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Abstract: MgAl oxide coatings composed of MgO and MgAl2O4 phases were doped with CeO2

particles via plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in a 5 g/L NaAlO2 water
solution. Subsequently, particles of CeO2 up to 8 g/L were added. Extensive investigations were
conducted to examine the morphology, the chemical and phase compositions, and, most importantly,
the photoluminescent (PL) properties and photocatalytic activity (PA) during the photodegradation
of methyl orange. The number of CeO2 particles incorporated into MgAl oxide coatings depends
on the concentration of CeO2 particles in the aluminate electrolyte. However, the CeO2 particles do
not significantly affect the thickness, phase structure, or surface morphology of the coatings. The PL
emission spectrum of MgAl oxide coatings is divided into two bands: one in the 350–600 nm range
related to structural defects in MgO, and another much more intense band in the 600–775 nm range
attributed to the F+ centres in MgAl2O4. The incorporated CeO2 particles do not have a significant
effect on the PL intensity of the band in the red spectral region, but the PL intensity of the first band
increases with the concentration of CeO2 particles. The PA of MgAl/CeO2 oxide coatings is higher
than that of pure MgAl oxide coatings. The MgAl/CeO2 oxide coating developed in aluminate
electrolyte with a concentration of 2 g/L CeO2 particles exhibited the highest PA. The MgAl/CeO2

oxide coatings remained chemically and physically stable across multiple cycles, indicating their
potential for applications.

Keywords: plasma electrolytic oxidation; photocatalysis; photoluminescence; MgO; MgAl2O4; CeO2;
methyl orange

1. Introduction

Plasma electrolytic oxidation (PEO) is an eco-friendly electrochemical surface treat-
ment that produces highly stable oxide coatings on a variety of metals (Mg, Al, Ti, Ta, Nb,
Zr) and their alloys with a high crystallinity, substrate adhesion, and physical, chemical,
and thermal stability [1–4]. PEO necessitates a high anodic voltage (several hundred volts)
to promote the local dielectric breakdown of the growing oxide film, resulting in numerous
short-lived micro-discharges formed continuously over the metal electrode surface [5]. The
breakdown process entails intricate electrochemical, thermal, and plasma processes that
incorporate both metal and electrolyte components into coatings.

Magnesium and magnesium alloys are desirable materials for practical applications
due to their low density; high strength-to-weight ratio; excellent dimensional stability,
biodegradability, and biocompatibility; large hydrogen storage capacity; high specific
capacity for batteries; good electromagnetic shielding; high machinability; and so on [6,7].
The foremost drawback of magnesium-based materials is their poor resistance to corrosion,
which limits their application [8]. Magnesium and its alloys’ surfaces are commonly
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modified to improve their corrosion resistance and to create functional coatings suitable for
various applications [9].

Lately, PEO has become increasingly popular as a method for producing multifunc-
tional coatings and improving the surface characteristics of magnesium and its alloys [10–18].
Some studies have shown that oxide coatings formed on magnesium alloys can be used in
photocatalytic applications [19–23]. The present study focuses on the investigation of the
photoluminescent (PL) and photocatalytic properties of coatings formed via PEO of AZ31
magnesium alloy in aluminate electrolyte with the addition of CeO2 particles at different
concentrations. PEO formed coatings on AZ31 magnesium alloys in aluminate electrolytes
containing MgO and MgAl2O4 phases [22]. Both of these phases have found application in
photocatalysis [24,25] and as hosts for photoluminescence materials [26,27] due to the presence
of different types of oxygen vacancies and other defects.

Adding CeO2 particles to the electrolyte causes their incorporation into the coatings
during PEO in magnesium alloys, which improves their corrosive properties and resistance
to wear [28,29]. This is critical in engineering applications involving oxide coatings on mag-
nesium alloys. The main idea behind this work was to create MgO/MgAl2O4/CeO2 coat-
ings in order to improve the photocatalytic and PL properties of a single MgO/MgAl2O4
coating and optimize the amount of CeO2 particles in the electrolyte. The properties of
CeO2, such as its low toxicity, strong oxygen storage capacity, high chemical stability, and
ability to display dual oxidation states of cerium, Ce3+/Ce4+, have drawn a lot of attention
in the field of photocatalysis due to the formation of abundant oxygen vacancies in CeO2,
which serve as active electron trap centres, inhibiting recombination of photogenerated
electron/hole pairs [30–34].

