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Abstract: In the Al-Fe binary system, the Al13Fe3 phase as well as the Al13Fe4 phase has similar
icosahedral building blocks like those appearing in quasicrystals. Therefore, it is of vital importance
to clarify the formation process of these two phases. Coexistence of the Al13Fe3 and Al13Fe4 phases
was discovered from the educts obtained with a nominal atomic ratio of Al/Fe of 9:2 by high-
pressure sintering for the first time. Firstly, single crystal X-ray diffraction (SXRD) combined with a
scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) measurement
capabilities were adopted to determine the detailed crystal structures of both phases, which were
sharply refined with regard to Al13Fe3 and Al13Fe4. Secondly, the orientation relationship between
Al13Fe3 and Al13Fe4 was directly deduced from the SXRD datasets and the coexistence structure
model was consequently constructed. Finally, seven pairs of parallel atomic planes and their unique
orientation relations were determined from the reconstructed reciprocal space precession images. In
addition, the real space structure model of the intergrowth crystal along with one kind of interfacial
atomic structure were constructed from the determined orientation relations between two phases.

Keywords: Al13Fe3; Al13Fe4; high-pressure sintering; single crystal; structural refinement; orientation
relationship

1. Introduction

Al and Fe are the two most abundant metallic elements in the earth’s crust. Due to
their extensive sources and low cost, they are the two most commonly used metals in
industry. Compared with other aluminum alloys, Fe forms a variety of Al-Fe intermetallic
compounds with Al, having relatively high strength and hardness and possessing a wide
range of applications [1–5]. Al-Fe alloy can not only partially replace titanium alloy in
the aerospace field [6–9] but also reduce the research and development costs in the au-
tomotive manufacturing process [10–13]. Many researchers have carried out numerous
exploration and research studies on refining alloy microstructure and improving intermetal-
lic compound content [14–21]. In addition, Al-Fe alloy has been widely studied due to its
unique structure, of which the quasicrystals of Al-Fe binary system were studied as early
as 1986 [22]. Many quasicrystal-related phases, including some approximate phases in
the Al-Fe system, have been discovered, such as the cubic phase AlFe [23,24], cubic phase
Al8Fe5 [25], orthorhombic phase Al5Fe2 [26], triclinic crystal system Al2Fe [27], monoclinic
crystal system Al13Fe4 [28], and trigonal crystal system Al13Fe3 [29].

As a typical quasicrystalline approximant phase, the crystal structure of Al13Fe4 has
been studied extensively [28,30–34]. It has also been found that the Al13Fe4 phase is an im-
portant intermedium phase between icosahedral and decagon quasicrystallines [35]. Early
X-ray diffraction patterns suggested that this compound has an orthorhombic lattice [36,37].
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Careful structural analysis showed a twinning feature of crystals, which resulted in an
orthorhombic pseudo-symmetry [38,39]. There have been various discussions about the
crystal structure of Al13Fe4. For example, Griger et al. determined the crystal structure of
Al13Fe4 by powder X-ray diffraction and concluded that the occupancy of the Al2 atom at
the 2m Wykoff site is 0.7 [40]. Grin et al. [28] determined the crystal structure of Al13Fe4
by the single-crystal X-ray diffraction method. The difference lies in that the occupancy of
the Al2 atom at the 2m Wykoff site is refined to 0.92. Subsequently, Popevic et al. [33] also
performed single-crystal structure determinations and found that there was no vacancy
defect in the crystal.

Moreover, the Al13Fe3 phase of the trigonal system is the quasicrystalline approximate
phase of the Al-Fe binary system. It was firstly observed with transmission electron mi-
croscopy by Chandrasekaran et al. in 1988 [41] and was believed to be a new rhombohedral
phase. Later, in 1992, Tsuchimo et al. [42] also found this phase when studying the iron-rich
phase in the Al-Fe system. They believed that the space group of this phase belonged to

R3c or R
-
3c but did not provide its exact crystal structure. In 2018, the fine crystal structure

of this phase was determined by our group for the first time by the single-crystal X-ray
diffraction method [29]. The cell parameters of this phase are refined to a = b = 14.5784(9),
c = 7.5020(5), α = β = 90◦, and γ = 120◦ with the R3c space group.

