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Abstract: This industrial research focuses on the implementation and development of a productive
process for an automotive structural component (Shock tower) manufactured by a high-pressure
die casting (HPDC) process made of aluminum alloy AuralTM-5. This aluminum alloy has been
considered in diverse automotive and aerospace components that do not require heat treatment
due to its mechanical properties as cast material (F temper). On the other hand, AuralTM-5 has
been designed for processing as HPDC because it is an alloy with good fluidity, making it ideal for
large castings with thin-wall thicknesses, like safety structural components such as rails, supports,
rocker panels, suspension crossmembers, and shock towers. The mechanical properties that were
evaluated for the evaluated components were yield strength, ultimate tensile strength, and elongation.
Eight samples were taken from different areas of each produced shock tower for evaluating and
verifying the homogeneity of each casting. The samples were evaluated from the first hours after
they were manufactured by casting until eight weeks after being produced. This was performed
to understand the behavior of the alloy during its natural aging process. Two groups of samples
were obtained. One set of components was heat-treated by a water quench process after the castings’
extraction and the other set of components was not quenched. Results demonstrated that both sets
of components, quenched and not quenched, achieved the expected values for the AuralTM-5 of
yield strength ≥ 110 MPa, ultimate tensile strength ≥ 240 MPa, and elongation ≥ 8%. Additionally,
this is very important for industry since by not treating the structural components by quenching,
there are savings in terms of infrastructure and energy consumption, together with benefits in the
environmental aspect by avoiding CO2 emissions and being sustainable.

Keywords: aluminum alloy; non-heat-treated; mechanical properties; high-pressure die casting;
structural components

1. Introduction

The automotive industry has been evolving towards the application of new materials
that could improve the performance and processability of components and parts. There
is a lightweighting trend driven by performance, cost, and sustainability that generates a
tremendous demand for lightweight materials and conceptual designs considering these.
These conceptual designs are being considered and assessed as part of the modern circular
economy solutions for transportation and mobility [1].

Additionally, in recent years, with the increasing environmental issues (waste and
pollution) and energy crisis, the automotive industry has been exploring and developing
alternatives to steel products and characteristics, searching for novel materials possessing
good compatibility, being lighter, and offering higher performance that can provide good
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mechanical strength in casted structural components in an environmentally friendly aspect
as well. It must be mentioned that this race has reached many industrial sectors not only
associated with transportation or vehicles industry, but more broadly with manufacturing
and civil infrastructure and clean energy technologies [1].

Automotive lightweight materials have been an ambitious competitor to steel and iron
products. The selection and application of aluminum alloys have been the first choice due
to significant advantages such as good corrosion resistance, high strength to weight ratio,
relative low cost, good manufacturability, handling, and storage characteristics, among
others [2,3]. Relevant data demonstrate how aluminum alloys are a suitable material that
can provide a weight reduction in a vehicle of 60%, reduced fuel consumption by 20%, and
a reduction of up to 10% in CO2 emission discharges. Therefore, vehicle lightweighting is
the most economical way to minimize energy consumption and mitigate environmental
hazards or damage [4,5].

Novel aluminum alloys are being extensively studied and developed to produce com-
plex casting components, which makes them a possible solution to this critical challenge.
These materials are typically applied in structural components in a vehicle, and they have
the capability of satisfying the current demands of being economically sustainable and the
mandatory requirement of having more efficient mechanical performance, therefore reduc-
ing the vehicle’s weight and fuel consumption, and contributing to the reduction in CO2
emissions, not only in their products but also during their manufacturing processing [6–8].
This is a reason why these aluminum alloys began to be widely applied in automotive struc-
tural components besides their superb mechanical and physical characteristics such as good
rigidity, strength to weight ratio, and corrosion resistance performance [9]. However, most
of these material alloys require a heat treatment process to obtain the desired characteristics
and attributes suitable for specific applications [10], particularly mechanical performance.
On the other hand, novel casting technologies for manufacturing larger components, such
as high-pressure die casting (HPDC), have emerged with improved material properties
and characteristics that allow aluminum alloys to meet strict industrial requirements and
substantially reduce the weight of automotive parts or components [11]. Furthermore,
high-pressure die casting is considered one of the most profitable and productive processes
in casting components [9], due to its ability to enable the mass production of a wide va-
riety of components [12]. Generally, it is a process with great repeatability, where molten
aluminum can be injected into a steel die under high pressures at a high speed. It is also a
process with a short cycle time due to the quick solidification of the part [13].