The photocatalytic and PL properties of the MgO/CeO2 and MgAl2O4/CeO2 sys-
tems have received little attention in the literature [35–37], with no data available for the
MgO/MgAl2O4/CeO2 system. Our study has, for the first time, shown that PEO applied to
magnesium alloys can generate MgO/MgAl2O4/CeO2 coatings suitable for photocatalytic
and PL applications. Consequently, the MgO/MgAl2O4/CeO2 coatings formed by PEO
were examined using SEM/EDS, XRD, Raman spectroscopy, and DRS to investigate the
effect of CeO2 on the morphology, chemical composition, crystal structure, and absorption
properties of MgO/MgAl2O4/CeO2. The PL of the MgO/MgAl2O4/CeO2 coatings was
thoroughly investigated, as the incorporation of CeO2 into MgO/MgAl2O4 coatings in-
creases the PL intensity by more than an order of magnitude. The photocatalytic efficiency
of the coatings was evaluated through the degradation of methyl orange (MO) dye. MO
is an example of a typical azo-anionic dye, which is hard to degrade, hazardous to the
environment, and potentially dangerous to human health if it finds its way into soil and
water resources.

2. Materials and Methods

The starting material for the preparation of PEO coatings was a rectangular sample
(25 mm × 10 mm × 0.81 mm) of AZ31 magnesium alloy (96% Mg, 3% Al, 1% Zn, Alfa
Aesar, Ward Hill, MA, USA). Ultrasonic cleaning using acetone and subsequent drying
with a warm air stream were included in the sample preparation process for PEO. After
this, the samples were coated with an insulating resin, ensuring that the electrolyte only
made contact with the 15 mm × 10 mm active surface.

The electrolytic cell was made of double-walled glass and cooled with water (refer
to Figure 10 in ref. [22]). A magnetic stirrer was employed to mix the electrolyte in the
electrolytic cell, ensuring the even distribution of CeO2 particles. A tubular stainless-steel
cathode was positioned around the anode samples of AZ31 magnesium alloy, which were
used and positioned in the centre of the electrolytic cell. The electrolyte solution was
prepared by adding CeO2 particles at concentrations of 1 g/L, 2 g/L, 4 g/L, and 8 g/L
into a water solution containing 5 g/L of NaAlO2. The PEO processes were conducted
using a DC power source (Consort EV261) at a constant current density of 150 mA/cm2

for 10 min. The electrolyte temperature was maintained at (20 ± 1) ◦C. Following the PEO
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process, samples were rinsed with distilled water to prevent the accumulation of electrolyte
components during the drying process.

The morphology, thickness, elemental, and phase analyses of the PEO coatings were
performed using a scanning electron microscope (SEM, JEOL 840A, Tokyo, Japan) with
energy-dispersive X-ray spectroscopy (EDS, Oxford INCA, Abingdon, UK), X-ray diffrac-
tion (XRD, Rigaku Ultima IV, Tokyo, Japan), and Raman spectroscopy (TriVista 557 Raman
system, S&I GmbH, Germany). UV-Vis diffuse reflectance spectra (DRS) were employed,
utilizing a Shimadzu UV-3600, Tokyo, Japan, to analyse the optical properties of the PEO
coatings. To acquire room temperature PL excitation and emission spectra, a spectrofluo-
rometer (Horiba Jobin Yvon, Fluorolog FL3-22, Edison, NJ, USA) was utilized with a 450 W
xenon lamp as the excitation source.

To assess the photocatalytic activity (PA) of the coatings, the photodegradation of
MO, serving as a model compound for organic pollution, was carried out at 20 ◦C under
simulated artificial solar radiation. A photocatalytic reactor featuring double-walled glass
with water cooling was utilized (see Figure 1 in ref. [38]). The samples were positioned
on the stainless-steel holder, 5 mm above the bottom of the photocatalytic reactor. A
magnetic stirrer that was positioned underneath the holder was used to mix the 10 cm3

solution of MO. The MO concentration was 8 mg/L at first. The samples were exposed
to illumination from a 300 W light source (OSRAM ULTRA-VITALUX UV-A, Munich,
Germany) positioned 25 cm above the solution’s upper surface. To achieve an adsorption–
desorption equilibrium, the initial MO solution and samples were left in the dark for an
hour prior to illumination. PA was assessed by monitoring the decomposition of MO
following an appropriate duration of light exposure. The maximum absorption peak of
MO at 464 nm was measured utilizing a UV-Vis spectrometer (Thermo Electron Nicolet,
Evolution 500, Cambridge, UK). The absorbance was transformed into MO concentration
utilizing a standard curve that exhibited a linear correlation between concentration and
absorbance at this wavelength.