Previous research works mainly focused on charactering the existence of the Al13Fe4
phase as well as its thermodynamic and dynamical behaviors under different processing
conditions [43–48]. There are also a number of works mentioning the co-existence of
Al13Fe4 with a pure Al matrix or another phase like Al5Fe2 [49,50]. However, the orientation
relationship between Al13Fe4 and Al5Fe2 has only very recently been reported by Chatelier
et al. as far as we know using surface X-ray diffraction [51]. The orientation relationship
between Al2Fe and Al5Fe2 has been studied very recently by our group [52]. However, there
are no related works on the orientation relationship between Al13Fe3 and Al13Fe4, to the
best of our knowledge, possibly due to the Al13Fe3 phase not having been discovered until
2018 by our group [29]. Information on the orientation relationship between coexistence
phases can reveal the growth process of crystals and the arrangement of atoms at the
interface to a certain extent. Therefore, in the following, we will introduce the discovery of
the coexistence of Al13Fe3 and Al13Fe4. Firstly, sample preparation by the high-pressure
sintering method and the analysis of the SXRD datasets will be introduced. Secondly,
the solving and refinement process of the crystal structures of these two phases as well
as the acquisition of the orientation relationship of the two phases in the real space will
be illustrated. The parallel atomic planes present between the coexisting phases were
analyzed, and a preferential interface was constructed by referring to the reconstructed
precession images in reciprocal space.

2. Materials and Methods

The high-purity elements aluminum (Al, Aladdin Industrial Corporation, Shanghai,
China) and iron (Fe, Alfa Aesar, Tianjin, China) with indicated purities of 99.95% and
99.9%, respectively, were combined at a stoichiometric ratio of 9:2, weighing 2 g in total.
The mixture was thoroughly ground in an agate mortar. The resulting powders were then
placed in a cemented carbide grinding mold with a 5 mm diameter and compressed into a
tablet at approximately 4 MPa pressure for a duration of 3 min. A cylindrical block was
successfully formed without any deformations or cracks. Further information regarding
the high-pressure sintering process conducted using a six-anvil, high-temperature, high-
pressure apparatus can be found in a study by Liu and Fan (2018) [34]. The samples
underwent pressurization up to 6 GPa, were heated to 1573 K for 10 min, were subsequently
cooled to 1423 K, were maintained at that temperature for 30 min, and were finally rapidly
cooled to room temperature by deactivating the furnace power. A fragment of a singular
crystal measuring 0.10 × 0.06 × 0.06 mm3 was chosen and affixed to a glass fiber for the
purpose of conducting single-crystal X-ray diffraction analyses. The diffraction assessments
were performed using a four-circle single-crystal X-ray diffractometer (Bruker D8 Venture,
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Bruker AXS GmbH, Karlsruhe, Germany). To examine the morphology and chemical
composition, a scanning electron microscope (SEM, Hitachi S-3400N model, Hitachi, Tokyo,
Japan) equipped with energy dispersive X-ray spectroscopy (EDX) capabilities (EDAX Inc.,
Mahwah, NJ, USA) was employed, operating at a cathode voltage of 20 kV and a current of
80 mA (see Figure S1 and Table S1 in the Supplementary Materials).

The APEX3 program [53] was used to process all datasets from SXRD. Its capabilities
include indexing, integration, scaling, absorption correction [54], space group determina-
tion, structural solving, and refinement [55,56]. The Diamond program (Version 4.6.8) [57]
was utilized to draw the structural models, while the ToposPro package (Version 5.5.2.0) [58]
was used to analyze the building clusters of the studied phases.

