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Abstract: High-entropy alloys (HEAs) have attracted a great deal of research interest these days
because of their attractive properties. Low-temperature chemical synthesis methods are being de-
veloped to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA
Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles from high-entropy oxide (HEO) (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4

by a deoxidation process Via a CaH2-assisted molten salt method at 600 ◦C. X-ray diffraction measure-
ments demonstrated that the oxide precursor and the reduced product have single-phases of spinel
structure and face-centered cubic structures, indicating the formation of HEO and HEA, respectively.
The HEA nanoparticles exhibited superior catalytic performance in the liquid-phase hydrogenation of
p-nitrophenol at room temperature with little leaching of the component elements. Scanning electron
microscopy (SEM) with energy-dispersive X-ray spectrometry (EDX) exhibited a good distribution
of constituent elements over the HEA nanoparticles in a micro-sized range. However, transmission
electron microscopy (TEM) with EDX revealed a slight deviation of elemental distributions of Al and
Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to the incomplete reduction
of aluminum and titanium oxides. The elemental homogeneity in the HEA nanoparticles could be
improved by taking advantage of the HEO precursor with homogeneous elemental distributions,
but the experimental results suggested the importance of the total reduction of oxide precursors to
prepare homogeneous HEAs from HEOs.

Keywords: high-entropy alloy; Al0.2Co1.5CrFeNi1.5Ti0.5; nanoparticles; face-centered cubic structure;
high-entropy oxide; spinel; molten salt synthesis; CaH2; p-nitrophenol hydrogenation

1. Introduction

High-entropy alloys (HEAs) are solid-solution alloys composed of five or more ele-
ments. Such multicomponent solid-solution alloys were first reported in 2004 [1,2] and
have since attracted much interest owing to their high corrosion and oxidation resistance,
high-temperature strength, strong wear resistance, and other excellent properties [3–6].
Powder metallurgy with starting materials of pure metals composed of HEAs is a major
physical method to prepare HEA materials [7,8]. Recently, HEA materials have been suc-
cessfully synthesized by more challenging chemical methods, such as carbothermal shock
synthesis, which uses metal salts as the starting materials [9–11]. Other approaches, such
as wet chemical synthesis [12], sol–gel autocombustion synthesis [13], electrosynthesis [14],
solvothermal synthesis [15], organic compound-assisted synthesis [16], aerosol synthe-
sis [17], continuous droplet synthesis [18], one-pot polyol synthesis [19], fast-moving bed
pyrolysis synthesis [20], and so on, have also been proposed as superior chemical methods.
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Chemical methods are potentially more suitable than physical methods for large-scale pro-
duction. In addition, preparation temperatures of HEA materials by chemical methods are
generally lower than those by physical methods, leading to energy savings. It was demon-
strated that it was feasible to prepare bulk samples of HEAs, such as CuCoFeNi [21,22] and
CoCrFeMnNi [23], from the constituent oxides by hydrogen reduction performed below
1200 ◦C, and the products showed good mechanical properties. However, it is still an issue
to obtain HEAs containing a good mixture of constituent elements by the deoxidation
of oxides.

