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Abstract: In the iron and steel industry, evaluating the energy utilization efficiency (EUE) and
determining the optimal energy matching mode play an important role in addressing increasing
energy depletion and environmental problems. Electric Arc Furnace (EAF) steelmaking is a typical
short crude steel production route, which is characterized by an energy-intensive fast smelting
rhythm and diversified raw charge structure. In this paper, the energy model of the EAF steelmaking
process is established to conduct an energy analysis and EUE evaluation. An association rule mining
(ARM) strategy for guiding the EAF production process based on data cleaning, feature selection, and
an association rule (AR) algorithm was proposed, and the effectiveness of this strategy was verified.
The unsupervised algorithm Auto-Encoder (AE) was adopted to detect and eliminate abnormal
data, complete data cleaning, and ensure data quality and accuracy. The AE model performs best
when the number of nodes in the hidden layer is 18. The feature selection determines 10 factors
such as the hot metal (HM) ratio and HM temperature as important data features to simplify the
model structure. According to different ratios and temperatures of the HM, combined with k-means
clustering and an AR algorithm, the optimal operation process for the EUE in the EAF steelmaking
under different smelting modes is proposed. The results indicated that under the conditions of a low
HM ratio and low HM temperature, the EUE is best when the power consumption in the second
stage ranges between 4853 kWh and 7520 kWh, the oxygen consumption in the second stage ranges
between 1816 m3 and 1961 m3, and the natural gas consumption ranges between 156 m3 and 196 m3.
Conversely, under the conditions of a high HM ratio and high HM temperature, the EUE tends to
decrease, and the EUE is best when the furnace wall oxygen consumption ranges between 4732 m3

and 5670 m3, and the oxygen consumption in the second stage ranges between 1561 m3 and 1871 m3.
By comparison, under different smelting modes, the smelting scheme obtained by the ARM has
an obvious effect on the improvement of the EUE. With a high EUE, the improvement of the A2B1
smelting mode is the most obvious, from 24.7% to 53%. This study is expected to provide technical
ideas for energy conservation and emission reduction in the EAF steelmaking process in the future.

Keywords: electric arc furnace steelmaking; energy utilization efficiency; anomaly detection; feature
selection; extreme gradient boosting; association rule mining; k-means clustering algorithm

1. Introduction

The iron and steel industry is a vital foundational industry for the national economy
and an important indicator of the national economic level and strength. As the largest
steel production country in the world, China has experienced rapid development in the
production level and quality of steel products [1]. However, behind the rapid development
of the iron and steel industry, environmental issues caused by the consumption of resources

Metals 2024, 14, 458. https://doi.org/10.3390/met14040458 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14040458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0003-0837-2768
https://orcid.org/0000-0002-1977-6795
https://orcid.org/0000-0002-5120-7752
https://doi.org/10.3390/met14040458
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14040458?type=check_update&version=2


Metals 2024, 14, 458 2 of 23

and energy have become increasingly prominent [2,3]. Adhering to the strategy of energy
conservation and emission reduction [4], enhancing energy efficiency through technological
innovation [5], and promoting green and low-carbon development in the iron and steel
industry are critical issues that urgently need to be addressed.

Electric arc furnace (EAF) steelmaking is a significant pathway for steel production and
the realization of resource recycling [6,7]. This process achieves rapid and efficient metal
smelting, producing high-quality steel and alloys that meet compositional and temperature
requirements [8,9]. Short process steelmaking centered around an EAF not only reduces waste
in resources but also minimizes the environmental impact. According to the data provided
by the World Steel Association, the CO2 emissions per ton of steel from the EAF route, using
scrap as the metal charge, are 0.68 tons, with an energy intensity of 10.20 GJ per ton, giving it
an advantage over the other process routes [10,11].

The EAF steelmaking process realizes the transformation of raw materials into prod-
ucts, accompanied by energy conversions [12]. EAFs exhibit a strong adaptability to raw
materials [13,14], with the main materials being scrap. However, due to a shortage in scrap
reserves, some steel mills adopt the practice of adding hot metal (HM) to the furnace as
a supplement [15,16]. This approach adjusts the composition of the raw materials and
obtains a good smelting effect. The material and energy input factors have a certain degree
of impact on the energy consumption levels, energy conservation, emission reduction, and
efficiency improvements [17]. At present, most steel companies evaluate the performance
of the smelting process by using the yield of molten steel [18], but only the initial and final
weight conditions are considered and an evaluation indicator for the energy utilization
efficiency (EUE) is lacking. The evaluation fails to consider the influence of the operation
on energy efficiency during the steelmaking process. Therefore, the energy conversion
process becomes unclear, and the evaluation indicator shows significant fluctuations. The
above situations hinder energy conservation and the development of reductions in the
emissions from EAF steelmaking. Furthermore, there are numerous factors related to the
EUE whose importance levels cannot be determined, and the potential correlations between
these factors remain unexplored, leading to redundant data. The complexity of the data
leads to challenges for research. Moreover, the EUE of EAF steelmaking relies heavily on
the production experience of operators. The existing large-scale dataset has not been fully
utilized to provide standardized guidance for the operational processes in steelmaking. To
address these issues, this paper proposes integrating the evaluation indicator of the EUE
with association rules mining to extract useful data from the extensive dataset and to reveal
the relationships between different data variables. This approach aims to provide support
for more accurate decisions for operators.

Domestic and foreign scholars have conducted a large amount of theoretical and
experimental research in fields such as energy optimization in the EAF steelmaking process.
Chen [19], based on theoretical calculations and a statistical analysis, discussed the impact
of the charge structure on production indicators and found that the EUE decreases with the
increase in the proportion of HM in EAF steelmaking. Mapelli [20] pointed out that the
assessment of energy consumption is fundamental in the steelmaking process, and a correct
analysis of the energy input and utilization is crucial to better control the time of melting
and refining. Li [21] used the principle of material flow to analyze the material and energy
utilization rates of a blast furnace, considering the converter and EAF processes. Sun [22]
developed a matrix model of the material–energy–emission relationships and determined
the influence of various operational parameters on the material, on the energy, and on the
emission intensity. Sun [23] outlined different steel production routes and introduced the
modeling, scheduling, and interrelationships of materials and energy flows in the iron
and steel industry. Na [24], using the ISMP as a typical case, established the material and
energy flow networks of typical steel enterprises; analyzed their required energy, surplus
energy, and energy efficiency; and discussed the factors influencing energy efficiency. Data
mining is widely applied in various fields, such as the biomedical field and the field of
energy construction, by domestic and foreign scholars. It extracts rules from complex
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data, discovers association patterns between different features, and achieves functions
such as fault diagnosis [25,26], behavior prediction [27,28], pattern recognition [29,30], and
disease research [31,32]. Data mining also has some successful applications in the iron and
steel industry. Li [33] used historical operational data from an industrial blast furnace to
establish a comprehensive evaluation and prediction model for the blast furnace operation
state using big data mining methods. Manojlović [34] evaluated the energy efficiency pa-
rameters of the EAF process using different machine learning and data processing methods.
Andonovski [35] studied the data-based optimization problem of the energy consumption
of EAFs and proposed a model that can effectively predict energy consumption. The model
can be used to reduce energy consumption and improve the overall efficiency of steelmak-
ing plants. The above research has achieved good application results and is significant for
promoting energy conservation, emission reduction, and cost reduction.