3. Results
3.1. Single-Crystal XRD Patterns

Figure 1 shows the diffraction points in the reciprocal space of the entire sample,
which were obtained from 11 runs of SXRD measurements. As depicted in Figure 1a, these
diffraction points can be distinctly categorized into three distinct datasets. The gray and
yellow diffraction points represent the Al13Fe3 phase, the gray diffraction point corresponds
to the Al13Fe3-1 phase, and the yellow diffraction point corresponds to the Al13Fe3-2 phase.
The green diffraction points represent the Al13Fe4 phase. Figure 1b–d show the diffraction
points projection of any two datasets so that it can be more clearly seen that they belong
to different datasets. An individual analysis of the three datasets was conducted. The
SXRD analysis of the sample involved a total of 11 runs, resulting in the collection of
9913 diffraction points in reciprocal space when the criterion of I/σ(I) equaled 7 for phase
indexing. Within these diffraction points, 4572 were attributed to the Al13Fe3_1 phase, 1213
to the Al13Fe3_2 phase, and 2342 to the Al13Fe4 phase. The remaining 1786 diffraction
points were associated with anomalous phases, such as amorphous structures or very small
crystalline phases that could not be indexed to determine a unit cell.
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Figure 1. Diffraction spots of the entire sample in the reciprocal space. (a) Projection of three sets
of data in reciprocal space in a random direction; (b) projection of the Al13Fe3-1 phase and Al13Fe4

phase along the a* axis of the Al13Fe4 phase; (c) projection of the Al13Fe3-1 phase and Al13Fe3-2 phase
along the a* axis of the Al13Fe3-1 phase; (d) projection of the Al13Fe3-2 phase and Al13Fe4 phase
along the b* axis of the Al13Fe3-2 phase.
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Figures 2–4 depict the reciprocal lattice patterns and crystal structure diagram of the
Al13Fe3 and Al13Fe4 phases projected in different directions. The arrangement of diffraction
points in reciprocal space appears orderly for each phase. The first dataset (highlighted in
gray in Figure 1) corresponds to lattice parameters a = b = 14.61 Å, c = 7.70 Å, α = β = 90◦,
and γ = 120◦, consistent with those of the Al13Fe3 phase as depicted in Figure 2. The second
dataset (highlighted in green in Figure 1) is characterized by lattice parameters a = 15.51 Å,
b = 8.09 Å, c = 12.50 Å, α = γ = 90◦, and β = 107.76◦, aligning with the properties of the
Al13Fe4 phase as shown in Figure 3. The third dataset (highlighted in yellow in Figure 1) is
identified as being identical to the first dataset.
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3.2. Crystal Structure Refinement of Al13Fe3 Phase and Al13Fe4 Phase

The crystallographic information, data collection, and structure refinement details
for the Al13Fe3 and Al13Fe4 phases are outlined in Table 1. The crystallographic parame-
ters of both phases conform to the standards set by international crystallography for the
rationalization of crystal structures.

Table 1. Crystallographic and experimental data of Al13Fe3 and Al13Fe4.

Chemical Formula Al13Fe3 Al13Fe4

a, b, c/Å 14.5956(9), 14.5956(9), 7.6929(4) 15.498(4), 8.0814(17), 12.488(3)
α, β, γ/◦ 90, 90, 120 90, 107.790(8), 90
V/Å3 1419.27(19) 1489.2(6)
Z 1 24
Space group R3c C2/m
Crystal system Trigonal Monoclinic
Diffractometer Bruker D8 Venture Photon 100 COMS
Monochromator Graphite
Tmeas/K 300(2)
Radiation Mo-Kα, λ = 0.71073 (Å)
Scan mode φ and ω scan
Time per step/s 6
Absorption correction Multi-scan
F(000) 1482 1638
θ range/◦ 4.84~27.33 3.12~27.49
µ/mm−1 5.69 6.82
No. measured reflections 19200 3922
No. unique reflections 367 1423
No. observed reflections (I > 2σ(I)) 341 756
No. reflections used in refinement 367 1423
No. parameters used in refinement 28 128
Reflection range −18 ≤ h ≤ 18, −18 ≤ k ≤ 18, −9 ≤ l ≤ 9 −18 ≤ h ≤ 11, −9 ≤ k ≤ 9, −16 ≤ l ≤ 13
Rint 0.077 0.102
R(σ) 0.0152 0.178
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Table 1. Cont.

