
Citation: Cai, Y.; Duan, B. Effect of

Copper Content on the Microstructure

and Properties of the Sintered Porous

Aluminum Wick. Metals 2024, 14, 386.

https://doi.org/10.3390/met14040386

Academic Editor: Yadir Torres

Hernández

Received: 1 March 2024

Revised: 22 March 2024

Accepted: 25 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Effect of Copper Content on the Microstructure and Properties of
the Sintered Porous Aluminum Wick
Yanbo Cai and Bohua Duan *

School of Materials Science and Engineering, Central South University, Changsha 410083, China;
213112167@csu.edu.cn
* Correspondence: duan-bh@csu.edu.cn

Abstract: Porous aluminum has been widely used as a wick, an electrode, and in other products, due
to its advantages of a light weight, pore uniformity, and corrosion resistance. However, the dense
alumina layer on the surface of Al powder hinders its densification during sintering. In this paper,
porous aluminum was prepared via loose powder sintering with the addition of Cu as a sintering
aid. The effects of Cu content on the microstructure and wick properties of the porous aluminum
were investigated. The results showed that, with increasing Cu content, the porosity and capillary
properties of porous Al decreased, while the compressive strength improved. The optimal Cu content
was determined to be 3 wt.% and the prepared porous Al has a porosity of 47.5%, plateau stress of
11.82 MPa, and capillary characteristic parameter of 6.72 × 10−8 N, meeting the requirements for
wicks in heat pipes. These findings contribute to the demand for the lightweight design of heat pipes
for aerospace applications.

Keywords: porous aluminum; loose powder sintering; permeability; mechanical properties

1. Introduction

Vapor chambers, as a promising thermal management device with high heat dissi-
pation efficiency, a controllable shape, and good temperature uniformity, have garnered
significant attention in various applications, including aerospace, electronic components,
and home appliances [1–4]. They consist of a container, capillary wick, and working
fluid [5]. As the key component of vapor chambers or other heat pipes, the capillary wick,
with a porous structure, provides a necessary driving force for the working fluid and plays
a crucial role in determining the heat dissipation efficiency [6].

The performance of a capillary wick depends on many factors, such as materials,
porous structures, preparation method, etc. [7–10]. Commonly available materials for
wicks include copper, aluminum, nickel, and carbon fiber [11–14]. With the urgent demand
for a lightweight design and low cost for the equipment and components in many fields,
such as aerospace and automotive industries, the porous Al wick is increasingly attracting
widespread attention. It not only combines the advantages of the high thermal conductivity
of Cu and a low density of carbon fiber, but also has lower costs and better corrosion
resistance [15,16].

Currently, Al capillary wicks are fabricated through various methods, including
chemical etching, laser etching, ultrasonic modified etching, compression sintering, and
discharge plasma sintering [17–21]. However, the etching process, employing chemical
reaction, high-temperature cutting, or ultrasonic cavitation to process fine grooves on
an Al flat plate, is complex and costly to operate and prepares a capillary wick with a
low capillary force. Discharge plasma sintering forms the pore structure by heating the
particles with an instantaneous high-temperature plasma, which is expensive and makes
it difficult to control the pore structure of the wick. In addition, compression-sintered
porous Al wicks utilize external pressure to destroy the oxide film to promote sintering,
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but the powder is rearranged by force, changing the filling density. Furthermore, the pore
uniformity and connectivity of the samples are poor, and their shapes are simple.

In contrast, the loose powder sintering method represents a traditional and well-
established technology that naturally forms interconnected pores within the powders.
This method allows for the formation of a certain level of strength after establishing the
sintering neck while minimally impacting the pore structure and has been successfully
applied in the preparation of porous titanium and porous nickel [22–24]. It can be foreseen
that a porous Al wick prepared using loose powder sintering will offer advantages such
as controllable pores, few impurities, adjustable sample shapes, and cost-effectiveness.
Nevertheless, Al exhibits strong reactivity and tends to form a dense and chemically stable
oxide film on its surface, which poses a challenge in the loose sintering of Al powder
to establish an effective sintering neck, as the powder does not have any destructive
mechanism to act on the alumina film, such as pressure deformation in compression
sintering and plasma activation in discharge plasma sintering [25–28].

In order to improve the sintering of Al powder, some additives, such as magnesium,
silicon, and tin, have been introduced [29–31]. These additives can disrupt the surface oxide
film of the powder by reacting with the Al, improving its sintering properties and strength.
In the preparation of some Al alloys or Cu alloys, it has been found that Cu and Al are
prone to forming many intermediate phases under certain conditions, indicating that the
addition of Cu may also be beneficial for the sintering of Al powder [32]. However, there
are relatively few literature reports on this topic, which mainly focus on the strengthening
of Cu for Al alloys, with fewer studies on the use of Cu content for the formation of porous
Al wicks.

