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Abstract: Poisson’s ratio is one of the fundamental characteristics in the material models that are used.
In engineering practice, its values are assumed to be constant in the elastic and in the plastic region. In
this paper, the conventionally used values of this number for steel materials and aluminum alloys are
confronted with experimental results. By using non-contact strain measurements with the DIC (digital
image correlation) method, the evolution of the Poisson ratio value in the regions of transition from
the elastic to the plastic region as well as in the regions of large plastic deformations was documented.
The obtained experimental results are graphically compared using the proposed strain scaling. The
gradient of the Poisson ratio changes in the vicinity of the yield stress is significant, indicating the
need for a refinement of the material models in this region. Deviations from the conventionally used
value of this number were found in the large plastic deformation region. In conclusion, a possible
approach for improving the accuracy of simulations in FEM softwares was formulated.

Keywords: Poisson ratio; DIC measurement; plasticity

1. Introduction

Poisson’s ratio was defined by Siméon-Denis Poisson in one of his lectures almost 200
years ago. It expresses the relationship between deformations in mutually perpendicular
directions and is used in engineering practice, mainly as the negative ratio of transverse
taper to longitudinal elongation expressed by the following equations:

υyx = −
εy

εx
; υzx = − εz

εx
(1)

where the strains in each direction are defined for the volume element εx = ∆dx/dx,
εy = ∆dy/dy and εz = ∆dz/dz—as is evident from Figure 1.

Metals as materials crystallizing in a cubic atomic lattice are considered isotropic in
engineering practice. Poisson’s ratio and other mechanical properties are therefore assumed
to be the same in all directions in the calculations. For steel materials, engineering practice
uses a value in the interval ν = 0.27–0.3 (most commonly 0.3) in the elastic region and
ν = 0.5 in the plastic region.

However, the establishment of these values was difficult and took a relatively long
time [1]. When Poisson described his ν ratio in 1827 [2], his thinking was still based
on the concept of the molecular structure of substances, which was based on Newton’s
corpuscular hypothesis of interacting molecules and was developed in Poisson’s time by
the Frenchman Laplace and his Societé d’Arcueil. Poisson and other scientists at the time
assumed that all substances had this same ratio because of their molecular structure. This
led to a simplified theory of a unique constant with a universal value of ν = 1/4. This value
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happened to agree with the new but, as it turned out, inaccurate experiments on brass [3].
It was only between 1850 and 1870, as more materials were investigated and measurements
became more accurate and reliable, that Poisson’s ratio was changed to a multivalued one,
in accordance with the newly formulated continuum theory of Cauchy [4]. In the middle of
the 20th century, with the discovery of the crystallographic structure of substances and the
development of electron microscopy, the understanding of the Poisson ratio also became
established and its exact values for individual materials were determined (see Figure 2) [5].
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Figure 2. Poisson number values built by Köster and Franz in 1961—taken from the original [5]. The
authors noted a periodic fluctuation for elements in each of the three longitudinal regions of the
periodic table of elements and attributed it to differences in interatomic distances.

The first experimental measurements of Poisson’s ratio were based on the determi-
nation of the change in volume as the material elongated. The change in volume was
measured by immersing a stretched wire in a narrow tube of water and observing the
change in the volume of water in the tube (Cagniard de la Tour [3]). After the develop-
ment of the elastic continuum theory, the Poisson ratio was determined by a more precise
measurement of Young’s modulus in tension and torsion (Kirchhoff [6]) using the relation

ν =
E

2G
− 1 (2)

Later, around 1900, Grüneisen developed the method of precision interferometry to
measure the Poisson ratio [7].
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Nowadays, the value of the Poisson ratio can be obtained by measuring deformations
in general by any known measurement method-resistive strain gauges, optical FBG sensors,
ESPI optical interferometry, the DIC optical digital image correlation method, etc. [8,9].
For the experimental determination of the Poisson ratio value, biaxial extensometers,
based on the use of resistive strain gauges, are currently the most commonly used [10–13].
Although elongation is measured over a length given by the gauge length of the sensor
and the transverse constriction over the entire diameter of the specimen, the determination
of the Poisson ratio can be considered physically unambiguous by using simultaneous
measurements of the relative elongation and the relative constriction in the elastic region.