In previous works, we reported the preparation of HEA powders from the constituent
oxides Via a novel CaH2-assisted molten salt method at 550–800 ◦C [24–28]. A calcium
hydride is known to work as a Very strong reduction agent because it contains hydride ions
(H−) with a low reduction potential of −2.2 V (vs. standard hydrogen electrode). Since
the potential is lower than those of Al (−1.6 V), Ti (−1.4 V), Cr (−0.9 V), Mn (−1.2 V), Fe
(−0.9 V), Co (−0.3 V), and Ni (−0.3 V), the metal oxides are theoretically reduced by H−.
Molten LiCl and molten LiCl-CaCl2 assisted the reduction as well as the well-crystallized
formation of single-phase HEAs, such as the typical HEAs of CrMnFeCoNi at 800 ◦C [26]
and AlCoCrFeNi at 550 ◦C [25]. In the previous reports, a life cycle assessment (LCA)
was conducted to evaluate the environmental performance of the proposed molten salt
reduction synthesis method and to compare the said performance to that of a conventional
chemical etching method for the preparation of high surface area alloys. For HEA CrMnFe-
CoNi, the LCA results showed that the molten salt method accounted for greenhouse gas
emissions of 121 kg CO2e/kg in the production process, which was 20% lower than that for
the common etching method. For HEA AlCoCrFeNi, the LCA of the proposed method indi-
cated that AlCoCrFeNi production was associated with greenhouse gas emissions of 125 kg
CO2e/kg-product, whose main contributors were the CaH2 and citric acid used during the
precursor’s reduction and formation, respectively. On the other hand, the etching method
produced 277 kg CO2e/kg-product. Thus, a minimum of 54% greenhouse gas emission
reduction compared to the conventional etching method was achievable in the proposed
molten salt method. The previous results indicated the possible environmentally friendly
production of high surface area HEA powders suitable for industrial applications. In cat-
alytic applications, it was found that the HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles exhib-
ited the highest catalytic performance in the liquid-phase hydrogenation of p-nitrophenol
(4-NP) at 50 ◦C among several HEAs prepared by the molten salt method [27,28]. It has been
demonstrated that HEA AlxCo1.5CrFeNi1.5Tiy [29] and Al0.2Co1.5CrFeNi1.5Ti0.5 [30–33]
show superior wear-resistant properties. Thus, HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles
can be a promising stable catalyst in liquid-phase hydrogenation reactions without the leach-
ing of component elements. In this study, we conducted the microscopic elemental analysis
of HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles Via scanning and transmission electron mi-
croscopies with energy dispersive X-ray spectrometry (SEM-/TEM-EDX), so as to confirm
the elemental homogeneities more carefully in the HEA nanoparticles prepared from single-
phase oxide. Since the oxide precursor had a single-phase spinel structure, it was expected
to obtain HEA Al0.2Co1.5CrFeNi1.5Ti0.5 with a homogeneous distribution of constituent
elements by deoxidizing the oxide of high-entropy oxide (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4.
In addition, the catalytic test was again conducted in the 4-NP hydrogenation at room
temperature to compare the activity with the reported results.

2. Materials and Methods

High-entropy alloy powder of Al0.2Co1.5CrFeNi1.5Ti0.5 was prepared by reducing an
oxide precursor in a molten LiCl–CaH2 mixture at 600 ◦C [34]. Figure 1 describes the
preparation procedures. The oxide precursor was prepared using the following sol–gel
method with citric acid [35]. First, Al(NO3)3•9H2O (98%, FUJIFILM Wako Pure Chem.
Corp., Osaka, Japan), Co(NO3)2•6H2O (98%, FUJIFILM Wako Pure Chem. Corp., Osaka,
Japan), Cr(NO3)3•9H2O (98%, Nacalai Tesque, Inc., Kyoto, Japan), Fe(NO3)3•9H2O (99%,
FUJIFILM Wako Pure Chem. Corp., Osaka, Japan), Ni(NO3)2•6H2O (99.9%, FUJIFILM
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Wako Pure Chem. Corp., Osaka, Japan), and [(CH3)2CHO]4Ti (95%, FUJIFILM Wako
Pure Chem. Corp., Osaka, Japan) were dissolved in ethanol (99.5%, FUJIFILM Wako Pure
Chem. Corp., Osaka, Japan) at the stoichiometric molar ratio for Al0.2Co1.5CrFeNi1.5Ti0.5.
Citric acid (98%, FUJIFILM Wako Pure Chem. Corp., Osaka, Japan) was then added to the
solution at a salt/citric acid molar ratio of 1.0/1.2. The components were sufficiently mixed
and dried at 120 ◦C overnight. The dried powder was preliminarily heated at 250 ◦C in
air for 2 h and then homogenized by gentle mixing in a mortar. Finally, the powder was
heated at 500 ◦C, 800 ◦C, or 1100 ◦C in air for 2 h to obtain the oxide precursor, referred
to as ACCFNT(Pre500), ACCFNT(Pre800), and ACCFNT(Pre1100), respectively. Next,
ACCFNT(Pre800), CaH2 (JUNSEI Chem. Co., Ltd., Tokyo, Japan), and LiCl (FUJIFILM
Wako Pure Chem. Corp., Osaka, Japan) were mixed in a mortar at a Pre/CaH2/LiCl weight
ratio of 2/6/3. The mixed powder was placed in a stainless-steel container filled with N2
gas and heated at 600 ◦C for 2 h. Finally, the reduced precursor was crushed in a mortar and
rinsed several times with 0.1 M NH4Cl (FUJIFILM Wako Pure Chem. Corp., Osaka, Japan)
aqueous solution and distilled water. The dried final product was named ACCFNT(RDT).
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Figure 1. Preparation procedures of ACCFNT(Pre) and ACCFNT(RDT) from chemicals.

