagram of electrochemical corrosion test.

3. Results and Discussion
3.1. Macroscopic Morphology and Interfacial Microstructure

Figure 4 shows the macroscopic morphology of welding joints with and without Al-Si
coating. It was evident that the welding joints were continuous and well-formed, with no
visible surface defects such as spatter or porosity. The width of the filler metal on both
uncoated and Al-Si coated steel increased gradually with increasing laser power, indicating
that the heat input improved the wetting and spreading of the filler metal.
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Figure 4. Macroscopic morphology of welding joints with the laser power from 1500 W to 1900 W:
(a–c) Al/uncoated steel joints; (d–f) Al/Al-Si coated steel joints.

Figure 5 shows the SEM analysis at the FZ/steel interface of the laser joints with and
without Al-Si coating obtained with various laser powers. It was obvious that the reaction
layer was generated at the interface under both conditions.
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Figure 5. SEM analysis at the FZ/steel interface in the Al/uncoated steel and Al/Al-Si coated steel
joints with the laser power varying from 1500 to 1900 W: (a~c) Al/uncoated steel joints; (d~f) Al/Al-Si
coated steel joints.

Figure 5a–c depicts the SEM analysis of the laser Al/uncoated steel joints. In the case
of the uncoated steel, the morphology and phase composition of the reaction layer changed
drastically from 1500 to 1900 W (refer to Figure 5a–c). At the low laser power of 1500 W, the
reaction layer was very thin and discontinuous, and the edge of the reaction layer close to
the steel base metal was relatively straight, while it was uneven near the FZ. This indicates
that the reaction layer has grown from the steel side towards the FZ [26]. According to the
EDS analysis in Table 3, the chemical composition was 0.82 at. % Fe, 48.89 at. % Al, 50.11 at.
% Zn, and 0.18 at. % Si. These measurements indicated that existing phases were mainly
Fe2Al5−xZnx. The Fe2Al5−xZnx was a kind of variation of Fe2Al5 which has been reported
previously [27]. A thicker reaction layer was observed consisting of a continuous dark
lamellar layer at 1700 W. According to EDS analysis in Table 3, the chemical composition
was 23.10 at. % Fe, 70.24 at. % Al, 60.42 at. % Zn, and 0.24 at. % Si, which was determined to
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be Fe2Al5−xZnx [28,29]. Upon increasing the laser power to 1900 W, a continuous reaction
layer was observed, which comprised a thicker dark layer with dispersed light-colored
microstructure. The elemental composition and content of the two phases was 11.46 at. %
Fe, 57.41 at. % Al, 31.04 at. % Zn, 0.09 at. % Si and 19.58 at. % Fe, 70.6 at. % Al, 9.62 at. % Zn,
0.21 at. % Si (Table 3). The existing phases were determined to be Fe2Al5−xZnx and FeZn10.
Similar phase determinations have also been reported in a related investigation [30–32].

Table 3. EDS results in selected regions in Figure 5.

Points
Elements (at. %)

Possible Phases
Al Fe Zn Si

1 48.89 0.82 50.11 0.18 Fe2Al5−xZnx
2 70.24 23.10 6.42 0.24 Fe2Al5−xZnx
3 57.41 11.46 31.04 0.09 Fe2Al5−xZnx + FeZn10
4 70.6 19.58 9.62 0.21 Fe2Al5−xZnx
5 68.75 17.00 1.95 12.30 Fe2Al7Si
6 54.81 16.26 26.01 2.92 Fe2Al5−xZnx + FeZn10
7 63.67 19.94 10.48 5.92 Fe2Al5−xZnx
8 67.92 20.68 7.23 4.16 Fe2Al5−xZnx
9 16.01 11.74 71.89 0.35 Fe2Al5−xZnx + FeZn10