The above research has laid a solid theoretical foundation for optimizing energy in
the EAF steelmaking process. However, the internal reactions of the steelmaking process
in the EAF are complex and opaque, making it challenging to quantitatively analyze and
accurately assess the flow and utilization of the energy. Additionally, the application of
data mining and association rules in the EAF steelmaking field is rare. By adopting a data-
driven association rules mining (ARM) [30,36,37] model, the industrial data can be effectively
utilized to determine the optimal solutions. Through controlling and optimizing the key
parameters of the steelmaking process, the energy consumption of the industrial process can
be reduced, thereby achieving energy conservation and emission reduction goals. Therefore,
to solve the above problems, this paper aims to develop an energy model specifically for the
EAF steelmaking process. This model will analyze energy flow, calculate energy composition
and EUE, and fully exploit the advantages of data mining in improving data quality and
the AR algorithm in analyzing massive data. The goal is to determine the optimal smelting
scheme of energy efficient utilization and improve the EUE of EAF steelmaking.

The research objectives of this paper are as follows:

1. Based on the reaction mechanism of the steelmaking process, the first goal is to quan-
tify the energy components of the EAF steelmaking process, establish an evaluation
system for the EUE, and develop a energy model to calculate, evaluate, and analyze
the EUE of the EAF.

2. This paper will establish a data preprocessing workflow, utilizing auto encoders (AEs)
to detect and remove abnormal data to ensure data quality and accuracy and using
correlation analysis to determine important data features.

3. We will explore the use of the AR algorithm for optimizing the control of the use of
energy in the EAF steelmaking process, utilizing knowledge of the principles of the
steelmaking process to interpret the rules, verify the feasibility and practicality of the
rules, and guide the actual steelmaking process in the EAF.

4. This paper will provide the methods and means of reducing energy consumption and
enhancing the EUE in the EAF steelmaking process, achieving energy coordination
and optimization in the steelmaking process, responding to the call for green smelting
in the iron and steel industry, and taking on the important responsibility of energy
saving and emission reduction.

2. Mathematical Modeling
2.1. Description of the EAF Steelmaking Process

The research subject of this paper is a 90t EAF at Hengyang Steel Company (Hengyang,
China). The data sample period is from September 2022 to September 2023, with a total
of 9807 groups. This EAF has a charging capacity of 120t and uses HM and scrap as the
metal charge for smelting. The EAF is equipped with three-phase AC electrodes and has a
good cooling water system, blowing system, and charging system. The factory is equipped
with comprehensive automation equipment, which can collect real-time smelting data,
providing hardware conditions for developing an energy model for the EAF steelmaking
process. Before the smelting process begins, the HM produced by the blast furnace is
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transported to the HM ladle station by train, while the purchased scrap is transported to the
batching station by truck. At these stations, the HM and scrap are allocated, and various
operations such as temperature measurements and weighing are conducted. Finally, the
HM and scrap are poured into the EAF using cranes to start the smelting process.

The steelmaking process in an EAF is a physicochemical reaction process that occurs
under high-temperature conditions. To establish an energy model for EAF steelmaking, it
is necessary to consider the influence of the energy balance and heat balance relationships
inside the furnace. The variation of the energy input and output within the furnace needs
to be studied from a thermodynamic perspective. In the research object of this paper,
the steelmaking process involves adding HM and scrap. At the same time, the furnace
is supplied with electricity, oxygen, carbon powder, and natural gas as energy inputs to
ensure the complete melting of the scrap. In this steelmaking mode, the main forms of
energy are electrical energy, the physical heat of the HM, the chemical heat of the elements
in the metal charge, and the exothermic reactions from the high-temperature multiphase
chemical reactions during the EAF steelmaking process. During the steelmaking process,
the HM and scrap are transformed into molten steel, and there are losses due to oxidation
of the elements, slag loss, splashing loss, dust loss, and gas loss. Correspondingly, the
energy is transferred into various forms, such as the physical heat of the molten steel, the
chemical heat of the molten steel, the physical heat of the slag, the physical heat of the
gas, the physical heat of the dust, and the physical heat of the splashed metal, as well
as the energy losses in the EAF steelmaking process. Figure 1 shows the energy balance
relationships in the steelmaking process of the EAF.
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Figure 1. Energy balance diagram of EAF steelmaking process.

2.2. Energy Utilization Efficiency of the EAF Steelmaking Process

The smelting process of the EAF involves multiple types of energy and complex flow
directions, such as electrical energy, chemical energy, thermal energy, etc. These energies
are difficult to measure directly and need to be calculated indirectly through the material
and energy balances within the furnace. The specific calculation formula is as follows:
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(1) Calculation of Energy Input

(1) Physical heat of the HM: The HM has a high temperature, approximately 1300 ◦C,
and contains a significant amount of physical heat, which is the main energy source for
steelmaking in an EAF, which is illustrated as Equation (1).

QPhysical
Input = MH.M ×

[
cH.M

s

(
TH.M

mp − 25
)
+ HH.M

s−l + cH.M
l

(
TH.M − TH.M

mp

)]
(1)

where MH.M is the weight of the HM; cH.M
s is specific heat of the pig iron; cH.M

l is specific
heat of the H.M; HH.M

s−l is the latent heat of the H.M; TH.M
mp is the H.M melting point; and

TH.M is the H.M temperature.
(2) During the smelting process in the EAF, the elements in the metal charge and alloy

undergo oxidation reactions, generating chemical heat. Furthermore, carbon powder and
natural gas is commonly injected to provide additional energy for the steelmaking in the
EAF, which is illustrated as Equations (2)–(10). The oxidation reaction of natural gas is
shown in Equation (7).

QChemical
Input = QC-CO + QC-CO2 + QSi-SiO2 + QMn-MnO + QP-P2O5 + QS-SO2

= MC-CO × ∆HC-CO + MC-CO2 × ∆HC-CO2 + MSi-SiO2 × ∆HSi-SiO2

+MMn-MnO × ∆HMn-MnO + MP-P2O5 × ∆HP-P2O5 + MS-SO2 × ∆HS-SO2

(2)

QOxide−Fe
Input = QFe-FeO + QFe-Fe2O3 = MFe-FeO × ∆HFe-FeO + MFe-Fe2O3 × ∆HFe-Fe2O3 (3)

QHM−Slag
Input = MHM-Slag ×

[
cHM-Slag

s

(
tHM-Slag
mp − 25

)
+ HHM-Slag

s−l + cHM-Slag
l

(
tHM-Slag − tHM-Slag

mp

)]
(4)

QOxide−Dust
Input = QDust-Fe-FeO + QDust-Fe-Fe2O3 = MDust-Fe-FeO × ∆HFe-FeO + MDust-Fe-Fe2O3 × ∆HFe-Fe2O3 (5)