The crystal structure of the prepared samples was examined at room temperature
using X-ray diffraction (XRD, MiniFlex 600, Rigaku, Tokyo, Japan) with CuKα radiation
at 40 kV and 15 mA. The measurements with a step interval of 0.01◦ and a scan speed of
10◦/min were conducted with ranges of 20◦–80◦ and 30◦–100◦ for the oxide precursors
and the reduced sample, respectively. The Brunauer, Emmet, and Teller (BET) surface
area was examined using N2 adsorption at −196 ◦C (BELLSORP mini-II, MicrotracBEL
Corp., Osaka, Japan). The samples were pretreated at 150 ◦C for 60 min under a Vacuum
in order to remove the water contained in the samples before the measurement. Scanning
electron microscopy (SEM, JSM-7400F, JEOL Ltd., Tokyo, Japan) and transmission electron
microscopy (TEM, a Tecnai Osiris, FEI system) were used to examine the morphology, and
elemental analysis was performed using energy dispersive X-ray spectrometry (EDX).

The catalytic reactions were conducted in 20 mL glass bottles following the previously
reported procedures [36]. In the catalytic tests, 1 mL of 4-NP solution (14 mM) was added to
a bottle containing 10 mg of catalyst powder, 1 mL of NaBH4 solution (0.42 M), and 7 mL of
distilled water as the solvent. To satisfy first-order reaction kinetics, the initial concentration
of NaBH4 (0.047 M) was 30 times higher than that of 4-NP (1.6 mM). The reactions were
stirred at room temperature until the concentrations reached zero. An aluminum heat sink
mounted on a hotplate was used to maintain a constant solution temperature. A small
aliquot (100 µL) solution was taken to determine the concentration changes at reaction
times of 0.5–50 min. The conversion of 4-NP to p-aminophenol (4-AP) was monitored using
an ultraviolet–visible spectrometer (Shimadzu, UV-1280, Kyoto, Japan) using the respective
absorbance changes at 401 and 315 nm. The experimental procedures have been routinized
to obtain reproducible data. The leaching amounts of constituent elements in the used
catalysts after the reactions were analyzed by inductively coupled plasma–atomic emission
spectroscopy (ICP–AES) (PS7800, Hitachi Ltd., Tokyo, Japan).
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3. Results and Discussion
3.1. Sample Preparation and Catalytic Tests