There are relatively few reports in the literature on Poisson ratio measurements in the
elastic–plastic region [14,15]. There is a lack of information on its evolution from a value of 0.3
in the elastic region to a value of 0.5 in the plastic region. The development of non-contact
strain measurements using the DIC method opens new possibilities also for the determination
of Poisson’s ratio on test specimens of non-circular cross-sections. It also allows elongation
measurements on the same basis in both longitudinal and transverse directions.

2. Materials and Methods

The Institute of Applied Mechanics and Mechatronics has been working on the ap-
plications of the DIC method for deformation measurements for almost a decade. The
instrumentation of the apparatus for measuring strains with the required accuracy in inden-
tations and on materials not allowing contact strain measurement led to the development
of a methodology for measuring the entire range of strains (including large strains). All
experimental results in this study are the outputs of the use of the DANTEC Q-450 system
with two Baumer cameras (Baumer) and Istra 4D software version 4.4. This study focuses
on steel materials representing their full range—the low-carbon structural steel S355 and
its equivalent X52 used for the production of piping—the higher-carbon steel C55 and the
high-strength steel 42CrMo4. This range is complemented by the high-strength steel MS1
produced by additive manufacturing and the frequently used aluminum alloy AlSi10Mg
produced by conventional casting. The basic parameters of these materials, including their
chemical compositions, are displayed in Table 1.

Table 1. Characteristics of used steels.

Material
Chemical

Composition
(%)

Yield Stress
(MPa)

Ultimate
Strength

(MPa)

Poisson Ratio
Average (0 ÷ 0.75) Re

S355 plate
C 0.16, Mn 0.53,

Si 0.026, Cu 0.035
Al 0.03, Cr 0.028

450 520 0.285

X52 C 0.15, Mn 0.6,
Si 0.32, Cr 0.055, Cu 0.04 410 550 0.265

C55 C 0.54, Mn 0.64,
Si 0.25 337 578 0.305

42CrMo4 C 0.41, Mn 0.63,
Cr 1.1, Mo 0.25 960 1090 0.293

MS1 Ni 18, C 8.9, Mo 5.1,
Ti 0.61, Al 0.1 990 1000 0.338

AlSi10Mg Si 10.2, Mg 0.35, Fe 0.112,
Mn 0.05, Cu 0.017 110 221 0.35

Non-contact strain measurements by cameras using the DIC method and the ability to
measure true stress and true strain allowed the use of different specimen shapes (as shown
in Figure 3) without the accuracy of the results being affected.
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Figure 3. Test specimens used for measurements: X52, C55, S355, 42CrMo4, AlSi10Mg, and MS1.

In the process of clamping the test specimens, the additional deformations occurring
in the clamping jaws of the measuring machine were minimized, thanks to the fact that
the optical measurement of the deformations by means of DIC allowed their visualization
directly during the clamping process. The elongation measurement was evaluated for
the engineering tensile diagram over a length of approximately 10mm in the longitudinal
direction of the specimens. For the Poisson ratio measurement, it was necessary to measure
the transverse strain simultaneously, which the DIC method allows. Both longitudinal and
transverse strains were evaluated on the same lengths (the size of the image field from
which the relative strains were exported was the same for both directions). The evaluation
of the strain was performed as an average value over a larger area of the deformation
field (the area was approximately 20 mm in length across the width of the specimens) to
suppress the noise arising from the evaluation of the transformations. The advantage of
the DIC method in allowing the measurement of the entire displacement field was used to
evaluate the evolution of the instantaneous cross-sectional area as the specimen elongated.
This enabled a tensile diagram to be plotted also for the actual stress and strain (Figure 4).
The instantaneous cross-sectional shape could be reliably obtained by the two cameras for
half of the circumference of both circular and rectangular cross-section specimens, with the
other half of the cross-section being considered symmetrical.
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Figure 4. True stress–strain diagram versus engineering stress–strain diagram for X52 steel.

Many years of experience with strain measurements using the DIC method have made
it possible to obtain reliable results. When the key DIC parameters are set appropriately
(pattern, illumination, position and resolution of the cameras, size of the recording area,
etc. [16]), only the noise arising in the comparison of the digital image—which may not
always be evenly distributed on both sides of the correct shade—affects the negative results.
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Apart from the image correlation tools, the results were not otherwise modified in the
evaluation software.