In this paper, a porous Al wick was prepared using loose sintering with Cu as a
sintering aid, and the effects of Cu content on the pore structure, mechanical properties,
and capillary properties of porous Al were systematically investigated.

2. Experimental Procedure
2.1. Experimental Process

Spherical Al powder (purity: 99.5%; particle size: 54–76 µm) and dendritic Cu powder
(purity: 99.8%; particle size: <30.8 µm) prepared via the electrolytic reduction method
were selected as raw materials for the experiments (Figure 1). First, the Al powder and
Cu powder were weighed according to the designed formula; then, 5 mm zirconia balls
with a ball–powder weight ratio of 1:1 were added and mixed in a mixer at 120 rpm for
2 h, with a 5 min stop for every 30 min of mixing during this period. Subsequently, the
powder was sieved to remove small balls and the mixed powders were filled into graphite
molds (120 × 20 × 1 mm or Φ10 × 20 mm). During filling, the mold was steadily tapped
to ensure the even distribution and filling of the powder. Next, the excess powder was
scraped off, the flake sample was covered with an Al plate (150 × 30 × 0.5 mm), and the
device was inverted during the sintering process to ensure that the powder was bonded to
the Al plate. Finally, the mold and sample were placed into a tube furnace and heated to
600 ◦C at a heating rate of 5 ◦C/min for 60 min to prepare porous Al specimens based on
the Al melting point and previous studies [12]. A flowing hydrogen atmosphere with high
purity was used in the chamber to prevent the oxidation of metal powder during sintering.
To minimize experimental randomness, three samples of each type were made, and the
data were averaged. The weight of the final sintered Column Sample was maintained
at 2.55 g with dimensions of Φ9.92 × 19.5 mm, and the flake sample weighed in at 3.5 g
with dimensions of 118.3 × 19.18 × 0.94 mm. The appearances of the sample are shown
in Figure 2.
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Daho Meter, Dongguan, China) based on Archimedes’ principle. The microstructure and 
composition of the sintered samples and the micromorphology of the powders were ob-
served with a scanning electron microscope (SEM, MIRA3, TESCAN, Brno, Czech Repub-
lic). The compressive strength was tested using the electronic universal testing machine 
(DDL-300, Sinotest Equipment, Changchun, China), with Φ6 mm × 9 mm specimens, at a 
loading rate of 2 mm/min. The phase composition of the sintered specimen was analyzed 
by an X-ray diffractometer (XRD, D/Max2500, Rigaku, Tokyo, Japan) with Cu-Kα radia-
tion (λ = 0.154 nm). 

2.2.2. Capillary Rise Experiments 
Figure 3 shows the capillary pumping testing device. The testing device consisted of 
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samples were simultaneously dipped into the fluid reservoir, and the fluid spontaneously 
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Figure 2. Shape of sintered sample: (a) terete; (b) sheet.

2.2. Characterization
2.2.1. Characterization of Porous Al Wick

The porosities of the sintered specimens were measured by a hydrometer (DE-120M,
Daho Meter, Dongguan, China) based on Archimedes’ principle. The microstructure and
composition of the sintered samples and the micromorphology of the powders were ob-
served with a scanning electron microscope (SEM, MIRA3, TESCAN, Brno, Czech Repub-
lic). The compressive strength was tested using the electronic universal testing machine
(DDL-300, Sinotest Equipment, Changchun, China), with Φ6 mm × 9 mm specimens, at a
loading rate of 2 mm/min. The phase composition of the sintered specimen was analyzed
by an X-ray diffractometer (XRD, D/Max2500, Rigaku, Tokyo, Japan) with Cu-Kα radiation
(λ = 0.154 nm).

2.2.2. Capillary Rise Experiments

Figure 3 shows the capillary pumping testing device. The testing device consisted of
a capillary pumping testing part, mechanical lifting part, and data acquisition part. The
samples were simultaneously dipped into the fluid reservoir, and the fluid spontaneously
rose along the wicks. The fluid level of the reservoir was thought to be constant during
the capillary rise process due to the very small amount of fluid absorbed by the wicks [33].
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Then, a video camera was used to record the height of the rise in the working fluid to obtain
a time–height curve.
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Figure 3. Experimental setup for suction performance.