Figure 5d–f shows the SEM analysis of laser Al/Al-Si coated steel joints. At the low
laser power of 1500 W, a relatively flat reaction layer at the interface was found, consisting
of a dense dark phase as shown in Figure 5d. Through the process of analysis, the main
element of the dark phase was Al, with some Fe and Si and a small amount of Zn, which was
determined to be Fe2Al7Si (Table 3). In fact, Fe2Al7Si was the IMC phase that pre-existed in
the Al-Si coating (Figure 1b), which indicated that the laser heat input was insufficient to
melt the IMCs where only dissolution was expected to occur. At the medium laser power
of 1700 W, a continuous reaction layer was also present. However, the difference was
that a small amount of light-colored microstructure was within the dark reaction layer as
shown in Figure 5e. According to the results of EDS, the dark phase consists mainly of iron,
aluminum, and zinc elements, which were determined to be Fe2Al5−xZnx. By analyzing
the elemental composition and content of the light-color phase, it was indicated that the
phase mainly consisted of FeZn10. This suggests that the compounds in the coating melted
and generated new IMCs. Upon increasing the laser power to 1900 W, a dark phase and
a light-color dispersion phase were observed at the interface. In the local area, the light-
color phase was observed, which was irregularly distributed in the dark phase (Figure 5f).
Through the process of analysis of the EDS results, the dark phase and the light-color phase
were determined to be Fe2Al5−xZnx and FeZn10, respectively (refer to Table 3). Therefore,
it was concluded that the Al-Si coating was completely melted or dissolved in the laser
powers from 1700 to 1900 W, where new phases were then generated at the interface.

Except for the phase composition, the morphological characteristics of the interfacial
intermetallic compound (IMC) layer changed significantly. In order to better understand
this, a quantitative analysis was conducted on the change of the interfacial reaction layer.
The thickness of the IMCs in both cases with the laser power range from 1500 to 1900 W
is shown in Table 4. Due to an elevated temperature, an intensified diffusion reaction
occurred at the interface, which led to an increase in intermetallic compound thickness
with the rise in laser power [33]. The intermetallic compound thickness in the joint of
Al/coated steel was larger as compared to the joint of Al/uncoated steel (7.1 µm vs. 1.5 µm)
at 1500 W. This was because the interfacial metallurgical reactions were relatively weak at
low laser power, only generating a 1.5 µm thick IMC layer which was much thinner than
the pre-existed 7 µm thick Fe2Al7Si layer within the Al-Si coating. The thickness of the
IMCs of the Al/Al-Si coated steel joints was thicker than that of the Al/uncoated steel joints
with the laser power rising from 1700 to 1900 W (Table 4). This was primarily attributed
to the Al-Si coating of 22MnB5 steel acted as a thermal and diffusion barrier between the
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molten pool and steel substrate that retarded the growth of the reaction layer [7,11]. It was
suggested that the Al-Si coating was able to effectively suppress the formation and growth
of interfacial IMCs.

Table 4. The thickness of IMC of the laser joints with a different laser power in both cases (µm).

Cases 1500 W 1700 W 1900 W

Al/Al-Si coated steel joints 7.1 8.2 10.3

Al/uncoated steel joints 1.5 11.1 16.6

3.2. Corrosion Resistance
3.2.1. Open-Circuit Potential

In order to accurately measure the voltage sweep range of the specimen’s polarization
curve, it is necessary to identify the open-circuit potential (OCP) and thus determine the
voltage sweep range [17]. The open-circuit potential is the difference between the working
electrode and the reference electrode without load, which is mainly related to the material
and the corrosive solution. The change in the OCP reflects the gradual transformation of
the electrode from an unstable to a stable state in the electrolyte solution.

Figure 6 shows the OCP curves of base materials and laser joints. The OCP of the
Al base metal was −0.74 V, with slight fluctuations due to the generation and breakdown
of the passivation film on the aluminum alloy surface during the corrosion process [34].
The OCP of the Al-Si coated steel was −0.65 V, which was significantly higher than the
uncoated steel (−0.72 V). It was indicated that the Al-Si coating increased the potential and
reduced corrosion tendency on the steel surface. Figure 6b shows the OCP curves of the
laser joints at different laser powers. Certain fluctuations were observed in all the OCP
curves, due to the corrosion dissolution of the interfacial IMC layer. With the increase in the
laser power from 1500 to 1900 W, the steady-state OCPs of Al/uncoated steel joints were
−0.849 V, −0.830 V, and −0.884 V. The steady-state OCPs of Al/Al-Si coated steel joints
were −0.827 V, −0.832 V, and −0.860 V. As a whole, it was concluded that the Al/uncoated
steel joint exhibits a slightly lower steady-state OCP in comparison to the Al/Al-Si coated
steel joint at the same laser power.
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3.2.2. Dynamic Potential Polarization