QCarbon
Input = MCarbon-C-CO × ∆HC-CO + MCarbon-C-CO2 × ∆HC-CO2 (6)

CH4 + 2O2= CO2+2H2O (7)

QNG
Input = MNG-CH4-CO2 × ∆HCH4-CO2 (8)

QElectric
Input = PElectric × 3600 (9)

QInput = QChemical
Input + QOxide−Fe

Input + QHM−Slag
Input + QOxide−Dust

Input + QCarbon
Input + QNG

Input + QElectric
Input (10)

where QChemical
Input is the chemical heat of the oxidation reaction of the C, Si, Mn, P, and S

elements, that is, the chemical heat of the initial state energy input; QOxide−Fe
Input is the chemical

heat of the oxidation of iron; QHM−Slag
Input is the physical heat of the HM slag; QOxide−Dust

Input is

the chemical heat released by the oxidation of the iron in the dust; QCarbon
Input is the chemical

heat of the carbon reaction; QNG
Input is the chemical heat of the natural gas reaction; QElectric

Input
is the electric energy; PElectric is the electricity consumption, kWh; 3600 is the conversion
coefficient between kWh and kJ; QInput is the energy input; QC-CO is the chemical heat
released by the conversion of C to CO in the melting; MC-CO is the mass of the C element
converted to CO; ∆HC-CO is the enthalpy of the C to CO reaction; MNG-CH4-CO2 is the mass
of the CH4 converted to CO2 in natural gas; and ∆HCH4-CO2 is the enthalpy of the CH4 to
CO2 reaction. The other variables are defined in the same way as carbon.

(2) Calculation of Energy Output

In the steelmaking process of the EAF, the physical heat of the molten steel is the
primary form of energy output. Additionally, due to the high temperature of the molten
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steel, some materials are generated, carrying away a portion of the heat from the furnace.
This portion of the energy output is calculated by Equations (11)–(19).

QPhysical
Output = MSteel ×

[
cSteel

s

(
tSteel
mp − 25

)
+ HSteel

s−l + cSteel
l

(
tSteel − tSteel

mp

)]
(11)

QChemical
output = QC-CO + QC-CO2 + QSi-SiO2 + QMn-MnO + QP-P2O5 + QS-SO2

= MC-CO × ∆HC-CO + MC-CO2 × ∆HC-CO2 + MSi-SiO2 × ∆HSi-SiO2

+MMn-MnO × ∆HMn-MnO + MP-P2O5 × ∆HP-P2O5 + MS-SO2 × ∆HS-SO2

(12)

QSlag−In
Output = MSlag-In ×

[
cSlag-In

s

(
tSlag-In
mp − 25

)
+ HSlag-In

s−l + cSlag-In
l

(
tSlag-In − tSlag-In

mp

)]
(13)

QSlag−Out
Output = MSlag-Out ×

[
cSlag-Out

s

(
tSlag-Out
mp − 25

)
+ HSlag-Out

s−l + cSlag-Out
l

(
tSlag-Out − tSlag-Out

mp

)]
(14)

QSlag−Fe
Output = MSlag-Fe ×

[
cSlag-Fe

s

(
tSlag-Fe
mp − 25

)
+ HSlag-Fe

s-l + cSlag-Fe
l

(
tSlag-Fe − tSlag-Fe

mp

)]
(15)

QSplash
Output = MSplash ×

[
cSplash

s

(
tSplash
mp − 25

)
+ HSplash

s−l + cSplash
l

(
tSplash − tSplash

mp

)]
(16)

QDust
Output = MDust ×

[
cDust

s

(
tDust − 25

)
+ HDust

s−l

]
(17)

QGas
Output = MGas × cGas

g

(
tGas − 25

)
(18)

QLoss
Output = QInput − QPhysical

Output − QChemical
output − QSlag−In

Output − QSlag−Out
Output − QSlag−Fe

Output

−QSplash
Output − QDust

Output − QGas
Output

(19)

where QPhysical
Output is the physical heat of the molten steel; MSteel is the weight of the molten

steel; cSteel
s is the specific heat of the solid steel; cSteel

l is the specific heat of the molten steel;
HSteel

s−l is the latent heat of the steel; tSteel
mp is the steel melting point; tSteel is the molten steel

temperature; QChemical
output is the chemical heat of the energy output; QSlag−In

Output is the physical

heat of the slag left in the ladle; QSlag−Out
Output is the physical heat of the slag flowing from the

furnace door; QGas
Output is the physical heat of the gas; QDust

Output is the physical heat of the dust;

QSlag−Fe
Output is the physical heat of the iron bead; QSplash

Output is the physical heat of the splashing;

and QLoss
Output is heat loss. Other variables are defined in the same way as steel.

In the type of material output, the mass of dust, gas, splashing and so on can be
obtained by the proportion. The total mass of the final slag is obtained by calculating the
mass sum of all other substances except iron oxides in the final slag and the corresponding
proportion in the mass of the final slag. The total mass of the final slag can be calculated as
Equations (20)–(22).

MSlag =
MOther

Slag

ηOther
Slag

=
MOther

Slag(
1−ηFeO

Slag − ηFe2O3
Slag )

(20)

MOther
Slag = MCaO

Slag + MSiO2
Slag + · · · · · ·+ MCaF2

Slag (21)

MCaO
Slag = MCaO

Auxiliary→Slag + MCaO
Oxide→Slag (22)

where MSlag is the quality of the final slag; MOther
Slag is the mass sum of all other substances

in the final slag except iron oxide; ηOther
Slag is the proportion of all other substances except

iron oxide in the final slag; ηFeO
Slag is the proportion of FeO in the final slag; ηFe2O3

Slag is the

proportion of Fe2O3 in the final slag; MCaO
Slag is the mass of various oxides in the final slag,

including the formation of elemental oxidation and the introduction of auxiliary materials;
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MCaO
Auxiliary→Slag is the mass of CaO in the lime and other auxiliary materials into the slag;

and MCaO
Oxide→Slag is the mass of CaO generated by the oxidation reaction into the slag.

Lime is taken as an example to calculate the sum of the compound mass in the slag
brought by lime, which is illustrated as Equations (23)–(25).

MCaO
Lime→Slag = MLime × ηCaO

Lime − MLime × ηS
Lime·

56
32

(23)

MMgO
Lime→Slag = MLime × η

MgO
Lime (24)

MLime→Slag = MCaO
Lime→Slag + MMgO

Lime→Slag + · · · · · · (25)

where MCaO
Lime→Slag is the mass of CaO in the lime added into the slag; MLime is the mass of

the added lime; 56
32 represents the conversion coefficient of S to CaS; MMgO

Lime→Slag is the mass

of MgO in the lime added into the slag; and ηCaO
Lime is the proportion of CaO in the lime. The

other symbols have the same meaning as above.
To evaluate the energy utilization situation in the EAF steelmaking process, the EUE

of the EAF is defined as the ratio of the physical heat of the molten steel to the total energy
input of the EAF, which is illustrated as Equation (26).

ηEAF =
(

QEAF
Steel/QEAF

Input

)
× 100% (26)

where ηEAF is the EUE; QEAF
Steel is the molten steel physical heat; and QEAF

Input is the total
energy input.