Chemical Formula Al13Fe3 Al13Fe4

Final R indices (Fobs > 4σ(Fobs)) R1 = 0.033, ωR2 = 0.0710 R1 = 0.080, ωR2 = 0.223
R indices (all data) R1 = 0.034, ωR2 = 0.0710 R1 = 0.169, ωR2 = 0.223
Goodness of fit 1.326 1.07

The maximum residual electron densities 0.52
(1.43 Å from Al3)

1.71
(0.94 Å from Al14)

The minimum residual electron densities −0.71
(0.72 Å from Al3)

−2.04
(0.89 Å from Al3)

Table 2 shows the equivalent isotropic displacement parameters (Ueq), fractional
atomic coordinates, and atomic occupancy (Occ.) of the Al13Fe3 phase. It is noteworthy
that all atoms in this structure are fully occupied. Comparing the current refined crystal
structure model with the Al13Fe3 phase identified in 2018 [29] reveals some differences: we
find that the Al3 atom is located at the 36f Wyckoff position in the present refined Al13Fe3
structure model rather than two 18b Wyckoff positions in the previous one, resulting in its

space group changing from R3c to R
-
3c.

Table 2. The equivalent isotropic displacement parameters (Å2), fractional atomic coordinates, and
atomic occupancy of the Al13Fe3 phase.

Label Site x y z Occ. Ueq

Fe1 18e 0.333333 0.49355 (6) 0.416667 1 0.0061 (2)

Al1 18e 0.35988
(13)

0.35988
(13) 0.250000 1 0.0110 (4)

Al2 6a 0.333333 0.666667 0.416667 1 0.0180 (8)

Al3 36f 0.48065
(11)

0.63616
(12)

0.24732
(18) 1 0.0188 (4)

Al4 18d 0.166667 0.333333 0.333333 1 0.0183 (5)

The Al13Fe3 phase’s building units were analyzed using the nanocluster method
within the Topospro software (Version 5.5.2.0). The structural model of Al13Fe3 can be
characterized by a single type of cluster, Al3(1)(1@12), which is an icosahedral cluster
with the Al3 atom positioned at the cluster’s center. In Figure 5a, the central atoms and
the isolated atoms (atoms in the purple circle, which refers to the single atom that the
structural model can contain to fill the space between the nanoclusters [59]) of the cluster
were depicted within the Al13Fe3 unit cell. The cluster assembly model of the Al13Fe3 unit
cell along the direction [001] is shown in Figure 5b. The clusters are connected in two ways:
collinear and coplanar. In Figure 6, the surroundings of Al4 and Fe1 atoms are depicted.
Al4 atoms are encircled by a total of 12 atoms: 4 Al1, 6 Al3, and 2 Fe1 atoms. On the other
hand, Fe1 atoms are surrounded by nine atoms: two Al1, one Al2, four Al3, and two Al4
atoms. The closest distance between Fe1 and Al4 atoms measures 2.4715 Å.

Table 3 shows the equivalent isotropic displacement parameters (Ueq), fractional
atomic coordinates, and atomic occupancy (Occ.) of the Al13Fe4 phase. All atoms in this
structure are fully occupied which is nearly identical to the structure model of Sugiyama
et al. reported in 2012 [60]. It should be noted that the ‘EADP AL2 AL3 AL6’ instruction
was used to eliminate the N.P.D. alerts for Al2 and Al6 atoms and the ADP alert for the Al3
atom that are caused by these atoms during the refinement process of the Al13Fe4 phase
(see the Al13Fe4 CIF file in the Supplementary Materials).
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Table 3. The equivalent isotropic displacement parameters (Å2), fractional atomic coordinates, and
atomic occupancy of the Al13Fe4 phase.