3. Results and Discussion

Figure 1 illustrates the voltage–time characteristics observed during the anodization
process of AZ31 magnesium alloy in a solution containing 5 g/L NaAlO2, both with and
without the addition of 8 g/L CeO2 particles. As shown, the inclusion of CeO2 particles did
not produce any noticeable impact on the voltage–time curves, with two distinct regions
being identifiable. The first region is linked to classical anodization and the formation of a
thin dense oxide layer, characterized by an almost linear rise in voltage. The second region
is correlated with dielectric breakdown of the formed compact oxide layer, indicated by
a noticeable deviation from the linearity of the voltage–time curve and the occurrence of
numerous micro-discharges.
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particles.

Figure 2 displays the top view and cross-section SEM micrographs of the coating
created in 5 g/L NaAlO2 with different concentrations of added CeO2 particles. Changing
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the concentration of CeO2 particles had no discernible effect on the surface morphology
or coating thickness. All coatings share a common morphology, defined by the presence
of molten regions dispersed throughout the surface created when the molten oxide heats
up, melts, and then cools down in contact with the surrounding electrolyte and pores
originating from gas bubbles released during the PEO [39]. The coatings formed after
10 min of PEO are about (22 ± 1) µm thick.
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adding CeO2 particles in concentrations of (i) 0 g/L; (ii) 1 g/L; (iii) 2 g/L; (iv) 4 g/L; (v) 8 g/L.

The results of the integrated EDS analysis of the coatings are given in Table 1 (the
relative errors are less than 5%). The coatings’ chemical constituents are Mg, Al, O, and Ce.
The electrolyte is the main source of Al. Small amounts of Ce are present in the coatings,
which increases with the concentration of CeO2 particles in the electrolyte.

Table 1. Integrated EDS analysis of coatings in Figure 2a formed in 5 g/L NaAlO2 with varying
concentrations of CeO2 particles added.

CeO2 (g/L)
Atomic (%)

O Mg Al Ce

0 65.44 14.02 20.54 /
1 65.53 14.79 19.63 0.05
2 64.52 15.76 19.61 0.11
4 64.84 15.91 19.02 0.23
8 64.43 15.85 19.32 0.40

The XRD patterns of PEO coatings formed in 5 g/L NaAlO2 with different concen-
trations of CeO2 particles, along with the XRD patterns of pure CeO2 particles and the
AZ31 magnesium alloy substrate, are displayed in Figure 3a. The XRD pattern of CeO2
particles reveals peaks at 2θ values of 28.7, 33.2, 47.6, 56.4, 59.2, 69.5, 76.8, and 79.2 degrees,
corresponding to the (111), (200), (220), (311), (222), (400), (331), and (420) crystalline planes
of the cubic fluorite structure of CeO2 (JCPDS Card No. 75-0162). The formation of MgO
(JCPDS card No. 79-0612) and MgAl2O4 (JCPDS card No. 77-0435) phases, as a result of an
interaction between the AZ31 substrate and the electrolyte components, is confirmed by the
XRD pattern of the PEO coating formed in 5 g/L NaAlO2 [22]. The significant diffraction
peaks observed from the substrate are a result of X-ray penetration through the porous
oxide layer and subsequent reflection from the substrate. The diffraction peaks of CeO2
can be clearly seen together with the diffraction peaks arising from MgO and MgAl2O4
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in the XRD patterns of the PEO coatings formed in 5 g/L NaAlO2 with the addition of a
high concentration of CeO2 particles (4 g/L and 8 g/L). This is primarily due to the low
concentration of evenly distributed CeO2 particles throughout the surface coatings [22,23].
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Raman measurements were conducted (Figure 3b) to verify the presence of CeO2
particles in the PEO coatings formed in a solution containing 5 g/L NaAlO2 with the
addition of lower concentrations of CeO2 particles (1 g/L and 2 g/L). The F2g mode of the
cubic fluorite structure of CeO2, identified as the prominent band in the Raman spectrum
of CeO2 particles around 465 cm−1, is attributed to the symmetrical vibration of oxygen
atoms surrounding Ce4+ [40]. All coatings formed in a solution containing 5 g/L NaAlO2
with the inclusion of CeO2 particles exhibit this mode in their Raman spectra, suggesting
the integration of CeO2 particles into the coatings.