3. Association Rule Methodology

The tool used for data analysis in this article is Python 3.10, and the compiler uses
PyCharm community. As a high-level programming language, Python has a wide range of
applications, including data analysis, artificial intelligence, machine learning, and more. This
paper uses Python’s rich third-party libraries, such as NumPy, Pandas, Scikit-learn, aPriori,
etc., to bring about various data processing functions to achieve complex data processing.

Figure 2 shows the general research framework of this study, including the four
main steps, i.e., the EAF raw data preparation, data cleaning, data feature selection, and
association rules algorithm.
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3.1. Data Preparation

When an EAF is smelting, the energy produced by the arc discharge and the physical
heat of the HM heat the metal to the melting temperature. The metals are melted and mixed
while chemical reactions take place, providing chemical heat. The electrode position is
controlled to adjust the current intensity; the oxygen gun flow is controlled to adjust the
oxygen supply; the amount of carbon, natural gas and other auxiliary fuels, and lime is
controlled, in order to achieve the purpose of raising the temperature of the liquid steel; and
the content of harmful elements is controlled, before the metal melting process is completed.

The production data of the EAF steelmaking process mainly comes from the three-level
data information system and the programmable logic controller (PLC) production data.
C# programming language was used to develop a three-level data acquisition module,
and KEPServerEX 6 software was used as a third-party OPC server to build a PLC data
acquisition platform, which classified and archived the obtained data and stored them in a
specific table of the database.

Combined with the principle of the EAF steelmaking process, this study divides the
data of factors that influence the EUE into three categories: (1) metal charge data (2) process
feeding data, and (3) steelmaking rhythm data. The metal charge data and process feeding
data directly reflect the energy supply situation in the smelting process of the EAF, while
the steelmaking rhythm data reflects the rhythm of the steelmaking process. The input
of matter and energy at different stages directly affects variations in the condition of the
furnace and the temperature. The approach of dividing the smelting process into stages
helps analyze the impact of the electrical energy and oxygen inputs at different stages on
the EUE. The smelting rhythm can be monitored through real-time production data, such
as the stage oxygen consumption, stage power consumption, lime addition points at each
stage, and other parameters in the steelmaking process.

According to the average smelting cycle of the EAF, the steelmaking process is divided
into four stages. In each stage, the electrical energy and oxygen inputs provide the energy
required for the melting and heating of the metal charge. In the first stage, the electrodes
supply power to provide energy to the furnace. Oxygen is injected into the molten bath
through the oxygen lances, causing oxidation reactions to occur in the furnace. The scrap
and other metal materials gradually melt. The second and third stages are the active
periods of the oxidation reactions. A continuous electrical energy is supplied, and oxygen
reacts vigorously with elements such as C, Si, Mn, and P in the molten bath. At the same
time, high-speed oxygen jets enhance the mixing of the molten bath, accelerating the mass
transfer within the bath. The scrap melts rapidly. Lime and other auxiliary materials
are added into the molten bath as slagging agents to remove the harmful elements from
the molten bath. In the fourth stage, all the scrap is dissolved, and the smelting process
transitions to the flat bath smelting. During this process, the slag is discharged through
the furnace door, which absorbs the oxidized products of Si, Mn, P, and other elements
from the molten bath. Afterward, the operators promptly increase the temperature and
adjust the composition of the molten steel. Finally, when the temperature and composition
of the molten steel meet the requirements, the smelting process is stopped, and the steel is
tapped out. Furthermore, lime is used as a flux for the removal of harmful elements such
as P and S in the furnace. Lime melting and chemical reactions absorb or release energy,
affecting the furnace temperature and the amount of slag tapped from the furnace door,
which takes away more heat and impacts the EUE. The above data can be collected by the
data acquisition system, and the operating status of the equipment and the cumulative
consumption of each stage can be clearly understood.

Based on the analysis above, this study divided the power supply and oxygen supply
in the smelting process into four stages. The electrical consumption and oxygen con-
sumption in each stage can be calculated by measuring within an 8 min time interval. By
analyzing the average smelting time in this paper, 0~8 min is the first stage, 8~16 is the
second stage, and 16~24 is the third stage. From 24 min to the end of the smelting, the
smelting time was divided into the fourth stage, and the cumulative material consumption
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data of each stage were counted as the smelting rhythm data, to explore the influence of
the energy input at each stage on the energy utilization efficiency. The timing of the lime
addition can be calculated by measuring the time intervals between the three lime additions
and the start of the smelting process. The influencing factors related to the EUE are shown
in Table 1.

Table 1. Data information of influencing factors of EUE.

NO Variable Class Variable Unit

1 Metal charge data Hot metal (HM) weight t
2 Metal charge data Scrap weight t
3 Metal charge data HM ratio t/t
4 Metal charge data Carbon content in HM %
5 Metal charge data Silicon content in HM %
6 Metal charge data Manganese content in HM %
7 Metal charge data Phosphorus content in HM %
8 Metal charge data Sulfur content in HM %
9 Metal charge data HM temperature °C
10 Process feeding data Power consumption kWh
11 Process feeding data Furnace door oxygen consumption m3

12 Process feeding data Furnace wall oxygen consumption m3

13 Process feeding data Total oxygen consumption m3

14 Process feeding data Natural gas consumption m3

15 Process feeding data Carbon powder consumption kg
16 Process feeding data Lime weight kg
17 Steelmaking rhythm data Smelting cycle min
18 Steelmaking rhythm data Power supply time min
19 Steelmaking rhythm data Power consumption in first stage kWh
20 Steelmaking rhythm data Power consumption in second stage kWh
21 Steelmaking rhythm data Power consumption in third stage kWh
22 Steelmaking rhythm data Power consumption in fourth stage kWh
23 Steelmaking rhythm data Furnace wall oxygen consumption in first stage m3

24 Steelmaking rhythm data Furnace wall oxygen consumption in second stage m3

25 Steelmaking rhythm data Furnace wall oxygen consumption in third stage m3

26 Steelmaking rhythm data Furnace wall oxygen consumption in fourth stage m3

27 Steelmaking rhythm data Time interval for the first lime addition s
28 Steelmaking rhythm data Time interval for the second lime addition s
29 Steelmaking rhythm data Time interval for the third lime addition s
30 Output variable Energy utilization efficiency (EUE) %

3.2. Data Cleaning

Due to the harsh conditions of the steelmaking process, there are phenomena such as
data fluctuations, data gaps, and data anomalies in the production data obtained through
the PLC and data acquisition system [38,39]. These phenomena have a significant impact
on the evaluation indicators of the EUE. Therefore, before conducting an evaluation and
analysis of the EUE, it is necessary to detect and clean the raw data, eliminate abnormal
data, and avoid the impact caused by erroneous data. In this paper, the methods of data pre-
screening and AE cleaning were used to remove missing data, abrupt data, data deviating
from the normal range, and data with a large reconstruction error.