Label Site x y z Occ. Ueq

Fe1 4i 0.0855 (3) 0.000000 0.3823 (3) 1 0.0043 (9)
Fe2 4i 0.4019 (3) 0.000000 0.6228 (3) 1 0.0065 (9)
Fe3 4i 0.0908 (3) 0.000000 0.9885 (3) 1 0.0056 (10)
Fe4 4i 0.4028 (3) 0.000000 0.9863 (3) 1 0.0046 (9)
Fe5 8j 0.32011(18) 0.2933 (3) 0.27793(18) 1 0.0068 (7)
Al1 4i 0.0670 (6) 0.000000 0.1738 (6) 1 0.0113 (18)
Al2 4i 0.3213 (6) 0.000000 0.2812 (6) 1 0.0112 (11)
Al3 4i 0.2381 (6) 0.000000 0.5339 (6) 1 0.0112 (11)
Al4 4i 0.0734 (6) 0.000000 0.5801 (6) 1 0.0111 (18)
Al5 4i 0.2415 (6) 0.000000 0.9614 (7) 1 0.0104 (17)
Al6 4i 0.4786 (6) 0.000000 0.8297 (6) 1 0.0112 (11)
Al7 2d 0.500000 0.000000 0.500000 1 0.011 (2)
Al8 4i 0.3060 (6) 0.000000 0.7729 (6) 1 0.0109 (17)
Al9 4i 0.0862 (6) 0.000000 0.7888 (6) 1 0.0098 (18)
Al10 8j 0.1859 (4) 0.2172 (7) 0.1112 (4) 1 0.0096 (14)
Al11 8j 0.3673 (4) 0.2116 (7) 0.1101 (4) 1 0.0103 (13)
Al12 8j 0.1772 (4) 0.2211 (7) 0.3343 (4) 1 0.0118 (13)
Al13 8j 0.4920 (4) 0.2328 (6) 0.3296 (4) 1 0.0082 (13)
Al14 8j 0.3636 (4) 0.2198 (7) 0.4781 (4) 1 0.0108 (13)
Al15 4g 0.000000 0.2495 (9) 0.000000 1 0.0086 (19)
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We focused on the structural model of Al13Fe4. It was discovered that the struc-
ture of Al13Fe4 can be explained using two different cluster models: Al15(1)(1@12) and
Al7(2)(1@12@46). The Al15(1)(1@12) cluster is an 18-hedron cluster with Al15 atom as the
center, which can be seen in Figure 7c. The Al7 atom serves as the heart of the complicated
double-shell cluster referred to as Al7(2)(1@12@46). Twelve coordinated atoms (Al2, Al13,
Al14, and Fe2) make up the first shell, or inner shell, which is represented as an icosahedron
in Figure 7a. The centered Al7 and Al2, Al13, Al14, and Fe2 have atomic distances of
3.242 Å, 2.816 Å, 2.711 Å, and 2.468 Å, respectively. The outer shell consists of atoms that
are coordinated, with 46 atoms, including 4 Al1 atoms, 4 Al10 atoms, 4 Al11 atoms, 8 Al12
atoms, 6 Al3 atoms, 4 Al4 atoms, 2 Al6 atoms, 2 Al8 atoms, 4 Al9 atoms, 4 Fe1 atoms, and
4 Fe5 atoms as shown in Figure 7b. These two types of clusters are closely connected to
form the global crystal structure of the Al13Fe4 phase as shown in Figure 7d. Figure 8
illustrates the surroundings of the Al7 and Al15 atoms. Each Al7 atom is encompassed by
12 neighboring atoms, comprising 3 Al13, four Al14, 2 Al2, and 2 Fe2 atoms and 1 Al1 atom.
Similarly, each Al15 atom is surrounded by 12 neighboring atoms, which includes 2 Al1,
2 Al6, 2 Al10, 2 Al11, 2 Fe3, and 2 Fe4 atoms.
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There are two interesting phenomena: First, all of the atoms in the Al13Fe3 and Al13Fe4
phases are completely occupied, and there are no disordered defects. Second, through
topological analysis of the structures of Al13Fe3 and Al13Fe4, twisted icosahedrons were
found in both of these structures as building units. We deduce that it is the structural
similarity that governs the intergrowth between the two phases.