HPDC parts for structural and non-structural products and applications are gradually
replacing steel-based components within the vehicle structure; these hybrid body structural
vehicles are becoming one of the most effective solutions to achieve lightweighting [14].
Another benefit of this process is that it has great dimensional accuracy and shape preci-
sion [15], particularly for complex components with thin-wall thickness. However, HPDC
has the disadvantage of being a process with ease of gas trapping, which is one of its main
limitations [16]. It is a highly turbulent process that results in porosity due to entrapped
air. In addition, porosities may also happen due to hydrogen released from the reaction
of water vapor or lubricant remnants, or due to shrinkage that happens due to volume
contraction during solidification and oxide inclusions formed during the cavity filling,
as mentioned before, due to the high turbulence inside the die, making the metal fronts
collide, forming oxide films [12]. These are some of the most common defects in this
casting process, which affects the quality and significantly reduces mechanical properties
such as the elongation and tensile strength of the produced components. The defect in
the part increases the stress concentration, promoting the formation of cracks and early
damage in the components [12]. As a result of these porosities in the parts manufactured in
high-pressure die casting, technologies such as vacuum-assisted systems have successfully
achieved the capability of producing casted components with minimum gas porosities,
enabling the further strengthening of the as-cast parts [16]. There are two main types of
vacuum systems for HPDC; one is a complete vacuum system where the whole die casting



Metals 2024, 14, 369 3 of 11

system is sealed and evacuated from the furnace when the molten metal is transferred
to the injection chamber via a vacuum tube. The other system is a simpler one that is
a stand-alone system, where a vacuum valve or chill block is incorporated into a die to
evacuate the entrapped air in the cavity [17]. This second type of system is the one that
was used for this research.

Non-heat-treated (NHT) aluminum alloys are a novel type of lightweight material
that has emerged in recent years. These alloys are highly used in all industrial markets
for flat-rolled products. Packaging, transportation, and construction sectors represent
the largest usage of NHT sheets since the late 20th century. The attribute of this type of
alloy is that the produced components do not need to experience those high-temperature
solution treatments or artificial aging processes; only conventional natural aging of these
lightweight alloys can achieve the high strengths and high plasticity performance to satisfy
the stringent performance and characteristic requirements for aerospace and automotive
components [18]. Novel or improved lightweight alloy developments have been pursued
based on the need for better appearance, increased efficiency, and obtaining high structural
performance of products and productivity of the components manufacturing process. The
availability of highly competitive materials and resources has driven the need to keep the
aluminum alloy components’ costs as low as possible. After searching for research and
literature about NHT aluminum alloys, just a few research reports were found [19,20].

The development of aluminum alloys such as AuralTM-5 and others that can achieve
physical and mechanical properties without heat treatment to manufacture products, and at
the same time can produce savings in terms of infrastructure and processing due to the envi-
ronmental benefits of avoiding CO2 emissions produced during post-processing and energy
consumption in the heat treatment ovens, is aligned to the needs of the automotive industry.

In this work, evaluations were carried out using AuralTM-5 to develop a structural
automotive component (Shock tower) to validate the mechanical properties of the alloy
without the effect of thermal treatment by HPDC process. Evaluations were carried out to
determine the mechanical characteristics of the alloy: UTS, yield strength, and elongation.
The evaluations were divided into two stages. Half of the samples were quenched in water
after extraction while the other half were not quenched in water after casting extraction.
Both tests were evaluated in the same way after the casting process and were evaluated
at the same time intervals. Three different metal temperatures were evaluated in the
casted products.

2. Materials and Methods

Aural thermal aluminum alloys have been developed as a solution for heat treatment
temperatures around 500 ◦C, and can be combined with water quenching, and partial
solution heat treatment at a slightly lower temperature, followed by rapid air cooling [20,21].
This alloy is designed to achieve greater ductility in F and T5 tempers. This improvement in
the ductility of the alloy is associated with the lower silicon content, since in the Al-Si-Mg
system, the eutectic phase of silicon is brittle and limits the ductility of the material. With its
lower silicon content, the AuralTM-5 microstructure contains a small volume fraction of the
damaging eutectic phase, reaching the maximum resistance at 210 ◦C [17]. The advantage
of AuralTM-5 compared to other aluminum alloys used for structural components in HPDC
is the elongation percentage that can be obtained without the application of heat treatment,
even within the same families of Aural alloys, as shown in Table 1.