Poisson’s ratio values could only be correctly determined up to the magnitude of
elongation at which the neck was formed. The localization of the plastic deformation made
it impossible to consider the strain as uniaxial from this point on; therefore, the Poisson
ratio was not evaluated further.

3. Results

The obtained results are presented successively for each material in the form of a tensile
diagram together with the evolution of Poisson’s ratio as a function of the magnitude of
the strain. The diagrams are shown sequentially in Figure 5.
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the materials in a stepwise manner: S355, X52, C55, 42CrMo4, MS1, and AlSi10Mg. The stress–
strain history for maraging steel MS1 is affected by wall buckling of the annular cross-section of the
specimens relatively soon after yield strength is exceeded.
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From all the diagrams in Figure 5, it can be seen from the evolution of Poisson’s ratio
that it changes significantly much earlier than when yield stress is reached. Table 1 shows
Poisson’s ratio values for the measured materials as the average values measured on the
interval (0.1 ÷ 0.75) Re. These values are in the intervals in which the commonly used
values for both steels (0.27 ÷ 0.3) and aluminum alloys (0.34 ÷ 0.36) are found [17,18]. For a
better comparison of the Poisson ratio evolution, a joint diagram was created (Figure 6). On
the horizontal axis, the normalized strain as a ratio is shown for a more correct comparison:

strain
strain on yield stress

(3)
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Thus, the strain on the yield stress is 1. The evolution of the Poisson ratios of the
materials is shown from a stress level of 0.75 Re.

From all the diagrams in Figure 6, it can be seen from the evolution of Poisson’s ratio
that its values start to increase significantly from the 0.75Re level already. It can also be
seen that only Poisson’s number of the 42CrMo4 and C55 materials approaches the value
of 0.5 that is used in the numerical simulations. For the other materials, this number does
not exceed the value of 0.46.

4. Discussion

The measured values of the Poisson number evolution in Figures 4 and 5 show that
the values of the Poisson ratio in the elastic region for steels are about 0.3 and for aluminum
alloys are about 0.35. Moreover, these values in the plastic region unified to 0.5 in the
computational simulations are only an approximation, which differs from reality [19–21].
This approximation gives reliable results for a stress region not exceeding 75% of yield
stress. Above this value, the experimental results show a potential increase in the deviation
from reality of the stresses obtained from the simulations.

To demonstrate the influence of the magnitude of the Poisson ratio on the resulting
stresses in the FEM simulations, the example of a pressure vessel cover loaded with radial
pressure was used. A mesh of approximately 440,000 square elements is shown in Figure 7.
In the current version of FEM software, it is only possible to change the Poisson number as
a function of temperature. By combining the output of the heat conduction results with
the input to the structural analysis, the actual measured Poisson’s number values for two
of the materials used in this study, S355 and X52, were used in the linear material model.
Individual material regions were assigned experimentally, with the measured Poisson’s
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number values corresponding to the magnitude of the strains identified in the previous
internal pressure loading. For the region of deformations not exceeding yield stress, the
differences in stress values for the conventional values and the Poisson ratio values from
Figures 5 and 6 were monitored. Due to the multiaxial condition of the stresses, it was
necessary to consider the influence of the equivalent stress criterion on the results; therefore,
both the von Mises stress values and the stress intensity for material S355 are shown in
Figure 8.
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of 0.3 on the resulting values of equivalent von Mises stresses (top) and stress intensity (bottom) for
the S355 material.

The differences in the values of the maximum stresses between the use of the constant
value of the Poisson ratio ν = 0.3 and the actual values ν = 0.25 ÷ 0.38 corresponding to the
values of the strain magnitudes are more than 6% when using von Mises stresses and 5%
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when using stress intensity. In both cases, the use of the actual values of the Poisson ratio
resulted in lower values of the stresses.

The same simulations of the cover loading by internal compression were performed
for material X52 with the results shown in Figure 9.
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Figure 9. Effect of the above actual Poisson’s ratio values compared to the conventional value of 0.3
on the resulting values of equivalent von Mises stresses (top) and intensity stresses (bottom) for the
X52 material.

The difference in von Mises stresses obtained by the simulation with ν = 0.3. compared
to the experimentally obtained values of Poisson’s ratio was up to 5%, and up to 4% when
using the results in the form of intensity stresses. However, these differences are only the
result of approximate models using current FEM tools, whereas in reality, they may be
somewhat higher.