During the capillary rise processes, according to the balance of momentum, the capil-
lary pressure is equal to the pressure loss, which is composed of the viscous friction loss
expressed by Darcy’s law and the hydrostatic pressure generated by gravity, as given by
Equation (1) [34]:

∆Pc =
µε

K
h

dh
dt

+ ρgh (1)

where µ is the viscosity of the work material, ρ is the density of the work material, ε is the
porosity of the capillary core, K is the permeability, t is the time, h is the capillary suction
height of the work material overcoming the force of gravity, dh

dt is the suction velocity of
the capillary core, and g is the acceleration of the force of gravity. From Equation (1), the
capillary performance parameter is determined by the capillary rise height h, capillary
rising velocity dh

dt , and permeability K, with the known viscosity of the working fluid and
porosity of the wick. The rise velocity, dh

dt , can be obtained from the derivative of the curve
of capillary rise height versus time [35]. Rearranging Equation (1) yields the following:

(∆Pc·K).
1
h
− ρgK = µε

dh
dt

(2)

From Equation (2), a best linear fitting can be performed with the sets of 1
h and dh

dt
from the experiments, and the capillary performance parameter ∆Pc·K can be determined
from the slope of this fitting line.

3. Results and Discussion
3.1. Powder Composition

Alterations in the powder shape affect the pore shape of the porous structure, and
the homogeneous mixing of the powder without changing the powder morphology is a
prerequisite for the preparation of porous Al wicks. Figure 4 shows the morphology of
the powders mixed with different Cu contents. As can be seen, the dendritic Cu particles
were uniformly distributed in the Al particles, and more Cu particles were found with
the increase in Cu content. At this rotation speed, the powder was subjected to a weaker
collision force and its morphology did not change.
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Figure 4. Morphology of powders with different Cu contents: (a) 0 wt.%; (b) 1 wt.%; (c) 3 wt.%;
(d) 5 wt.%; (e) 7 wt.%; (f) 9 wt.%.

The XRD patterns of the mixed powders with different Cu contents are given in
Figure 5. The results showed that only the diffraction peaks of Al were present at the
beginning; then, the diffraction peaks of Cu gradually appeared with the addition of
Cu content, and the peaks of Cu were higher with the increase in the content; in addition,
all the powders did not have any other diffraction peaks. It can be observed that the mixed
powder consisting of Cu, Al, and zirconia balls did not react after 2 h of mechanical mixing
at 120 rpm at room temperature and still maintained its original composition.
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3.2. Pore Structure

The microstructures of porous Al wicks prepared with different Cu contents are
shown in Figure 6. It can be seen that there were numerous pores with different sizes



Metals 2024, 14, 386 6 of 13

distributed throughout the specimens. A three-dimensional, interconnected pore structure
was formed, with adjacent particles interconnected to form a base skeleton. The pore size
was influenced by the particle size. Most of the larger pores were formed between the
larger particles, while the smaller pores were formed with the involvement of the smaller
particles. Figure 6a shows that without the addition of Cu there was almost no bonding
between the Al powders, indicating that the oxide film on the powder surface strongly
inhibited the sintering of the Al powder. With the addition of Cu, the formation of sintering
necks between powders was clearly observed, which increased with increasing Cu content,
suggesting that the sintered sample has sufficient strength for application. Furthermore,
the interconnected skeleton and three-dimensional interconnected pores between particles
gradually improved (Figure 6b,c). When the Cu content exceeded 5 wt.% (Figure 6d–f),
the sintering neck obviously grew larger, and the small particles gradually integrated into
the large particles to form coarser cell walls. As the Cu content increased, the porosity
significantly decreased, and the connectivity of the pores also deteriorated. The addition
of a large amount of Cu makes the mixture prone to forming an intermediate phase with
a low melting point through the reaction with Al2O3 or Al, which are in the liquid phase
during sintering. With fewer liquid phases, the particles become wet, and their interstices
are penetrated, promoting the formation of sintered necks. With more liquid phases,
the Al particles are wrapped and the powder undergoes rearrangement and accelerated
densification behaviors under the action of surface tension, leading to a remarkable increase
in the density of the sintered samples [36,37]. Alternatively, the equilibrium concentration
that is dissolved in the intermediate phase can vary due to the different particle sizes, with
smaller particles dissolving more and precipitating on the surface of the larger particles,
corresponding to the variation in the particle sizes in Figure 6. These changes corroborate
the promotional behavior of Cu on the sintering of the porous Al wick.
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As shown in Figure 7, with the increase in Cu content, the porosity decreased, while
the shrinkage increased. When the Cu content increased from 0 wt.% to 3 wt.%, the porosity
and shrinkage changed little. During the sintering process, Cu powder and Al powder
underwent a combination reaction of CuO + Al2O3→CuAlO2, as mentioned by Wang [36],
and the alumina film was destroyed to promote atomic diffusion and bonding strength
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between the powders; at the same time, a large amount of Cu powder is consumed at
this stage and only a small amount of Cu diffuses into the Al powder, resulting in the
formation of less intermediate phases, which have a limited promotional effect on the
formation of sintered necks. When the Cu content increased from 3 wt.% to 9 wt.%, the
porosity decreased from 47.5% to 26.5%, and the shrinkage increased from 0.8% to 11.4%.
This may be attributed to the sufficient diffusion of Cu atoms into the Al particles, forming
more intermediate phases that are better able to wet and encapsulate the Al particles and
direct particle rearrangement, which greatly contributes to the increase in the shrinkage
and density of the sample. This result is also confirmed by the microstructure in Figure 6.
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3.3. Phase Composition