Figure 2a shows XRD patterns of ACCFNT(Pre500), ACCFNT(Pre800), and AC-
CFNT(Pre1100). Clear peaks were not observed for ACCFNT(Pre500), but Very sharp
peaks were obtained for ACCFNT(Pre800) and ACCFNT(Pre1100). The peaks were as-
signed to a single phase of spinel structure, such as Fe3O4. Although the absence of
clear peaks was observed for ACCFNT(Pre500), the observed broad peaks were roughly
located at the same positions assigned to the spinel structure. The result suggested
the formation of poorly crystalline phases in ACCFNT(Pre500). In a previous report,
spinel-type HEOs of (Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)3O4 and (Cr0.2Fe0.2Mn0.2Co0.2Zn0.2)3O4
were prepared by solution combustion synthesis, which is a kind of sol–gel technique
using glycine [37]. The sol–gel techniques are a Very effective approach to obtain ox-
ides with a good mixture of constituent elements. In this study, we used the same sol–
gel technique with citric acid, and thus, the XRD results suggested the formation of a
spinel-type HEO (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4. Several spinel-type HEOs have been previ-
ously reported [38], but as far as we searched for, the HEO (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4
could be reported for the first time in this work. Figure 2b shows XRD patterns of AC-
CFNT(RDT) obtained by deoxidizing ACCFNT(Pre800) at 600 ◦C. The peaks observed in
ACCFNT(Pre800) disappeared, and instead, peaks assigned to an FCC structure were newly
observed for ACCFNT(RDT). No other peaks were Visible, thus indicating the formation of
HEA Al0.2Co1.5CrFeNi1.5Ti0.5.
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Next, catalytic tests were performed with ACCFNT(Pre500) and ACCFNT(RDT) to
evaluate the catalytic performances in the hydrogenation of 4-NP to 4-AP with NaBH4 at
room temperature. Figure 3a shows the concentration (C) changes of 4-NP as functions
of reaction times with ACCFNT(Pre500) and ACCFNT(RDT). For ACCFNT(Pre500), the
concentration changed little during the reaction time, indicating that ACCFNT(Pre500)
showed no catalytic activity. For ACCFNT(RDT), the concentration quickly decreased and
reached zero after 10 min. Figure 3b is a plot of ln(C/C0) as a function of reaction time for
ACCFNT(RDT). A good linearity was obtained from the plot in order to acquire a reaction
rate constant of 0.2872 min−1. Table 1 shows the leached amounts of constituent elements
into the reaction solutions after the reactions for ACCFNT(Pre500) and ACCFNT(RDT).
As the results of the ICP measurements show, the leached amounts were Very small. The
maximum leached amount of 1.163 ppm Cr was observed for ACCFNT(Pre500), whereas
the amounts were below 0.03 ppm of any metals for ACCFNT(RDT). Thus, the results
indicated that ACCFNT(RDT) was a Very stable alloy catalyst available in the liquid-
phase hydrogenation reaction. Table 2 summarizes the rate constants (k) of this work and
previous works for comparison. Because the reaction conditions used are different for each
research group, quantitative comparison is difficult. For comparison between our previous
works where the same reaction conditions were employed as the condition of this study,
ACCFNT(RDT) gave the highest rate constant of 0.2872 min−1. One of the main reasons for
the high catalytic performance of ACCFNT(RDT) was due to its high BET surface area of
92 m2/g. Since ACCFNT(Pre500) with 20 m2/g showed no catalytic activity, the superior
catalytic performance observed in ACCFNT(RDT) could not result only from the high
surface area but also from the chemical states of surface elements. Since it was considered
from the XRD results that ACCFNT(Pre500) and ACCFNT(RDT) had oxide and alloy states,
respectively, the surface alloy species composed of Al, Co, Cr, Fe, Ni, and Ti could be active
species in ACCFNT(RDT).
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Table 1. Leached amounts of constituent elements after the reactions by the inductively coupled
plasma measurements.

Sample
Leached Amounts after Reactions [ppm]

Al Co Cr Fe Ni Ti

ACCFNT(Pre500) 0.024 0.017 1.163 0.013 0.024 0.002
ACCFNT(RDT) 0.021 0.017 0.015 0.013 0.026 0.001
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Table 2. Comparison of rate constants (k) for 4-NP reduction operated at room temperature.

Catalyst k [min−1] Reaction Conditions Refs.

Al0.2Co1.5CrFeNi1.5Ti0.5 0.2872

4-NP (1.6 mM)
NaBH4 (47 mM)
10 mg-cat/9 mL

This study
CrMnFeCoNi 0.040–0.108 [26]
AlCoCrFeNi 0.0324 [25]

AlCoCrFeNiV 0.0258 [24]
Nanoscale zero-valent iron 0.040–0.048 [39]
10wt%Ni/TiZrCrMnFeNi 0.046

[40]10wt%Ni/TiO2 0.015
10wt%Ni/ZrO2 0.0003

Ni-RGO 0.07 4-NP (0.1 mM)
NaBH4 (30 mM)

10 mg-cat/104 mL
[41]Ni NP 0.02

Ni film 0.09 4-NP (0.1 mM)
NaBH4 (10 mM)

15 cm2-cat/16 mL
[42]Co50Ni50 film 0.15

Co25Ni75 film 0.14

SiO2@C/Ni 2.19–3.06
4-NP (0.2 mM)

NaBH4 (65 mM)
3 mg-cat/3.1 mL

[43]

Nanoscale zero-valent iron 0.31
4-NP (0.1 mM)

NaBH4 (50 mM)
3.5 mg-cat/L

[44]

Bentonite clay-supported
Fe nanoparticles 0.141

4-NP (0.2 mM)
NaBH4 (200 mM)

10 mg-cat/L
[45]

Chitosan-stabilized
nanozero-valent iron 0.147

4-NP (0.2 mM)
NaBH4 (20 mM)
1000 mg-cat/L

[46]

Monodispersed FeNi2 alloy
nanostructures 0.057

4-NP (0.03 mM)
NaBH4 (20 mM)

33 mg-cat/L
[47]

FeAg bimetallic
nanoparticles 0.065

4-NP (0.07 mM)
NaBH4 (3 mM)
5 mg-cat/3 mL

[48]