Figure 7 depicts a schematic diagram of the kinetic potential polarization curve of
a typical laser Al/steel joint. The dynamic potential polarization curve consists of a
cathodic semi-log polarization curve and an anodic semi-log polarization curve, where the
intersection of the two polarization potential curves is the self-corrosion potential, Ecorr.
Ecorr represents the stable corrosion state of the potential in the absence of an applied
current; to some extent, it is also a thermodynamic parameter that reflects the corrosion
tendency of the joint. The relatively small Ecorr indicates that the joint in the natural state
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is more prone to corrosion. The self-corrosion potential, Ecorr, only reflects the corrosion
trend, and there is no certain relationship with the corrosion rate [35].
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The Tafel extrapolation method was used to fit the strongly polarized region of the
polarization curve (the position where the polarization potential deviates far enough from
the self-corrosion potential) to obtain the intersection of two Tafel curves. The value of
the horizontal coordinate corresponding to the intersection was lg(icorr), which is the
self-corrosion current density. The self-corrosion current density icorr is typically used to
indicate the corrosion rate in electrochemical corrosion. In the natural state, the corrosion
rate of the joint increases as the icorr value becomes larger. The polarization potential
as a function of the applied polarization current density was in accordance with the
Tafel equation:

E − Ecorr = −balgicorr + balgia (1)

Ecorr − E = −bclgicorr + bclgic (2)

where, E is the polarization potential, Ecorr is the self-corrosion potential, icorr is the self-
corrosion current density, ba, and bc are the anodic and cathodic Tafel slopes, and ia and ic
are the anodic and cathodic corrosion current densities.

Figure 8 depicts the comparative analysis of the dynamic potential polarization curves
of the laser Al/steel joints. The dynamic potential polarization curves of the joints with
and without coating were both very smooth and followed a similar trend, i.e., initially,
the current density decreased as the potential increased, but then rose again. To further
investigate the influence of the coating on the corrosion resistance of the joints, the Tafel
recursive method was used to calculate the self-corrosion current density and self-corrosion
potential as shown in Table 5. It can be concluded that the self-corrosion potential of the
Al/Steel laser joints varied little with the increase in laser power, but the self-corrosion
current density gradually increased. At the same time, the addition of Al-Si coating
decreases the self-corrosion current density of the Al joints. This indicated that the increase
in laser power decreases the corrosion resistance of the joints and the Al-Si coating improves
the corrosion resistance of the joints.
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Figure 9 details the self-corrosion current density with the change in power for the
Al/steel welded joints with or without coating. With the increased laser power, the self-
corrosion current density of Al/uncoated steel were 2.02 × 10−5 A/cm2, 5.72 × 10−5

A/cm2, and 7.47 × 10−5 A/cm2, and the self-corrosion current density of Al/Al-Si coated
steel were 3.35 × 10−5 A/cm2, 3.83 × 10−5 A/cm2, and 6.22 × 10−5 A/cm2. It was obvious
that the self-corrosion current density of both joints increased with the increase in laser
power, which further indicated that increasing the laser power was likely to reduce the
corrosion resistance of the joints. By comparing the self-corrosion current density under the
same power, opposite trends were observed for various laser powers. The self-corrosion
current density of the laser Al/Al-Si coated steel joints were higher as compared to the
joints of Al/uncoated steel (3.35 × 10−5 A/cm2 vs. 2.02 × 10−5 A/cm2) at 1500 W. On
the contrary, at a laser power of 1700 and 1900 W, the self-corrosion current density of
the Al/uncoated steel joints was greater as compared to the Al/Al-Si coated steel joints.
Combining the effects of laser power and steel surface condition on the IMC thickness,
there was evidence of a high correlation between the IMC thickness and self-corrosion
current density in Figure 9. Therefore, according to the findings, interface intermetallic
compound thickness and subsequently the corrosion properties of the laser joints were
influenced by both the laser power and coating [36,37]. In a word, the thinner the IMC layer,
the lower the self-corrosion current density, and the better joint corrosion performance.
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Table 5. Self-corrosion potential and self-corrosion current density of Al/Steel joints.

Laser Power
(W)

Corrosion Current Density
(10−5 A/cm2)

Corrosion Potential
(V)