The influence of the Poisson ratio on the value of the bursting pressure in the pipelines,
which is a frequently used criterion for evaluating their serviceability [22,23], was also
analyzed. The differences between the use of conventional values of 0.3 and 0.5 compared
to the actual measured Poisson ratio waveforms were insignificant. The simulation results
showed that the influence of the actual experimental Poisson ratio values on the simula-
tion results is insignificant compared to the conventional values in the cases of relatively
homogeneous strain fields, i.e., for small strain gradients.

The most significant differences in the simulation results occur just in the region of
the largest Poisson ratio change, i.e., in the region 0.75 Re ÷ 1.2 Re (as is documented in
Figure 10), in situations where the strain peak is strongly localized (this case was partially
represented by the pressure vessel lid in Figures 7 and 8). This situation occurs in areas
of sharp notches, where a strong localization of the strain peak is often the reason for the
high-cycle fatigue of the material [3,24].
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Figure 10. Evolution of Poisson’s ratio—comparison of experimental values and conventional values.

The experimentally documented evolution of Poisson’s ratio values in the regions
above 0.75 Re may also be related to Young’s modulus values. The constants E, G, and
ν are bound in the linear theory by Equation (2). The linear elasticity theory provides
an appropriate description of reality in the domain of purely elastic deformations. This
assumption is only very well validated just in the regions up to about 0.75 Re (for some
materials, this limit can be even lower). In the region of the stress–strain curve approaching
Re, a drift away from a purely linear relationship is also observable in the experimental
record (Figure 11). Therefore, the proportionality limit is correctly used as the elastic
strain limit because the linear theory no longer holds above this limit, as confirmed by the
measured dependence of Poisson’s number on the magnitude of the strain or stress above
this limit.
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5. Conclusions

The conventionally used Poisson’s ratio values (ν = 0.3 for elastic strains and ν = 0.5
for plastic strains) were investigated by direct measurements during tensile testing. The
accurate measurement of the Poisson ratio by DIC, and especially in its evolution in the
plastic strain growth region, revealed some important facts:

- In the group of steels and aluminum alloys studied, the Poisson ratio can be considered
stable up to about 0.75 Re; above this limit, its begins significantly increasing.

- The increase in Poisson’s ratio is at least partially saturated in character, i.e., the
gradient of change is significantly reduced in the region above 5% of the total strain,
and, from about 8% of the strain, its value becomes significantly saturated.



Metals 2024, 14, 433 10 of 11

- A Poisson’s ratio value of 0.5, representing the condition of constant volume, is reached
only by the 42crmo4 and C55 steels; for the other materials studied. this value did not
exceed 0.46 (for AlSi10Mg 0.44).

- After the initiation of the localization of plastic deformation (formation of the neck
or wall buckling of the annular cross-section in the case of MS1), it is not possible to
correctly evaluate the magnitude of the Poisson ratio due to the local change in the
state of stress.

- The evolution of Poisson’s ratio from 0.3 in the elastic region to 0.46 in the plastic region
has the greatest influence on the simulation results in the region of high gradient of
this change—that is, in the region of the yield stress; in the steady-state creep region,
the influence of Poisson’s ratio changes decreases significantly.

- The influence of the evolution of Poisson’s ratio has to be considered in stress–strain
simulations for steels that are especially in the region (0.75 ÷ 1.2) Re because of the
significant influence on stress values, but specifically because of the deformations
that occur in this region with a significant gradient of change; an example of this in
engineering applications is represented by a location of sharp notches leading to the
need for life assessment in the region of high-cycle fatigue.

The current simulation tools in FEM software do not allow for a direct consideration of
the evolution of Poisson’s ratio during strain growth. Increasing the accuracy of simulations,
especially in areas of gradual development of plastic deformation in sharp indentations,
could be assisted by introducing the option of selecting Poisson’s ratio as a function of strain
magnitude into the material models. This will require a modification of the constitutive
equations, particularly a modification of the algorithm for their solution. Experimental
results on the evolution of Poisson’s number also show that above the proportionality limit
on the tensile curve, the linear theory of elasticity no longer holds.
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Abbreviations

FEM Finite element method
FBG Fiber Bragg grating sensors
ESPI Electronic speckle-pattern interferometry
DIC Digital image correlation method

Nomenclature

Re Yield stress
ν Poisson’s ratio
σ Normal stress
E Young’s modulus in tension
G Modulus in shear
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