Unsupervised learning means that in the training stage, the training dataset of the
model only contains input features, without corresponding output tags. Auto-Encoder
(AE) [40,41] is an unsupervised neural network that can extract features to reconstruct data.
Its basic structure consists of an encoder and decoder. The encoder extracts the latent code
of the input data X, while the decoder reconstructs the inputs based on the latent code as
consistent as possible with the inputs.

Using an AE for the data cleaning, an autoencoder model must first be built, that is, a
neural network structure including an encoder and decoder must be defined, the number of
hidden layers and nodes must be determined, and the activation function and loss function



Metals 2024, 14, 458 10 of 23

of the autoencoder must be defined. Secondly, the dataset must be standardized; the data
scaled to a given range; the number of complete iterative training sets determined, along
with the number of samples for each training; the proportion of training sets delimited;
and the training dataset used to train the autoencoder model, constantly optimizing the
neural network structure through hyperparameter optimization, monitoring the training
time and convergence of loss functions, etc. To ensure the effectiveness of the training, the
autoencoder can learn effective representations of the data and use these representations
to reconstruct the input data. Finally, the trained autoencoder is used to reconstruct the
data of the test set, and the difference between the reconstructed data and the original
data is calculated. Samples with large reconstruction errors can be marked as abnormal
data, and the abnormal range can be delimited by setting thresholds. After identifying
abnormal data, the data are screened, and the data points with large reconstruction errors
are regarded as abnormal and eliminated.

The encoder provides a low-dimensional representation of the extracted features, that
is, the latent variable Z. The decoder decodes Z and obtains the reconstructed representa-
tion of the data AE(X) as in Equations (27) and (28).

Z = Ec(X) = σ(aEcX + bEc) (27)

AE(X) = Dec(Z) = σ(aDecZ + bDec) (28)

where σ() is a nonlinear activation function; and aEc, bEc, aDec, and bDec represent the
weights and biases of the encoder and decoder, respectively.

The training objective of the AE is often set to minimize the input data reconstruction
error ReAE(X), which is the difference between AE(X) and X as in Equation (29).

minAE{ReAE(X)} = minAE∥AE(X)− X∥2 = minAE

√
∑n

i=0 (AE(Xi)− Xi)
2 (29)

where ∥AE(X)− X∥2 represents the L2 norm. The L2 norm can prevent overfitting and
improve the generalization ability of the model.

Theoretically, the reconstructed output of AE(X) should be identical to the input data
X. However, for abnormal data, an AE trained with normal data will suppress abnormal
information to a certain extent in the coding process. Consequently, the characteristics
of the abnormal data cannot be captured well, resulting in a large difference between
the reconstructed output of the abnormal data and the original input. In this paper, the
reconstruction error (Re) is used for data cleaning. Under normal conditions, Re remains
within the threshold range, and when the change of Re crosses the threshold and remains
above the threshold, it is determined that there is an anomaly in the dataset. Through
the established AE model, the Re of the dataset is calculated. It is used as the detection
standard of abnormal data.

3.3. Data Feature Selection

In the EAF steelmaking process, not all variables are closely related to the EUE, and
information redundancy may also have adverse effects on the model. High data dimensions
can also increase the computational load. Therefore, it is essential to perform feature
selection on the original data. In this study, feature selection begins with exploring the
relationships between input variables and between the input and target output variables.
Two analytical methods, the Pearson correlation coefficient and the Shapley additive
explanations (SHAP), are used to rank the importance of the input variables and analyze
the influence of each factor on the EUE.

The Pearson correlation coefficient measures the linear relationship between variables.
If the coefficient is 0, there is no linear correlation between x and y. The closer the coefficient
is to 0, the weaker the correlation, and the closer the absolute value is to 1 or −1, the
stronger the correlation. In a heat map, a darker color indicates a larger influence of the
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factors on the EUE evaluation indicator. When controlling the EUE, higher requirements
are needed for regulating these influential factors.

In this study, an Extreme gradient boosting (XGBoost) [42,43] model is also established
and trained to complete the feature selection [44]. XGBoost constructs multiple decision
tree models through iterative iterations to continuously optimize the prediction objective.
During the construction of each tree, the model selects suitable features and fits the target
variable based on these features. The model records the number of times each feature is
selected as a splitting feature and the prediction gain brought by each feature split. By
accumulating these statistics, the importance score of each feature can be calculated. The
results are displayed in the form of a bar chart, forming a feature importance plot. The
height of the bars represents the importance of the features, where a higher height indicates
a greater contribution of that feature to the model prediction.

3.4. Association Rules Algorithm

The ARM aims to discover hidden associations among frequently occurring data
items in a dataset. It analyzes a large volume of transaction data or sample datasets to
determine the associations between itemsets, helping to understand the correlation patterns
between the data and to determine reasonable parameter ranges. ARs are expressed in
the form of X -> Y, where X and Y are disjoint subsets of data in the dataset, describing
the occurrence of Y based on X. In this study, X represents the relevant energy features
in the EAF steelmaking process and Y represents the EUE of the EAF, serving as the
antecedent and consequent of the AR, respectively. The two main processes of the ARM
are discovering frequent itemsets and generating the AR. Figure 3 shows the ARM flow
diagram. The ARM uses support, confidence, and lift as the selection indicators. Support
indicates the frequency with which an itemset appears in the entire dataset. Confidence
is the conditional probability and can measure the accuracy of the AR. Lift measures the
relevance of the AR and evaluates whether itemsets X and Y are positively or negatively
correlated. The formulas are shown below. Additionally, the results obtained from the
ARM need to satisfy a minimum support threshold (minsup) and a minimum confidence
threshold (mincon). The formula for calculating the support, confidence and lift is described
in Equations (30)–(32).

support(X → Y) = P(XY) =
number(XY)

num(AllSamples)
(30)

con f idence(X → Y) = P(Y|X) =
support(X → Y)

support(X)
(31)

li f t(X → Y) =
con f idence(X → Y)

support(Y)
(32)

where support(X → Y) represents the probability that the X termset and the Y termset will
occur simultaneously and con f idence(X → Y) represents the conditional probability of Y
occurring at the same time that X occurs.