Table 1. Typical measured mechanical properties of AuralTM-5 alloy.

Alloy/Temper RP0.2 YS [MPa] RM UTS [MPa] A5 Elongation [%]

Aural-5TM/F 110–135 240–270 8–12

However, the quantity of silicon added to the aluminum alloy depends on the casting
process; in the case of HPDC, due to the high solidification rate, it is required to have a per-
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centage between 8 and 12%, since it increases the melt fluidity and decreases the coefficient
of thermal expansion, facilitating the casting and improving mechanical properties [22].
The lower silicon content reduces the melt fluidity, which is critical for the injection process.
The main disadvantage of this alloy is that it has 7–8% silicon, which is a low percentage
for the process of HPDC, due to its solidification range. These alloys with a low range of
solidification are known as the short freezing range, becoming complicated for the injection
process due to their high liquidus point. Due to this, it was ensured during the research
to improve the fluidity of the molten metal, focusing on maintaining the temperature of it
by avoiding temperature losses during the metal dosing before the start of injection. The
AuralTM-5 chemical composition used for this project is shown in Table 2.

During the test, composition samples were obtained from an ingot and analyzed
in SPECTROLAB LAVM12 (Ametek, Hamburg, Germany) equipment under the ASTM-
E716 [23] and ASTM-E3 [24] standards. Elements of Si, Cu Fe, Mn, Mg, Ti, and Sr were
kept within the specification of the Rio Tinto Group range. Sample results of the analysis
are in Table 3. Samples were obtained as well for every occasion that the dosing furnace
was filled to ensure alloy elements were on range.

Table 2. Aural-5TM composition wt.% [9].

Variants Al Si Fe Cu Mn Mg Zn Ti Sr

Aural 2TM Remaining 10.3 0.16 <0.01 0.52 0.31 <0.01 0.05 -

Aural 3TM Remaining 10.1 0.18 <0.01 0.49 0.55 <0.01 0.06 0.012

Aural 5TM Remaining 7.4 0.17 <0.01 0.49 0.20 <0.01 0.08 0.018

Table 3. Sampling of the alloy elements.

Si% Cu% Fe% Mn% Mg% Zn% Ti% Sr PPM

7.62 0.02 0.18 0.5 0.23 0.00 0.01 240.71

The die casting machine used for the test was a 2700-ton cold chamber with high
vacuum-assist equipment. The vacuum system on the test consisted of three chill blocks
on the die, and each channel maintained a vacuum of 110 mbar ± 20 mbar. The die set
used for manufacturing the castings was productively the die of H13, heated with water
thermoregulation units at a temperature of 175 ◦C for the main cavity in cover and mobile
side for having a consisted temperature on the die of 205 ◦C after die spraying, which was
constantly monitoring. The shot sleeve was heated with a water thermoregulation unit at
160 ◦C. The metal temperature in the sleeve was controlled at 655 ◦C ± 5 ◦C, measured
with a K-type thermocouple using datalogger equipment for constant reading. A dosing
furnace was used during the test with a closed ceramic launder, to avoid temperature loss
due to convection while dosing the metal into the shot sleeve. The dosing furnace was
set at 715 ◦C − 10 ◦C with constant nitrogen degassing inside of it to avoid inclusions
in the samples made, which helps reduce the variation in mechanical properties due to
oxide films.

The die used was a single cavity component, so during the evaluations only one
shock tower (Figure 1) component was produced per shot. The shock tower used for the
test had an area of 1960 cm2 and a volume of 1631 cm3 with a wall thickness from 4.5 to
5.0 mm. After the mold extraction, these components were quenched in water at a constant
temperature of 25 ◦C for three seconds. Some of the components were quenched, while
others were not quenched, to evaluate and analyze the mechanical properties of the alloy
and compare the difference between quench and no-quench treatment parts. All shock
towers were evaluated after being out of the die casting machine as F temper for both
cases with quench and without quench. Some samples remained untested and were kept at
ambient condition for the purpose of evaluating the behavior of the mechanical properties
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of the AuralTM-5 over different periods of time, and thus understanding its behavior due
to its natural aging process. The first samples were evaluated within the first 24 h and
were subsequently evaluated every week until reaching the eighth week to analyze the
mechanical properties with natural aging of the F temper parts.
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Figure 1. Model of the shock tower component.