3.2. Elemental Analysis by SEM-EDX

According to the results of XRD measurements, ACCFNT(RDT) had a single-phase
spinel structure, and so it was suggested that ACCFNT(RDT) had a good mixture of
constituent elements of Al, Co, Cr, Fe, Ni, and Ti. In order to confirm the homogene-
ity in micron-sized and nano-sized ranges, elemental analyses were performed for AC-
CFNT(RDT) by SEM-EDX and TEM-EDX, respectively. Figure 4 shows the SEM images of
ACCFNT(RDT). The images indicated that ACCFNT(RDT) was composed of bulky pieces
of uneven size. Figures 5–9 show the results of elemental analyses conducted on nine
different positions for ACCFNT(RDT). Figure 10 is a figure summarizing the elemental
distributions measured at nine positions. Table 3 summarizes the detected molar ratios of
Al, Co, Cr, Fe, Ni, and Ti at nine positions, with average and stoichiometric ratios. For all
the positions, oxygen molar ratios were quite large and ranged over 20–60 mol%. Since any
peaks assigned to oxides, especially to the spinel structure, were not observed by XRD for
ACCFNT(RDT), it was suggested that ACCFNT(RDT) would contain amorphous oxide due
to an incomplete deoxidation, resulting in a mixture of oxide and alloy in ACCFNT(RDT).
According to the oxygen distributions in the elemental mappings in Figures 5–8, oxygen
was distributed evenly over the samples, so the oxide and alloy were not separated but
coexisted in the micron-sized range. The constituent elements of Al, Co, Cr, Fe, Ni, and
Ti were Vastly distributed over the samples in the elemental mappings in Figures 5–8. In
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addition, a good overlap of the elements was clearly observed. Figure 10 indicated that
the differences in molar ratios of each element of Al, Co, Cr, Fe, Ni, and Ti were small over
the different positions and a good homogeneous distribution of the constituent elements
close to the stoichiometric molar ratio of HEA Al0.2Co1.5CrFeNi1.5Ti0.5 was obtained in the
micron-sized range by SEM-EDX. Except for oxygen and the constituent elements of Al,
Co, Cr, Fe, Ni, and Ti, the detected elements were Si, S, and Cl. The amounts of S and Cl
were Very scarce. The amount of Si was relatively large and may have been unintentionally
incorporated from the reactor in the deoxidation process.
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Figure 10. Molar ratios of (a) all detected elements for ACCFNT(RDT) and (b) the corresponding
separate metals composed of ACCFNT(RDT) over 9 positions by scanning electron microscopy–
energy-dispersive X-ray (SEM-EDX). Dotted lines indicate the stoichiometric molar ratios of high-
entropy alloy (HEA) Al0.2Co1.5CrFeNi1.5Ti0.5.

Table 3. Elemental molar ratios with standard deviations (SDs) measured by scanning electron
microscopy–energy-dispersive X-ray (SEM-EDX) for ACCFNT(RDT).

Position
Molar Ratios of Detected Elements [mol%]

Al Co Cr Fe Ni Ti

1 7.4 22.8 17.5 18.0 24.1 10.2

2 7.4 21.2 19.1 18.2 21.4 12.7

3 5.3 23.7 18.9 21.8 19.8 10.6

4 5.4 21.6 21.0 22.1 19.5 10.6

5 3.0 21.8 24.1 22.3 16.3 12.4

6 1.5 22.7 26.6 22.5 15.9 10.8

7 5.0 25.1 19.2 18.6 21.5 10.6

8 5.8 22.0 18.5 19.1 23.4 11.2

9 5.1 21.5 21.5 19.5 21.2 11.0

Average (SD) 5.1 (1.8) 22.5 (1.2) 20.7 (2.8) 20.2 (1.8) 20.3 (2.6) 11.1 (0.8)