The AR obtained cannot be used directly. Post-processing is required to extract usable
rules. This includes rule grouping, rule comparison, and expert analysis. Rule grouping
involves grouping the ARs that have the same antecedents and similar consequents. Rule
comparison is performed to extract rules that best reflect the EUE smelting patterns within
each group, based on confidence. The compared rules are further analyzed, combined with
the principles of the steelmaking process and the knowledge of steelmaking experts, to
filter and interpret the rules.
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4. Results and Discussions
4.1. Energy Model of the EAF Steelmaking Process

The energy model V1.0 development tool for the EAF steelmaking process adopts
Microsoft Visual Studio 2013 and chooses C# as the programming language. The database
management system selected is the Microsoft SQL Server 2012 database, facilitating op-
erations such as retrieval, addition, modification, analysis, and integration for users. In
this model, the energy input and output are calculated as units of tons of steel, based on
the collected material data information and the actual steel production of the EAF. The
calculated results are displayed on the interface. After the smelting is completed, the
model automatically calculates the EUE with the observations of the energy flow and the
utilization by on-site operators. The statistical interface of the energy data is shown in
Figure 4. The energy composition and flow of the furnace number ‘20306983’ has an HM
ratio of 0.48 and an HM temperature of 1333 ◦C, as shown in Figure 5.
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4.2. Node Optimization of the AE Data Cleaning

To ensure that the data are within the same scale range, the original data need to be
normalized before data cleaning. The Min–Max method is used to scale the input features
to the range of [0, 1]. A Multi-Layer Perceptron (MLP) is used as the AE model with one
hidden layer. To seek the best model performance, the number of nodes in the hidden layer
is set as a hyperparameter to be optimized, with a constraint that the number of nodes
should be between 6 and 19, with a step size of 1. A grid search method is used to search for
different combinations of the number of nodes in the hidden layer. To accurately evaluate
the cleaning effect of the different numbers of hidden layer nodes in the AE model, the best
hyperparameter configuration is selected through a 5-fold cross-validation. The negative
mean square error (NMSE) is used as the performance metric to evaluate the machine
learning models in this study. The NMSE can be obtained as in Equation (33). The results
of the 5-fold cross-validation are shown in Table 2.

NMSE = − 1
n

n

∑
i=1

(yi − ŷi)
2 (33)

Table 2. AE cleaning 5-fold cross-validation results.

Node Split0 Split1 Split2 Split3 Split4 Mean Std Rank

18 −0.0059 −0.0054 −0.0042 −0.0052 −0.0050 −0.0051 0.0005 1
19 −0.0051 −0.0052 −0.0052 −0.0072 −0.0056 −0.0057 0.0008 2
13 −0.0082 −0.0067 −0.0052 −0.0062 −0.0059 −0.0064 0.0010 3
16 −0.0078 −0.0075 −0.0062 −0.0066 −0.0054 −0.0067 0.0009 4
17 −0.0087 −0.0076 −0.0076 −0.0083 −0.0079 −0.0080 0.0004 5

In the table, the “Node” column represents the number of nodes in the hidden layer.
“Spliti” denotes the i-th cross-validation result, with i ranging from 0 to 4. “Mean” indicates
the average test score, which is higher for a better model performance, considering that it
represents the negative mean square error. “Std” represents the standard deviation of the
test scores, indicating the degree of variation in the model performance across different
data folds. A higher value suggests greater fluctuations on different data partitions. “Rank”
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refers to the ranking of the test scores. Based on the table above, it can be concluded that
the model performs best when the number of nodes in the hidden layer is 18.

The AE model is built through the best hyperparameters and is trained and recon-
structed on the entire dataset. The reconstructed data are compared with the original data,
the difference between the two is calculated, and the threshold is set as 3.0. If the gap
between the reconstructed data and the original data exceeds the threshold, the sample is
judged to be an abnormal sample, and the data marked as an abnormal sample is deleted.
The data cleaning process is complete.

4.3. Importance Feature Selection of EUE

The Pearson correlation analysis was conducted to assess the relationship between
various influencing factors and EUE evaluation indicators. It quantitatively describes the
direction and strength of the linear relationship between two variables. The ρX,Y can be
obtained as in Equation (34). Figure 6 shows the correlation plots for all the input and
output variables based on the Pearson coefficient.

ρX,Y =
cov(X, Y)

σXσY
=

E[(X − EX)(Y − EY)]
σXσY

=
E(XY)− E(X)E(Y)√

E
(

X2
)
− E2(X)

√
E
(

Y2
)
− E2(Y)

(34)

where cov represents the covariance and σ represents the standard deviation. If X and Y
are independent, then ρX,Y = 0. −1 ≤ ρX,Y ≤ 1 has a negative correlation when less than 0,
a positive correlation when greater than 0, and the greater the absolute value, the stronger
the linear correlation.

It can be observed that there is a strong linear relationship among some input variables,
such as the HM weight, scrap weight, and HM ratio. These variables exhibit significant
redundancy in the modeling process, and it is advisable to avoid using all three of them for
modeling. However, the preliminary results show weak linear correlations between the
29 input variables and the output variable, because the chemical reactions in steelmaking
are very complex, there are many factors that affect the EUE, and there may be nonlinear
relationships between the factors. By comparing the Pearson index, we can note that the
HM ratio, HM weight, scrap weight, power consumption in the second stage, carbon
content in the HM, manganese in the HM, power consumption in the fourth stage, furnace
wall oxygen consumption in the second stage, power consumption, phosphorus content in
the HM, furnace wall oxygen consumption, time interval for the first lime addition, sulfur
content in the HM, power consumption in the first stage, HM temperature, total oxygen
consumption, and furnace wall oxygen consumption in the first stage have relatively
significant linear associations with the EUE evaluation indicators. The HM ratio and HM
weight are the two factors with the highest correlation to the EUE evaluation indicators.
The HM weight shows a negative correlation, suggesting that the physical heat brought
by the HM is one of the main sources of energy during the steelmaking process in the
EAF. It affects the progress of chemical reactions and the amount of the power supply.
A higher HM weight or temperature facilitates the progress of reactions but leads to a
localized oxidation and the loss of iron. The scrap weight shows a positive correlation
with the EUE evaluation indicators, indicating that when the scrap weight is larger, the
energy in the EAF is mainly provided by electricity, resulting in less heat loss from splash,
dust, and gas, thus achieving a higher EUE. Power consumption at each stage reflects the
supply of electrical energy during different stages of the smelting process. Ensuring the
adequate supply of electrical energy within a certain smelting time is an important measure
to guarantee a smooth operation and improve the EUE. The power consumption in the
second stage, power consumption in the fourth stage, and total power consumption are
the factors with a significant impact on the EUE. The power consumption in the fourth
stage shows a negative correlation and power consumption in the second stage shows
a positive correlation. Oxygen reacts with various elements in the smelting process, so
that the elements are oxidized and enter the slag or gas, which affects the EUE. It can be
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seen from Figure 6 that the furnace wall oxygen consumption in the second stage and
the furnace wall oxygen consumption show a positive correlation with the EUE, but the
correlation coefficients are relatively low. Additionally, strengthening the furnace wall
oxygen consumption in the fourth stage is not conducive to improving the EUE. The carbon
powder weight and natural gas consumption show negative correlations with the EUE.

Metals 2024, 14, 458 16 of 25 
 

 

 
Figure 6. Correlation heat map between variables. 

It can be observed that there is a strong linear relationship among some input varia-
bles, such as the HM weight, scrap weight, and HM ratio. These variables exhibit signifi-
cant redundancy in the modeling process, and it is advisable to avoid using all three of 
them for modeling. However, the preliminary results show weak linear correlations be-
tween the 29 input variables and the output variable, because the chemical reactions in 
steelmaking are very complex, there are many factors that affect the EUE, and there may 
be nonlinear relationships between the factors. By comparing the Pearson index, we can 
note that the HM ratio, HM weight, scrap weight, power consumption in the second stage, 
carbon content in the HM, manganese in the HM, power consumption in the fourth stage, 
furnace wall oxygen consumption in the second stage, power consumption, phosphorus 
content in the HM, furnace wall oxygen consumption, time interval for the first lime ad-
dition, sulfur content in the HM, power consumption in the first stage, HM temperature, 
total oxygen consumption, and furnace wall oxygen consumption in the first stage have 
relatively significant linear associations with the EUE evaluation indicators. The HM ratio 
and HM weight are the two factors with the highest correlation to the EUE evaluation 

Figure 6. Correlation heat map between variables.