3.3. Structure Models of the Al13Fe3 and Al13Fe4 Intergrowth Phases in Real Space

The crystal structures of the Al13Fe3 and Al13Fe4 phases are provided in the section
above. The orientation matrix of these two phases in reciprocal space was used to construct
the real space orientation model, as described in this section. For the precise construction
approach of the structural models for the intergrowth Al13Fe3 phase and Al13Fe4 phase
in real space, please refer to Appendix A. First, the orientation matrix of three phases
in reciprocal space was determined in APEX3 software (v2018.1−0). Next, utilizing the
fundamental correspondence between reciprocal and real spaces, the orientation matrix of
the three phases in real space was obtained, and finally, the orientation model of three-phase
single-cell edges in real space was obtained. The cell edges of the Al13Fe3-1, Al13Fe3-2, and
Al13Fe4 phases are depicted in Figure 9a as black, purple, and blue frames, respectively.
Lastly, by adding atoms to the cell edges, the comprehensive orientated structural models
of the Al13Fe3-1, Al13Fe3-2, and Al13Fe4 phases in real space were generated, as displayed
in Figure 9b.
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Figure 9. The structural models in real space for the Al13Fe3 and Al13Fe4 phases are presented: the
orientation of cell edges (a) and the unit cell (b) (The saffron yellow atoms represent the Fe atoms and
the blue atoms represent the Al atoms).

3.4. Interfaces between Al13Fe3 Phase and Al13Fe4 Phases

As described in the preceding section, the oriented structural models of the Al13Fe3
and Al13Fe4 phases were acquired. Nevertheless, the arrangement of atoms within the
interfaces and the orientation of these interfaces remain ambiguous. To address these issues,
the precession images obtained from the SXRD datasets were investigated, as depicted in
Figures 10 and 11. All precession images were generated using a resolution of 0.85 Å and a
thickness of 0.02 Å−1.
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Figure 10. The precession images of intergrowth crystals are presented as follows: (a) Al13Fe3-1(0kl),
where the red and blue circles depict the crystal planes of the Al13Fe3-1 phase and Al13Fe4 phase,
respectively. (b,c) show the same phase, with circles representing (b) Al13Fe3-1(h0l) and (c) Al13Fe3-
1(hk0). Similarly, (d) Al13Fe4(0kl) is shown, where the red and blue circles depict the crystal planes
of the Al13Fe4 phase and Al13Fe3-1 phase, respectively. (e,f) show the same phase, with circles
representing (e) Al13Fe4(h0l) and (f) Al13Fe4(hk0).
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Figure 11. The precession images of intergrowth crystals are presented as follows: (a) Al13Fe3-2(0kl),
where the green and purple circles depict the crystal planes of the Al13Fe3-2 phase and Al13Fe4

phase, respectively. (b,c) show the same phase, with circles representing (b) Al13Fe3-2(h0l) and
(c) Al13Fe3-2(hk0). Similarly, (d) Al13Fe4(0kl) is shown, where the red and blue circles depict the
crystal planes of the Al13Fe4 phase and Al13Fe3-2 phase, respectively. (e,f) show the same phase, with
circles representing (e) Al13Fe4(h0l) and (f) Al13Fe4(hk0).
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Figures 10 and 11 directly reveal the orientation relationships of the Al13Fe3 and
Al13Fe4 phases represented by a pair of crystal planes. When two phases’ diffraction spots
overlap, it indicates that the crystal planes they represent are parallel. In summary, by
examining Figure 10e,f and Figure 11a,c–f, which are displayed in Table 4, seven orientation
relationships with the names OR1, OR2, OR3, OR4, OR5, OR6, and OR7 can be found. The
seven orientation relationships between Al13Fe3 and Al13Fe4, as described in Table 4, are
illustrated in a stereoscopic projection diagram for improved comprehension, as depicted
in Figure 12.