Stoichiometric
ratio 3.5 26.3 17.5 17.5 26.3 8.8

3.3. Elemental Analysis by TEM-EDX

Elemental analyses in the nano-sized range were performed by TEM-EDX. Figures 11–17
show the results of elemental analyses conducted on 20 different positions for ACCFNT(RDT).
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Figure 18 summarizes the elemental distributions measured at 20 positions. Table 4 sum-
marizes the detected molar ratios of Al, Co, Cr, Fe, Ni, and Ti on 20 positions, with average
and stoichiometric ratios. For all the positions, oxygen was detected, but the molar ratios
of <30 mol% were smaller than those by SEM-EDX. According to the elemental mappings
in Figures 11–16, oxygen was distributed evenly over the samples, but the distributions
seemed mostly overlapped with those of Al and Ti. Since aluminum and titanium oxides
are Very stable due to the Very low reduction potentials of Al (−1.6 V) and Ti (−1.4 V),
the detected oxygen could originate from the oxygen strongly bonding with Al and Ti in
the spinel structure of ACCFNT(Pre800). For the constituent elements of Al, Co, Cr, Fe,
Ni, and Ti, the distributions of Co, Cr, Fe, and Ni overlapped relatively well with each
other in Figures 11–16, whereas the distributions of Al and Ti were broadly distributed
over the samples and slightly deviated from those of Co, Cr, Fe, and Ni. Thus, TEM-EDX
showed that aluminum and titanium oxides remained partially in ACCFNT(RDT) due to
the incomplete reduction of ACCFNT(Pre800). Figure 18 indicated that the differences in
molar ratios by TEM-EDX of each element of Al, Co, Cr, Fe, Ni, and Ti were larger than
those by SEM-EDX (Figure 10) over the different positions. Especially, molar ratios of
Ti were significantly dependent upon the observed positions. The inhomogeneity of Ti
may be due to the incomplete reduction of titanium oxides. Except for oxygen and the
constituent elements of Al, Co, Cr, Fe, Ni, and Ti, the detected elements were Si, S, Cl, Ca,
and Mg. The amounts of S, Cl, Ca, and Mg were Very scarce and ignorable. The amount
of Si was relatively large, as similarly detected by SEM-EDX, and it was suggested that it
could be unintentionally incorporated from the reactor used in the deoxidation process. In
comparison with average and stoichiometric ratios described in Table 4, they were relatively
good matches with each other. However, as described above, incomplete reductions of
aluminum and titanium oxides were indicated on a nanoscale range by TEM-EDX, so the
corresponding portion of partially reduced samples had inhomogeneous distributions of
constituent elements, especially Ti. These results suggested the importance of the total
reduction of oxide precursors to obtain homogeneous HEAs.
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Figure 15. (a) Elemental mappings, (b) the EDX spectrum, and (c) the detected elemental molar
ratios for ACCFNT(RDT) at position 5 by transmission electron microscopy–energy-dispersive X-ray
(TEM-EDX).
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Figure 18. Molar ratios of (a) all detected elements for ACCFNT(RDT) and (b) the corresponding 
separate metals composing of ACCFNT(RDT) over 20 positions by transmission electron micros-
copy–energy-dispersive X-ray (TEM-EDX). Dotted lines indicate the stoichiometric molar ratios of 
High-entropy alloy (HEA) Al0.2Co1.5CrFeNi1.5Ti0.5. 

4. Conclusions 
HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles were prepared from spinel-type HEO 

(Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a deoxidation process via a CaH2-assisted molten salt 
method at 600 °C. The elemental analyses were performed for the HEA nanoparticles by 
SEM-EDX and TEM-EDX in micron-sized and nano-sized ranges, respectively. SEM-EDX 
exhibited a good distribution of constituent elements of Al, Co, Cr, Fe, Ni, and Ti over the 
HEA nanoparticles, but TEM-EDX revealed a slight deviation of elemental distributions 
of Al and Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to the 
incomplete reduction of aluminum and titanium oxides. Thus, a careful nanoscale obser-
vation was required to discuss the elemental homogeneity of HEA nanoparticles. In addi-
tion, the importance of the total reduction of oxide precursors, especially with the low 
reduction potentials of Al and Ti was indicated when preparing HEAs from HEOs. 
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Figure 18. Molar ratios of (a) all detected elements for ACCFNT(RDT) and (b) the corresponding
separate metals composing of ACCFNT(RDT) over 20 positions by transmission electron microscopy–
energy-dispersive X-ray (TEM-EDX). Dotted lines indicate the stoichiometric molar ratios of High-
entropy alloy (HEA) Al0.2Co1.5CrFeNi1.5Ti0.5.