Furthermore, this research also employs the Shapley values to evaluate the impor-
tance of 29 input variables by building an XGBoost algorithm model. The SHAP method
calculates the average Shapley values for these 29 input variables, and Figure 7 presents
the ranking result of their importance. The importance ranking of these variables roughly
aligns with the importance ranking in the heat map. The result is shown in Figure 7. After
comparison, 10 important data features are finally selected, including the HM ratio, HM
temperature, total power consumption, power consumption in the second stage, power
consumption in the fourth stage, furnace wall oxygen consumption, furnace wall oxygen
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consumption in the first stage, furnace wall oxygen consumption in the second stage,
carbon powder weight, and natural gas consumption.
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4.4. Association Rule Mining of the EUE in EAF Steelmaking

The HM ratio, HM temperature, and the operation of various stages such as the power
supply and oxygen supply collectively influence the EUE. In the actual steelmaking process,
the allocation of the HM is determined based on the dispatch schedule and factors such
as the ladle age. Therefore, different steelmaking strategies need to be developed based
on different HM ratios. In order to study the impact of process operations on the EUE, the
dataset was divided based on the HM ratio and HM temperature, excluding the influence
of the metal charge. Specifically, the low HM ratio range was A1 (<0.591), medium HM
ratio range was A2 (0.591~0.637), and high HM ratio range A3 was (>0.637). The HM
temperature feature data were divided into two levels based on the median, namely a low
HM temperature range, which is B1 (<1309), and a high HM temperature range, which is B2
(>1300). By combining the levels of the HM ratio and HM temperature, the data could be
divided into six groups of datasets as shown in Table 3 below. By establishing AR models
for each category, the parameter range of various influential factors conducive to the EUE
can be obtained.

Table 3. Dataset partitioning according to the HM ratio and HM temperature.

Smelting Mode Parameter Scale Sample Count

A1B1 HM ratio: (<0.591); HM temperature: (<1309) 518
A1B2 HM ratio: (<0.591); HM temperature: (>1309) 527
A2B1 HM ratio: (0.591~0.637); HM temperature: (<1309) 538
A2B2 HM ratio: (0.591~0.637); HM temperature: (>1309) 509
A3B1 HM ratio: (>0.637); HM temperature: (<1309) 531
A3B2 HM ratio: (>0.637); HM temperature: (>1309) 568

Taking the smelting mode A1B1 as an example, an ARM analysis was conducted.
The data in the EAF steelmaking process are all numerical data, which must undergo the
necessary processing to meet the requirements for the AR analysis. The main strategy is to
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divide the numerical data into several intervals and transform the numerical values into
discrete values according to the interval division. In this study, the k-means algorithm
was used to perform cluster discretization on the influential factors and EUE data. The
principle of the k-means algorithm is to determine similarity based on distance. The
distance measurement method used in this paper is Euclidean distance, which is one of the
most commonly used distance measurement methods in a k-means algorithm. The smaller
the distance between samples, the higher the similarity. By selecting the 10 important
features mentioned in Section 4.2, excluding the HM ratio and HM temperature, a cluster
analysis was performed. The number of clusters was set to four. The results of the data
clustering and discretization are shown in Figure 8.
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figure represent the clustering and discretization results of different features. Each symbol represents
power consumption, power consumption in the second stage, power consumption in the fourth stage,
furnace wall oxygen consumption, furnace wall oxygen consumption in the first stage, furnace wall
oxygen consumption in the second stage, carbon powder weight, natural gas consumption, and EUE.
The line of the different colors represents the labels of each cluster, and the numbers below represent
the boundaries of each grouping.

After performing the cluster analysis, the ARM was conducted for the A1B1 smelting
mode. In the input feature parameters, there were no restrictions on the antecedents of
the AR, but the consequents were limited to include the EUE. The relevant threshold
values in the algorithm were set as minsup = 0.03 and mincon = 0.2. A model of the ARM
was established to conduct rule mining, and the original ARs were obtained. The rule
post-processing was performed. To illustrate the mining results, the top five rules with the
highest confidence were selected, as shown in Table 4.
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Table 4. Association rules in A1B1 smelting mode.

Association Rules Confidence Support Lift

(‘EL2_4’, ‘OG2_4’, ‘NAG_2’) => (‘EUE_4’) 0.36 0.03 2.36
(‘EL2_4’, ‘EL4_1’, ‘CAB_2’) => (‘EUE_4’) 0.29 0.04 1.94

(‘ELW_1’, ‘EL2_3’) => (‘EUE_3’) 0.55 0.03 1.97
(‘ELW_1’, ‘EL4_1’, ‘OG1_3’) => (‘EUE_3’) 0.52 0.04 1.87
(‘ELW_1’, ‘EL4_1’, ‘CAB_2’) => (‘EUE_3’,) 0.49 0.03 1.74

The AR = (‘EL2_4’, ‘OG2_4’, ‘NAG_2’) => (‘EUE_4’,) is the optimal decision solution
for achieving the EUE in the A1B1 smelting mode. The confidence level is 0.36, which
means that when the itemset (‘EL2_4’, ‘OG2_4’, ‘NAG_2’) occurs, the consequent (‘EUE_4’,)
will also occur with a probability of 36%. The support level is 0.03, indicating that 3% of the
dataset contains both the itemset (‘EL2_4’, ‘OG2_4’, ‘NAG_2’) and the itemset (‘EUE_4’,).
The lift level is 2.36, indicating that the occurrence probability of the consequent (‘EUE_4’,)
is 2.36 times higher when the itemset (‘EL2_4’, ‘OG2_4’, ‘NAG_2’) occurs compared to
when there is no antecedent itemset, demonstrating a significant association between the
antecedent and the consequent. In addition, the table also provides alternative solutions,
such as the AR = (‘ELW_1’, ‘EL2_3’) => (‘EUE_3’). Although the attainable EUE level
is EUE_3, it has the highest confidence among all the rules, reaching 55%. This rule
demonstrates a strong level of trustworthiness and relevance, making it a relatively safe
smelting solution adopted in the steelmaking process.

The above-mentioned AR can be explained based on the principles of metallurgical
processes. “EL2” represents the power consumption in the second stage, where “EL2_4”
indicates a higher input of electricity during this stage. This is because the second stage is a
period of intense oxidation reactions, and increasing the power supply helps accelerate the
melting of scrap, promotes reactions, and speeds up the smelting process, thus enhancing
the EUE. Similarly, increasing the furnace wall oxygen consumption in the second stage of
the steelmaking process (represented by OG2_4) provides ample oxygen in the furnace,
accelerating the oxidation process of elements like C, Si, Mn, P, and S, aiding in impurity
removal, and improving the purity of the molten steel. “NAG” represents the natural
gas consumption, which serves as an additional energy source in the steelmaking process.
It provides energy for the melting pool, ensuring the high efficiency of the steelmaking
process. These explanations align with the fundamental principles of the steelmaking
process, indicating that the ARM results are consistent with the physical and chemical
characteristics of steelmaking processes. They can provide guidance and optimization
solutions for the smelting process.