Uncoated Steel Coated Steel Uncoated Steel Coated Steel

1500 W 2.0235 3.3538 −0.945 −0.9683
1700 W 5.7234 3.8333 −0.9512 −0.952
1900 W 7.4773 6.2223 −0.9637 −0.9854

3.2.3. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is usually used to characterize the
charge transfer and substance transport processes during corrosion. Figure 10a shows the
Nyquist plots of Al/Al-Si coated and Al/uncoated steel joints with laser power from 1500
to 1900 W. The radius of the semicircle decreased with increasing laser power in both cases
of joints, which indicated a reduction in the corrosion resistance of the joints. At a laser
power of 1500 W, the semicircle radius of Al/uncoated steel joints was larger than that of
Al/Al-Si coated steel joints; the opposite was true at high laser power (1700–1900 W). It was
indicated that Al/Al-Si coated steel joints possess a higher corrosion resistance compared
with Al/uncoated steel joints at a high laser power. This was possibly related to interfacial
intermetallic compound thickness. Nyquist plots of the Al/uncoated steel laser joints
showed one induction loop at laser powers of 1500 and 1700 W. The inductive resistance at
a low frequency was mainly attributed to the absorption and desorption of the material or
the formation of corrosion pits on the electrode surface [38]. The curve peak in the Bode
plots was normally used to determine relaxation time (Figure 10b). During corrosion, the
relaxation time reflected the charge transfer from instability to equilibrium [39]. All samples
tested in this experiment showed a shift in the characteristic minimum frequency toward
a high frequency with increasing laser power, indicating that more time was needed for
re-passivation, which suggested a decrease in the corrosion resistance. According to the
above results, it can be summarized that the corrosion resistance of laser joints decreased
with the increased laser power, and Al-Si coating improved the corrosion resistance of the
joints especially at high laser powers.
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3.2.4. Corrosion Morphology and Mechanism of Welded Joint

In order to further investigate the Al/steel welding joint corrosion mechanism, typical
corrosion morphology at the interface of laser Al/coated steel joints at a laser power of
1900 W was observed (Figure 11). Figure 12 shows the schematic diagram of the corrosion
mechanism of Al/steel welded joints in 3.5% NaCl solution. The corrosion pits were found
on the steel surface, which was due to the reaction of Cl- with the hydroxide of Fe and
the formation of complexes on the steel surface accelerating the pitting corrosion [40]. It
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can be seen that there is a darker color in the FZ and a brighter color of the joint steel side
in Figure 11b. This indicates that the FZ corrodes more severely than the steel. This was
because the galvanic corrosion occurred between the FZ and the steel, where the FZ with
a lower corrosion potential exhibited a protective effect on the steel. At the same time,
the FZ near the IMC layer experienced intense corrosion; this was because of the galvanic
corrosion between the FZ and IMC layer. The IMC layer was a cathode which accelerated
the corrosion of Al and Zn in the FZ. There was slight corrosion of steel adjacent to the IMC
layer, which was due to the IMC layer as the anode by an oxidation reaction protecting the
steel from corrosion [41]. During the corrosion process of the Al/steel joints, Zn and Al in
FZ and IMC were dissolved in large quantities to generate Zn2+ and Al3+ cations, and slight
corrosion occured in the surface of steel that generated Fe3+ cations, which react with OH−

ions in the solution that generate products such as Al(OH)3, Zn(OH)2, and Fe(OH)3 [42].
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Figure 12. Schematic diagram of corrosion mechanism of Al/steel joints in 3.5% NaCl solution.

4. Conclusions

In this study, interfacial microstructures were observed, and electrochemical corro-
sion tests were designed to analyze the correlation between Al-Si coatings and corrosion
resistance of aluminum/steel joints. The major research conclusions were as follows:

(1) In the Al/uncoated steel joints, Fe2Al5−xZnx and FeZn10 were generated at a
laser power of 1500 to 1900 W; while, in the Al/Al-Si coated steel joints, pre-existing
Fe2Al7Si within the Al-Si coating was observed at 1500 W, but Fe2Al5−xZnx and FeZn10
were detected while the laser power was 1700–1900 W.

(2) The Al-Si coating that consisted of Al-Si eutectic structure and Fe2Al7Si significantly
depressed the formation and growth of the interfacial IMC layer because of the dual effects
of thermal and diffusion barriers.

(3) The electrochemical corrosion tests indicated that the resistance to corrosion in
Al/steel joints was noticeably enhanced by the Al-Si coating, specifically within the laser
power range of 1700 to 1900 W, but had opposite effects on the joint corrosion resistance at
1500 W, which was mainly dictated by the thickness of interfacial IMCs layer.
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(4) The galvanic corrosion that occurred between the FZ and the steel aggravated the
corrosion process, while the galvanic corrosion between the FZ and IMC layer, the IMC
layer as a cathode, accelerated the corrosion of the FZ; on the other hand, the galvanic
corrosion between the steel and IMC layer, the IMC layer as the anode, protected the steel
from corrosion.
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