Figure 8 exhibits backscattered electron (BSE) images of porous Al wicks prepared
with various Cu contents. It can be observed that some precipitated phases with dot-
like or dendritic forms were homogeneously distributed in the matrix phase. With a low
Cu content, the precipitated phases were primarily point-like. As the Cu content increased,
the number of dendritic precipitated phases increased, and their size became progressively
larger. This implies that the addition of more Cu will contribute to the generation and
growth of the second phase.

Figure 9 presents the XRD patterns of the samples with different Cu contents.
The results showed that the matrix phase was Al and the peak of Cu was always ab-
sent, whereas the peak of CuAl2 appeared slowly and was enhanced with the addition of
Cu. The XRD patterns of the samples with a Cu content of 1–3 wt.% only showed Al peaks
and no CuAl2 peaks, but a small amount of the other phases can be seen in the BSE images
(Figure 8). This can be ascribed to the Cu content being so low that, upon entering the Al
particles, part of it forms a solid solution and part of it forms a CuAl2 phase. Both of the
substances are so small that no visible peak changes can be observed at this point in the test
conditions. At 5 wt.% of Cu content, the diffraction peak of CuAl2 appeared and increased
in intensity while the diffraction peak of Al phase decreased in intensity, meaning that
large quantities of Cu and Al were combined to form the CuAl2 phase at this time. All of
the added Cu went into the Al particle form and was not present alone. Furthermore, the
melting point of CuAl2 is approximately 550 ◦C. At the sintering temperature used in the
experiment, it exists in Al-Cu liquid phase form and will greatly accelerate the densification
of Al powder [38].
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Figure 10 displays a backscattered electron (BSE) image of porous Al with a
Cu content of 5 wt.%. Based on the energy-dispersive spectroscopy (EDS) results
(Table 1), the Cu content of the dendritic precipitation phase reached 15–20 at.%, the
Cu content of the dotted precipitation phase was 5–10 at.%, and the Cu content of the basal
phase was in the range of 0–2 at.%. The elemental ratios of the precipitated phases did not
correspond to the atomic ratios of the CuAl2 phase, and the chemical composition of the
metallographic fractions at the first point was roughly equal to the atomic percentage of the
(αAl + CuAl2) eutectic, suggesting that they may be (αAl + CuAl2) eutectic organizations.
When sintering a porous Al wick with 5 wt.% Cu, Al2O3 reacts with CuO and takes the
lead in destroying the external alumina film centered on the contact points of Cu and
Al powders. Then, Cu particles contact the Al atoms inside Al particles, and Cu atoms
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enter the Al crystal structure through solid-phase diffusion, occupying vacancies to form
the CuAl2 alloy, which is in the liquid phase at 600 ◦C. The liquid phase wets and wraps
the Al particles and diffuses to the entire surface of the pore structure; solid-phase diffusion
transforms into liquid-phase diffusion; the atom movement speed accelerates, promoting
the formation of a sintering neck; simultaneously, more Al atoms enter the Al-Cu liquid
phase, increasing the liquid phase, and, in the subsequent cooling process, turn to precipi-
tate (αAl + CuAl2) eutectic and Al solid solution. Combined with the sample morphology
and porous organization, it can be understood that, with the increase in Cu content, there
are more powder reaction points and more Cu diffusion channels, and more CuAl2 liquid
phases are formed during sintering, which are able to cover the Al powder more quickly.
The phenomenon of particle rearrangement occurs, which is conducive to the formation of
the sintering neck, and the formation of eutectic organization is increased.
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Table 1. Analysis of analyte point components.