Flat specimens were machined from the shock towers as shown in Figure 2. All samples
were evaluated on a Zwick/Roell universal tension machine (Zwick, Ulm, Germany) at
room temperature to evaluate yield stress, ultimate tensile strength, and elongation under
ISO 6892-1 [25] and ASTM-E8 [26] standards. For each shock tower, eight samples were
taken in different locations to evaluate the homogeneity of the component properties. This
process was for all the casting to be completed. From every period of time, five shock
towers were taken. As previously mentioned, the first shock tower was tested after 24 h of
aging and then five samples were evaluated every week, until reaching eight weeks after
the casting was obtained. The specimen locations were taken from different areas in the
shock tower and different angle positions as shown in Figure 3. Three samples were at 90◦,
two samples were at 45◦, the other two samples were taken at 135◦, and one was tested as
a transversal sample. The purpose of testing on different angles and locations was to verify
the homogeneity of the casting and the different values of mechanical properties in the part
due to variation caused by defects.
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The defects from the fracture surfaces in the specimens were characterized and an-
alyzed in a Nikon SMZ800N stereoscope (Nikon, Feasterville, PA, USA) and ECLIPSE
MA200 microscope (Nikon, Scottsdale, AZ, USA). Besides the defect characterization in
the surface fracture validation in the specimens, the shock towers were tested in a blister
oven at a temperature of 520 ◦C for 90 min, to observe the air trapped in the parts, and
thus detect the areas of major air trapping and the locations of the areas that could affect
the results of mechanical properties with AuralTM-5 alloy. The mechanical properties of
the casted components are adversely affected by the presence of gas porosity; these pores,
which are specifically located at the component surface, may grow in size during the appli-
cation of heat treatment, therefore causing blisters [27,28]. The purpose of performing the



Metals 2024, 14, 369 6 of 11

blister tests, although no heat treatment was applied in this investigation, was to identify
entrapped gas problems that can cause variation in mechanical properties.
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3. Results

The as-cast shock towers with no aging met the theorical specifications of AuralTM-5
of yield strength ≥ 110 MPa, ultimate tensile strength ≥ 240 MPa, and elongation ≥ 8%.
For both subsequent cases with quench and without quench treatment, the shock towers
achieved values on the mechanical properties above the minimum Aural-5TM specifications.
As is shown in Figure 4, the result of aging on the elongation characteristic for the samples
with no quench through the weeks was above 11% on average. In general, there was a slight
increase in this attribute when comparing quenched versus not quenched components
(5%).
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Analyzing the yield strength results (Figure 5), it is observed that as aging time is
increased, there is a tendency for the average yield strength to increase as well, which is
due to the natural aging effects on the alloy. We can observe a slight increase of up to
3% in this characteristic when we compare quenched versus not quenched components.
Finally, the ultimate tensile strength results are depicted in Figure 6. Here, we can observe
that in general, the quenched components showed higher values as compared to the not
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quenched components. The average values of tensile strength continue to increase due
to the natural aging effect on the water-quenched shock towers, having results that go
over 250 MPa. For both cases, tensile strength and yield strength have more stable values
with the shock towers that were water quenched. These components’ mechanical behavior
was also observed by Niu et al. [29]; in their research, an extra-large thin-wall casting was
evaluated. Overall, the yield strength range was from 120 to 129 MPa and the UTS was from
243 to 260 MPa. On the other hand, a significant variation was shown by the elongation,
ranging from 7 to 12.5%.
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The specimens analyzed for mechanical properties had results above 11% elongation
in the presence of minimum defects in the fracture surface. Nevertheless, some defects
were observed; the main defect found in the surface was porosities characterized as gas
porosities due to trapped gas from the first phase of the injection process. The analyzed
porosities in the specimens were below 10 µm diameter in size, as shown in Figure 7. The
porosities that appeared in the samples were not related to the aluminum alloy AuralTM-5;
these small porosities are commonly formed during the first stage of the casting process,
when the shot rod moves towards the molten metal inside the injection sleeve to the gate.
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Figure 7. Examples of porosity in samples tested for mechanical properties.