An ARM analysis was performed on the data from the six smelting modes mentioned
above and the best control schemes for the EUE were summarized by the AR algorithm,
which is shown in Table 5.

Table 5. Association rule control scheme.

Mode Optimal Control Parameter Scale EUE Grade Confidence

A1B1 EL2 (4853, 7520) kWh, OG2 (1816, 1961) m3, NAG (156, 196) m3 EUE > 84% 36%
A1B2 EL4 (0, 583) kWh, OGW (4206, 4797) m3, NAG (177, 225) m3 EUE > 84% 38%
A2B1 ELW (0, 8339) kWh, EL4 (0, 819) m3 EUE > 82% 47%
A2B2 ELW (0, 7679) kWh EUE > 81% 32%
A3B1 OGW (4177, 4766) kWh, CAB (0, 91) kg, NAG (215, 251) m3 EUE > 80% 64%
A3B2 OGW (4732, 5670) m3, OG2 (1561, 1871) m3 EUE > 78% 48%

According to the results of the ARM, the model interface of the optimal energy match-
ing mode for EAF steelmaking is established. The interface of the EAF optimal energy
matching model based on the ARM is shown in Figure 9. The interface consists of basic
smelting information, material consumption information, the association rules mining
results, the optimal energy matching mode, and historical data statistics.
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In order to evaluate the effectiveness of the results of the ARM, this paper divides each
EUE into three levels, namely, low (EUE ranges from 0% to 75%), medium (EUE ranges
from 75% to 80%), and high (EUE ranges from 80% to 100%), and draws a stacked bar chart
of the EUE before and after the use of the ARM. Figure 10 shows the proportion of each
grade in the sample.
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As can be seen from the figure above, with the increase of the ratio and temperature
of the HM, the proportion of the EUE at a medium or high grade has a decreasing trend,
which is consistent with the actual steelmaking process. At the same time, in each smelting
mode, the smelting scheme obtained by the ARM has improved the proportion of the
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medium and high grades. In each smelting mode, the proportion of EUE above 75% is
92.7%, 94.3%, 78.8%, 79.8%, 50.5%, and 50.9%, which became 100%, 100%, 95.9%, 91.1%,
76.9%, and 77.5%, all of which had significant improvements. In the grade of a high EUE,
the improvement of the A2B1 smelting mode is the most obvious, from 24.7% to 53%. The
above results show that the smelting strategy obtained by the ARM has a great effect on
improving the EUE.

5. Conclusions

The EUE of EAF the steelmaking process is of great significance for energy conserva-
tion and emission reduction. Based on the mechanism of the EAF steelmaking process,
this paper conducts an energy balance analysis, establishes an energy model by collecting
production data, and is applied in the field. After detecting and proposing abnormal data,
the relevant technologies and algorithms are used to identify the degree of influence of
several factors affecting the EUE and to decide the optimal smelting scheme under different
smelting modes. This study points out the direction for the energy optimization of the EAF
steelmaking. The main conclusions are summarized as follows:

1. This paper analyzes the energy input and output of a 90t EAF at the Hengyang Steel
Company from September 2022 to September 2023, a total of 9807 sets of data samples,
and defines the calculation methods of each energy. An evaluation framework for the
EUE is constructed, with the ratio of the physical heat of the molten steel to the total
energy input as the evaluation parameter. Using the SQL2012 and VS2013 developed
energy model to analyze the energy balance and EUE of the EAF steelmaking in
multiple smelting modes, the model was applied in the field.

2. By using an unsupervised learning neural network model called AE, the 29 features
that affect the EUE and the data on the EUE itself are subjected to anomaly detection
and elimination for the purposes of the NMSE. A grid search method, 5-fold cross-
validation, and NMSE is used to seek the best model performance. The results show
that when the number of hidden layer nodes is 18, the effect of the AE model is best,
and the NMSE is −0.0051. It ensures the quality and accuracy of the data.

3. A correlation analysis and XGBoost model is performed on various factors to as-
sess their impact on the EUE. The following features are identified as important
data features: the HM ratio, HM temperature, total power consumption, power
consumption in second stage, power consumption in the fourth stage, furnace wall
oxygen consumption, furnace wall oxygen consumption in the first stage, furnace
wall oxygen consumption in the second stage, carbon powder weight, and natural
gas consumption. A data feature selection process simplifies the model structure.

4. According to the different proportions and temperatures of the HM combined with
the k-means clustering algorithm and AR algorithm, the optimization of the process
operation of the EUE in the EAF steelmaking process was studied to guide the EAF
steelmaking process. The results indicated that under the conditions of a low HM ratio
and low HM temperature, the EUE is best when the power consumption in the second
stage ranges between 4853 kWh and 7520 kWh, the oxygen consumption in the second
stage ranges between 1816 m3 and 1961 m3, and the natural gas consumption ranges
between 156 m3 and 196 m3. The probability that the EUE is greater than 84% is 36%.
Conversely, under the conditions of a high HM ratio and high HM temperature, the
EUE tends to decrease, and the EUE is best when the furnace wall oxygen consumption
ranges between 4732 m3 and 5670 m3, and the oxygen consumption in the second stage
ranges between 1561 m3 and 1871 m3. The probability that the EUE is greater than 78%
is 48%. The results showed that the proportion of more than 75% in different smelting
modes changed from 92.7%, 94.3%, 78.8%, 79.8%, 50.5%, and 50.9% to 100%, 100%,
95.9%, 91.1%, 76.9%, and 77.5%. In the high energy efficiency grade, the improvement
of the A2B1 smelting method is the most obvious, from 24.7% to 53%.

5. In this study, methods such as data cleaning, feature selection, clustering discretization,
and ARM were employed to obtain usable rules. However, further research is needed
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to improve the efficiency, accuracy, and applicability of the AR extraction. In the
future, AEs and principal component analysis (PCA) can be explored to improve the
data quality and the silhouette coefficient can be used to determine the number of
discretization intervals for each feature, allowing for greater flexibility in selecting the
optimal number of clusters. Considering the strong correlation between the power
supply data of the EAF and the EUE, future efforts will focus on optimizing the power
supply guidance for different smelting modes to further enhance the EUE.

6. The study of the optimal energy matching model can also be applied to different
types of EAF and refining furnaces in addition to sintering, pelletizing, blast furnace
ironmaking, and other upstream industries. By analyzing the material and energy of
the processes, machine learning and data mining can be used to optimize the energy
supply structure and improve the combustion efficiency and heat energy recovery
rate of blast furnaces and reduce fuel consumption and energy waste. Similarly,
this method can also be used as an evaluation index of energy saving measures
such as waste heat utilization to promote the development of waste energy recovery
technology and to realize the renewable utilization of waste heat.
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