Table 4. The seven crystallographic orientation relationships obtained from Figures 10 and 11 between
Al13Fe3 and Al13Fe4.

[uvw] Al13Fe3//[uvw] Al13Fe4 (hkl) Al13Fe3//(hkl) Al13Fe4

OR1 [
-

17 23 65] Al13Fe3//[0 1 0] Al13Fe4 (
-
7

-
8 1) Al13Fe3//(

-
6 0 13) Al13Fe4

OR2 [8 9
-
3] Al13Fe3//[0 0 1] Al13Fe4 (

-
12 11 1) Al13Fe3//(

-
8 6 0) Al13Fe4

OR3 [1 0 0] Al13Fe3//[3
-
6 5] Al13Fe4 (0 3 3) Al13Fe3//(

-
1

-
3

-
3) Al13Fe4

OR4 [0 0 1] Al13Fe3//[8 15 4] Al13Fe4 (
-
8 10 0) Al13Fe3//(8

-
4

-
1) Al13Fe4

OR5 [
-
2

-
25 38] Al13Fe3//[1 0 0] Al13Fe4 (

-
1

-
6

-
4) Al13Fe3//(0 4 6) Al13Fe4

OR6 [22
-

25
-

79] Al13Fe3//[0 1 0] Al13Fe4 (
-
7

-
3

-
1) Al13Fe3//(

-
2 0 9) Al13Fe4

OR7 [
-
8

-
7

-
1] Al13Fe3//[0 0 1] Al13Fe4 (5

-
6 2) Al13Fe3//(

-
7 1 0) Al13Fe4
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Figure 12. Stereographic projection of the orientation relationships between Al13Fe3 and Al13Fe4

based on the Al13Fe3 phase: (a) the orientation relationships between crystal planes, (b) the orientation
relationships between crystal directions.

As mentioned above, seven crystallographic orientation relationships between the
Al13Fe3 and Al13Fe4 phases can be identified from Figures 10 and 11. The crystallographic
symmetry principle suggests that a set of orientation relationships found through ex-
perimentation usually correspond to many variations. Assessing the equivalence of the
seven crystallographic orientation relationships found in the present study is crucial. The
experiment data are analyzed and discussed using the matrix method in the following.

The matrix method involves determining the conversion correlation between the
crystal plane index and the crystal direction index of two phases through mathematical
analysis. A detailed description of the matrix method can be found in our group’s prior
research [52]. The conversion matrix between the seven orientation relationships can be
obtained using this method, as demonstrated in Table 5 below, where matrix A represents
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the conversion matrix between crystal planes, and matrix B represents the conversion
matrix between crystal directions. It can be determined that there are seven independent
orientation relationships because the elements in the conversion matrices corresponding to
the seven orientation relationships have different absolute values.

Table 5. The conversion matrices between seven orientation relationships of Al13Fe3 and Al13Fe4 interfaces.