Additionally, the shock towers were analyzed with X-ray radiography equipment
YXLON (MG325, Hamburg, Germany) to verify if there could be other types of defects
found in the parts as shrinkage, and to validate the internal integrity of the shock towers.
The parts that were analyzed did not show any concern of porosity or shrinkage due to
AuralTM-5 alloy or due to the process. Figure 8 shows the area of the shock tower with
more mass, where it can be observed that there are no significant defects in these areas.
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As previously mentioned, the structural components were evaluated in a blister test
oven for analyzing if there was any air entrapment during the filling that would affect
the mechanical properties and evaluating the process in which the shock towers were
manufactured with AuralTM-5. Parts were tested at a temperature of 520 ◦C for 90 min.
The sample was taken every week from both sets of experiments (the components with and
without water-quenched treatment); for both cases, none of the samples showed blister
signs. We can conclude that there should not be a variation problem in the results of the
mechanical properties shown above.

4. Discussion

The advantage of AuralTM-5 compared to other aluminum alloys used for structural
components on HPDC is the high values of elongation that can be obtained without the use
of any heat treatment, due to the low percentage of silicon. On the other hand, this affects
the fluidity and the short-range solidification, which promotes filling defects or the risk
of poor filling in the part. During the evaluations, the metal was set at a temperature of
703 ◦C in the dosing furnace, and to ensure a high temperature during dosing the molten
metal into the shot sleeve and avoiding fluidity problems and pre-solidification defects
made especially during the first phase of injection. A close funnel was used for maintaining
a more controlled temperature loss while the molten alloy was dosing into the sleeve
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chamber, which prevented heat loss caused by the interaction of ambient temperature with
the alloy.

The shock towers did not show any defects caused by pre-solidification or shrinkage
porosity, which are mainly caused by high temperature differences in solidification; this was
a main concern due to the low percentage of silicon and the high temperature set up at the
dosing furnace, as shown in Figures 8 and 9. The main defects detected in the mechanical
property’s samples were small porosities generated due to the process [20–22,27–31].

Another important observation during the evaluations, from the manufacturing per-
spective, was the metal temperature inside the shot sleeve. The aluminum alloy temperature
while it was dosed inside the shot sleeve was considered a critical parameter for the process;
in the first attempts of filling the die cavity, the molten metal was below the liquidus point
in the shot sleeve, making the injection process complicated, and not filling the cavity
properly; so, for a correct cavity filling and having the component filled completely, it is
recommended to maintain a temperature above 650 ◦C for AuralTM-5 inside the shot sleeve.
A temperature above 650 ◦C prevents the alloy from pre-solidifying. Additionally, a close
funnel is recommended to avoid temperature loss while dosing the molten metal into the
shot sleeve.

It is recommended to water-quench structural components made with AuralTM-5, to
avoid deformation in the casting after part extraction for avoiding trimming problems; it
was observed during the test that the shock towers without quench were easily deformed
by the trimming press. Although both tests analyzed the mechanical property values above
the theoretical specification, it is still recommended for the production process to water
quench the parts for dimensional consistency.
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5. Conclusions

AuralTM-5 alloy can achieve good values within the range of its theoretical specifica-
tion. The obtained results in this evaluation were the yield strength ≥ 110 MPa, ultimate
tensile strength ≥ 245 MPa, and elongation ≥10%, for both studied cases (components with
and without water quench treatment). However, there is a slight difference between both
studied sets, since the components without quenching presented higher variation in their
behavior over time, particularly the tensile strength and yield strength. The shock towers
that were quenched had more consistent performance on their mechanical behavior during
the eight weeks of the analysis. Additionally, the quenched components had more stable
mechanical properties (average values) throughout the analyzed aging time. Natural aging
of AuralTM-5 favors the enhancement of the yield and ultimate tensile strengths. There-
fore, AuralTM-5 natural aging does not particularly decrease these mechanical properties
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below the specification limits of this alloy; on the contrary, it promotes the stabilization of
mechanical behavior over time.

Finally, for thin-wall sections of components, it is recommended to apply a water
quench treatment to prevent high-dimensional deformation, which occurred in certain
pieces that were not quenched. This could have been caused by the cutting or trimming
process since the temperature of the part was higher and, at the time of trimming, the shock
tower could have deformed. In the meantime, another important point analyzed during
this research is that for a productive process, the parts without quenching can damage
the trim blades prematurely; due to the aluminum’s rubbery behavior, it was stuck in the
trimming blades. The main downtime when performing shock towers without quenching
was due to the consistent cleaning of the trim blades. In addition, the aural alloy shock
tower that was not water-quenched deformed easily with the movements of the extraction
robot, apart from what was mentioned above; they can also be deformed by the trim press
due to the shock towers still having a high temperature.
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