PEO facilitates the inclusion of electrolyte particles into coatings in three distinct
forms: partially reactive, reactive, and inert forms [41]. The two main factors that determine
the mode of incorporation are the melting point and the particle size. An inert mode
of incorporation typically applies to particles with high melting points, such as CeO2
(approximately 2400 ◦C) [42], which is also applicable in our case.

PL excitation and emission spectra of the MgO/MgAl2O4 coatings are shown in
Figure 4. The PL emission spectrum excited at 265 nm (Figure 4a) is characterized by a
strong emission band in the red region with a maximum of about 720 nm, related to F+

centres in MgAl2O4 [43], and a broad band in the range of 350 nm to 600 nm, which is
associated with oxygen vacancies (e.g., F, F+, F2, and F2

2+ centres) mostly in MgO [44,45].
Upon excitation at 340 nm (Figure 4b), two PL bands with peak positions at about 410 nm
and 660 nm can be observed in the PL emission spectrum, which are related to oxygen
vacancies in MgO [21].

The incorporation of CeO2 particles into MgO/MgAl2O4 coatings does not notably
impact the photoluminescence (PL) intensity of the band peaking around 720 nm under
265 nm excitation. However, it does lead to a significant increase in the PL intensity of
the broad band, with a maximum of around 410 nm (Figure 5a). The PL emission spectra,
excited at 340 nm, further reveal that the PL intensity of the band peaking around 410 nm
increases with the concentration of CeO2 particles incorporated into the MgO/MgAl2O4
coatings (Figure 5b). The ratio of PL intensity of coatings formed in a solution containing
5 g/L NaAlO2 with and without 8 g/L CeO2 particles is approximately 20. In addition to
this PL band, a PL band with a maximum at around 520 nm, as well as PL bands in the red
region with a weak intensity, can be observed in the PL emission spectra (Figure 5a,b).
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(e) excitation spectra monitored at 520 nm.

The PL excitation spectra of MgO/MgAl2O4/CeO2 coatings monitored at 720 nm
consist of one intense band with a maximum of around 265 nm (Figure 5c). The content
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of CeO2 in the MgO/MgAl2O4/CeO2 coatings does not affect the PL intensity of this
band, which is in agreement with the corresponding PL emission spectra in Figure 4a. PL
excitation spectra of MgO/MgAl2O4/CeO2 coatings monitored at 410 nm and 520 nm
consist of at least three bands at about 265 nm, 315 nm, and 340 nm (Figure 5c,d). Among
these excitation transitions, the one at 340 nm is the most intense.

The increase in the PL intensity of MgO/MgAl2O4/CeO2 coatings compared to pure
MgO/MgAl2O4 is due to the creation of oxygen vacancies as a result of the incorporation
of CeO2, because the PL originating from CeO2 particles is negligible. Bands with maxima
at around 410 nm and 520 nm are attributed to F+ and F centres, respectively [46–48].

Figure 6a illustrates how the concentration of CeO2 particles in the electrolyte affects the
MO photodegradation efficiency using the formed coatings. C0 is the initial concentration
of MO, and its concentration at time t is C. For every CeO2 concentration, three samples
were examined, and the mean values are displayed in Figure 6a. Samples collected under
identical conditions have a very high reproducibility (within 3%) for the PA. The concentra-
tion of CeO2 particles added to the electrolyte affects the PA of the MgO/MgAl2O4/CeO2
coatings, which is significantly higher than that of MgO/MgAl2O4 coatings. The highest PA
of MgO/MgAl2O4/CeO2 coatings was achieved with the addition of 2 g/L of CeO2 particles.
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The first-order kinetic Langmuir Hinshelwood model (Figure 6b) provides a good
description of the photocatalytic degradation of MO:

ln
(

Co

C

)
= kappt (1)

The table in Figure 6b presents the first-order kinetic constant kapp, along with the corre-
sponding standard squared deviation (σ) and linear correlation coefficient (R2). The value of
kapp was determined through non-linear least squares fitting conducted across the entire exper-
imental time range [49]. As the concentration of CeO2 particles in the aluminate electrolyte in-
creased up to 2 g/L, the degradation rate constant kapp increased from 0.0809 h−1 to 0.1273 h−1.
The sensitivity of MO degradation to the content of CeO2 in MgO/MgAl2O4/CeO2 coat-
ings was confirmed by a decrease in the degradation rate constant with the increase in the
concentration of CeO2 in the aluminate electrolyte up to 8 g/L.