In the reduction process, the physical mixture of the oxide precursor, CaH2, and LiCl
was heated in nitrogen at 600 ◦C for 2 h. The CaH2 is a Very strong reducing agent, whereas
LiCl is melted at 600 ◦C to be in the form of molten salt. Thus, the reduction process is a
kind of solution process where the oxide powder is reduced by CaH2 powder in liquid
molten salt. The molten salt could assist in the reduction of the oxide precursor, but the
main reducing agent is the CaH2 powder. Thus, it is Very important for the oxide powder
and CaH2 powder to be in close contact to achieve the total reduction of the oxide. In
addition, a long enough time is required to complete the reduction. However, 2 h may be
too short to obtain the total reduction. In sum, the experimental results gave us a good
lesson that the incomplete reduction was completed in the reduction conditions, suggesting
the importance of the total reduction of oxide precursors that could be achieved by selecting
appropriate conditions, such as close contact between the oxide powder and the CaH2
powder, and a long enough time to complete the reduction to obtain homogeneous HEAs
from HEOs.

Elemental analyses were performed for ACCFNT(RDT) to confirm the homogeneity in
micron-sized and nano-sized ranges by SEM-EDX and TEM-EDX, respectively. Elemental
analyses of Al, Co, Cr, Fe, Ni, and Ti at nine different positions were carried out by SEM-
EDX (Figure 10). The differences in molar ratios of each element were fairly small over the
different positions, and it could be concluded that a good homogeneous distribution of the
constituent elements close to the stoichiometric molar ratio of HEA Al0.2Co1.5CrFeNi1.5Ti0.5
was obtained. On the other hand, elemental analyses at 20 different positions by TEM-
EDX showed different conclusions (Figure 18). The differences in molar ratios of each
element were large, and molar ratios of Ti were especially significantly dependent upon
the observed positions. The inconsistency of the results by SEM-EDX and TEM-EDX raises
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a serious issue in assessing elemental homogeneity on nanomaterials. It is impossible to
analyze the elemental composition at all the nanoscale positions of nanoparticles in reality,
and so it remains a data interpretation challenge in nanoscale characterization.

Table 4. Elemental molar ratios with standard deviations (SDs) measured by transmission electron
microscopy–energy-dispersive X-ray (TEM-EDX) for ACCFNT(RDT).

Position
Molar Ratios of Detected Elements [mol%]

Al Co Cr Fe Ni Ti

1 4.4 27.8 16.0 20.2 22.3 9.4

2 2.8 24.5 21.6 20.2 19.9 11.0

3 3.5 24.1 20.3 20.8 19.4 11.9

4 3.3 24.7 22.4 19.0 20.1 10.5

5 3.2 30.3 10.3 22.3 29.5 4.5

6 3.5 33.7 11.5 27.0 21.7 2.6

7 3.3 34.7 14.4 25.8 19.7 2.1

8 2.9 30.4 14.0 26.8 20.8 5.1

9 2.2 25.5 16.3 21.4 20.6 14.0

10 2.2 22.4 17.0 17.8 18.8 21.8

11 2.7 34.9 11.2 23.5 26.9 0.8

12 1.5 40.5 6.2 22.3 26.9 2.6

13 2.7 34.2 6.3 22.4 31.2 3.3

14 2.2 30.2 16.4 25.0 16.4 9.7

15 2.3 30.0 13.6 27.9 25.5 0.8

16 1.6 26.0 14.4 28.8 21.5 7.6

17 3.5 36.5 9.4 22.1 25.9 2.7

18 1.4 39.5 10.4 22.1 23.3 3.4

19 1.6 38.7 7.6 19.9 29.3 3.0

20 3.8 21.1 22.6 16.0 19.9 16.6

Average (SD) 2.7 (0.8) 30.5 (5.7) 14.1 (5.0) 22.6 (3.3) 23.0 (4.0) 7.2 (5.6)

Stoichiometric
ratio 3.5 26.3 17.5 17.5 26.3 8.8

4. Conclusions

HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles were prepared from spinel-type HEO
(Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a deoxidation process Via a CaH2-assisted molten salt
method at 600 ◦C. The elemental analyses were performed for the HEA nanoparticles by
SEM-EDX and TEM-EDX in micron-sized and nano-sized ranges, respectively. SEM-EDX
exhibited a good distribution of constituent elements of Al, Co, Cr, Fe, Ni, and Ti over the
HEA nanoparticles, but TEM-EDX revealed a slight deviation of elemental distributions
of Al and Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to
the incomplete reduction of aluminum and titanium oxides. Thus, a careful nanoscale
observation was required to discuss the elemental homogeneity of HEA nanoparticles. In
addition, the importance of the total reduction of oxide precursors, especially with the low
reduction potentials of Al and Ti was indicated when preparing HEAs from HEOs.
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