Point Al/at.% Cu/at.% Total/at.%

1 81.5 18.5 100
2 85.6 14.4 100
3 93.1 6.9 100
4 93.2 6.8 100
5 99.1 0.9 100
6 99 1 100

3.4. Mechanical Properties

Figure 11 presents the compressive stress–strain curves for samples with varying
Cu contents. Porous Al wicks with Cu contents ranging from 0 wt.% to 1 wt.% showed no
plateau stress in the stress–strain curves. Because of the low degree of particle bonding,
the stress initially increases with the strain; however, when the deformation reaches a
certain value, the stress decreases, and the sample breaks. In contrast, the stress–strain
curve of the porous Al wicks with 3 wt.%~9 wt.% Cu showed an increasing trend with no
fracture under pressure, behaving as a typical porous material [39]. As the Cu content of
the sample increased, the stress at the same deformation also increased. This indicates that
the addition of Cu improves the mechanical properties of the porous Al and changes its
fracture behavior.
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It is well-known that the mechanical properties of porous materials depend on their
microstructures, including their pore size and shape, porosity, pore wall densification,
and phase composition. According to Duarte [39], the mechanical properties of porous
materials are measured by the plateau stress and densification strain. The peak stresses
of the samples with 0 wt.% and 1 wt.% Cu content were 7.28 MPa and 13 MPa. When
the Cu content increased from 3 wt.% to 9 wt.%, the plateau strength increased from
11.82 MPa to 97.59 MPa and the densification strain increased from 54% to 75%, with
enhanced mechanical properties compared to the porous Al prepared by Suzuki [40], with
a plateau stress of 10 MPa and a densification strain of 40%. Based on the previous results,
with the increase in Cu content, the pore wall densification and the density of the specimen
were both increased, the pore shape became more regular, and the pore size became more
uniform. Additionally, the gradual precipitation of the CuAl2 phase in the matrix phase
may also contribute to the second phase-strengthening role, and the solid solution of Cu
also enhanced the strength of the porous Al wick. These factors collectively lead to the
improved mechanical properties of the sintered porous Al wick.

3.5. Capillary Properties

Figure 12a shows the time–height curves for the pumping experiments of porous
Al wicks with different Cu contents. All samples exhibited a good capillary performance,
with the fluid height initially rapidly increasing upon contact with the fluid. The fluid’s
rising height then reached a certain value, and the rising speed was gradually reduced
due to the influence of gravity. All samples reached a fluid height of 110 mm before 120 s,
with the samples containing 1 wt.%, 3 wt.%, and 5 wt.% Cu reaching 110 mm before 80 s,
10 mm higher compared to the fiber capillary wicks prepared by Wang [10]. Figure 12b
shows the relationship between the capillary characteristic parameter and Cu content,
which revealed an overall decreasing trend. The maximum capillary characteristic param-
eter was 7.62 × 10−8 N at 1 wt.% Cu content, while the minimum was 2.47 × 10−8 N at
9 wt.% Cu content. This variation in capillary characteristic parameter can be attributed to
changes in capillary pressure and permeability.
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As can be seen in Figure 12c, the permeability showed a decreasing trend due to the
reduction in porosity and the fluid flow channels resulting from the activation sintering of
Cu. The capillary force initially increased and then decreased with increasing Cu content.
At a low Cu content, the inter-particle channels were not formed, which was unfavorable
for the fluid transportation. As the 3D-connected pore structure formed and some pore
shrinkage occurred, the capillary force increased, reaching a maximum value of 2309.84 Pa
for the porous wick with a Cu content of 5 wt.%. Subsequently, with further increase in
Cu content, the pore size between the particles decreased and even tended to close, caused
by the excessive liquid phase, which resulted in a decrease in capillary force. Following
the formation of the pore structure, the increase in Cu content will enhance the mechanical
properties while deteriorating the pore structure, and the amount of Cu that is added
should be tailored to the performance requirements when sintering the porous samples.

4. Conclusions

Porous Al wicks were prepared using loose powder sintering with Cu as a sintering
aid. The effects of Cu content on the microstructure, mechanical properties, and capillary
properties of the wicks were investigated. The following conclusions can be drawn:

1. With increasing Cu content, the formation of sintered necks was favored, and the pore
morphology became smooth and regular, while the shrinkage increased.

2. During the sintering process, Cu and Al tend to form CuAl2, which breaks the oxide
film on the surface and accelerates the densification of Al powder.

3. The compressive strength is gradually enhanced with increasing Cu content, while
the capillary characteristic parameter and permeability of porous wicks are reduced.

4. At the optimal Cu amount of 3 wt.%, a porous Al wick with a porosity of 47.5%, a
plateau stress of 11.82 MPa, and a capillary characteristic parameter of 6.72 × 10−8 N
was obtained, meeting the requirements for wick applications.
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