CeO2 particles have a very low PA in organic dye degradation due to the rapid
recombination of photogenerated electron/hole pairs [50]. Because the concentration of
CeO2 particles in the formed MgO/MgAl2O4/CeO2 coatings is so low, the contribution
of CeO2 particles to the total PA of these coatings is negligible. Since the morphology,
thickness, and phase structure of all the MgO/MgAl2O4/CeO2 coatings are essentially the
same (Figures 2 and 3), CeO2 particles contribute to the increasing PA of MgO/MgAl2O4
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coatings primarily by extending their optical absorption range or by decreasing the prompt
recombination of photogenerated electron/hole pairs.

The UV–Vis DRS spectra of CeO2 particles and the formed coatings are shown in
Figure 7. A broad absorption band in the mid-UV region is typical for MgO/MgAl2O4
formed in an aluminate electrolyte [22]. The used CeO2 particles have an absorption band
edge at approximately 440 nm. Due to the low concentration of CeO2 in the formed coatings,
the shift in the absorption curves towards the visible region is insignificant, especially for
low concentrations of CeO2 particles in the electrolyte (1, 2, and 4 g/L). This indicates that
the increased PA of MgO/MgAl2O4/CeO2 coatings compared to MgO/MgAl2O4 coatings
is due to a decrease in photogenerated electron/hole recombination rate as a result of
MgO/MgAl2O4 and CeO2 coupling.
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PL and PA measurements indicate that the high concentration of various types of
oxygen vacancies and other defects is related to the significant PA of MgO/MgAl2O4/CeO2
coatings. The formation of oxygen vacancies during PEO introduces defect states within
the material’s bandgap, facilitating photogenerated charge carrier separation and causing
an increase in the PA of MgO/MgAl2O4/CeO2 coatings formed in aluminate electrolyte
with the addition of CeO2 particles in relation to MgO/MgAl2O4 coatings formed in a
pure aluminate electrolyte. The PA of MgO/MgAl2O4/CeO2 coatings varies with the
concentration of CeO2 particles in the aluminate electrolyte. The MgO/MgAl2O4/CeO2
coating which was formed in the aluminate electrolyte with 2 g/L CeO2 particles had
the highest PA. As the concentration of CeO2 in the aluminate electrolyte continues to
increase, the PA decreases because CeO2 particles serve as photoinduced electron capture
centres [51].

Ten consecutive photocatalytic tests were conducted on the most active photocatalyst
in order to investigate the potential application of MgO/MgAl2O4/CeO2 coatings in
photocatalysis. Figure 8 shows the recycling test of MO photodegradation along with the
morphology and composition before and after 10 runs. The morphology, composition, and
PA did not change, indicating that the produced photocatalyst exhibited a high degree of
chemical and physical stability.
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4. Conclusions

PEO of AZ31 magnesium alloy in an aluminate electrolyte with the addition of CeO2
particles at different concentrations was utilized to create MgO/MgAl2O4/CeO2 coat-
ings. To examine the morphology, crystal structure, chemical composition, and opti-
cal and PL properties of the formed coatings, various techniques, including SEM/EDS,
XRD, Raman spectroscopy, XPS, DRS, and PL, were employed. The photodegradation of
MO under simulated sunlight was employed to evaluate the photocatalytic potential of
MgO/MgAl2O4/CeO2 coatings.

The results can be summarized as follows:

• The surface morphology, thickness, phase structure, and light-harvesting characteris-
tics of MgO/MgAl2O4/CeO2 coatings are not significantly affected by the addition of
CeO2 particles to the aluminate electrolyte.

• As a result of the incorporation of CeO2 in the coatings during PEO, oxygen vacancies
are created, which accounts for the increase in the PL intensity of MgO/MgAl2O4/CeO2
coatings over pure MgO/MgAl2O4 coatings, as the PL originating from CeO2 particles is
barely noticeable.

• The content of CeO2 particles in the aluminate electrolyte, i.e., the amount of CeO2 parti-
cles incorporated within MgO/MgAl2O4 coatings, determines the PA of the MgO/MgAl2
O4/CeO2 coatings. The decrease in the photogenerated electron/hole recombination
rate resulting from MgO/MgAl2O4 and CeO2 coupling is linked to the increased PA
of MgO/MgAl2O4/CeO2. The MgO/MgAl2O4/CeO2 coating formed in aluminate
electrolyte with the addition of 2 g/L CeO2 particles exhibits the highest PA.

• The PA, morphology, and composition of the formed photocatalysts did not alter after
multiple PA cycles, indicating their chemical and physical stability, which is a crucial
requirement for any potential applications.
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