Orientation Relationship Conversion Matrix B Conversion Matrix A

OR1
(

-
7

-
8 1) Al13Fe3//(

-
6 0 13) Al13Fe4

[
-

17 23 65] Al13Fe3//[0 1 0] Al13Fe4

0.90 −0.19 −0.80
0.11 0.26 −0.88
1.22 0.74 0.28

  0.69 −1.05 −0.22
−0.51 1.17 −0.85
0.36 0.67 0.24


OR2 (

-
12 11 1) Al13Fe3//(

-
8 6 0) Al13Fe4

[8 9
-
3] Al13Fe3//[0 0 1] Al13Fe4

−0.13 −0.37 0.79
−0.73 0.18 0.88
−1.56 −0.48 −0.30

  0.35 −1.51 0.61
−0.47 1.20 0.50
−0.45 −0.44 −0.28


OR3 (0 3 3) Al13Fe3//(

-
1

-
3

-
3) Al13Fe4

[1 0 0] Al13Fe3//[3
-
6 5] Al13Fe4

 0.80 −0.43 0.11
0.89 −0.21 −0.78
−1.21 −0.77 −0.20

  0.54 −1.08 0.90
0.16 0.02 −1.09
−0.35 −0.70 −0.21


OR4 (

-
8 10 0) Al13Fe3//(8

-
4

-
1) Al13Fe4

[0 0 1] Al13Fe3//[8 15 4] Al13Fe4

−0.60 0.07 0.96
0.32 −0.35 0.67
1.29 0.75 0.12

 −0.52 0.79 0.66
0.68 −1.25 0.52
0.36 0.68 0.18


OR5 (

-
1

-
6

-
4) Al13Fe3//(0 4 6) Al13Fe4

[
-
2

-
25 38] Al13Fe3//[1 0 0] Al13Fe4

−0.07 −0.60 0.32
−0.85 −0.39 −0.14
1.29 −0.30 −1.43

  0.50 −1.33 0.73
−0.91 −0.30 −0.76
0.20 −0.27 −0.46


OR6 (

-
7

-
3

-
1) Al13Fe3//(

-
2 0 9) Al13Fe4

[22
-

25
-

79] Al13Fe3//[0 1 0] Al13Fe4

 0.09 0.21 −0.91
0.86 −0.23 −0.78
−1.28 −0.75 −0.15

 −0.52 1.08 −0.91
0.68 −1.12 −0.19
−0.36 −0.68 −0.19


OR7 (5

-
6 2) Al13Fe3//(

-
7 1 0) Al13Fe4

[
-
8

-
7

-
1] Al13Fe3//[0 0 1] Al13Fe4

 0.07 0.21 −0.90
0.83 −0.25 −0.79
−1.32 −0.74 −0.11

 −0.53 1.09 −0.90
0.66 −1.15 −0.21
−0.37 −0.67 −0.18



Moreover, an elementary model of the interface relationship was established, using
the OR3 orientation relationship as an example. Specifically, the (033) surface of Al13Fe3

was considered, with the u and v directions aligned with [100] and [01
-
1], respectively (as

depicted in Figure 13a). The lattice parameters of this surface were found to be u = 14.596 Å,

v = 16.499 Å, and θ = 116.252◦. In contrast, the surface of (
-
1

-
3

-
3) Al13Fe4 was modeled with

the u and v directions aligned with [
-
36

-
5] and [3

-
10], respectively (as shown in Figure 13b).

The lattice parameters of this surface were determined to be u = 81.472 Å, v = 47.191 Å,
and θ = 115.688◦. Due to the significant mismatch between the (033) surface of Al13Fe3

and the (
-
1

-
3

-
3) surface of Al13Fe4 in the u and v directions, a supercell interface model

must be constructed to satisfy the periodic boundary conditions. To reduce mismatches
when constructing large supercells, relatively small mismatches can be achieved using

6(u) × 3(v) (033) Al13Fe3 and 1(u) × 1(v) (
-
1

-
3

-
3) Al13Fe4 surface models, resulting in

δ(u) = 6.97% and δ(v) = 4.66% mismatches in the u and v directions, respectively. Figure 13c

displays the atomic interface model of Al13Fe3(033)/Al13Fe4(
-
1

-
3

-
3).

As can be seen from Figure 13, the surface of Al13Fe3(033) is composed of 63 Al atoms,

while the surface of Al13Fe4(
-
1

-
3

-
3) is composed of 111 atoms, including 20 Fe atoms and

91 Al atoms.
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4. Conclusions

In summary, two typical approximate quasicrystalline phases Al13Fe3 and Al13Fe4
in the Al-Fe binary system were discovered to be intergrowth as a single crystal with a
size of tens of micromeres, which was characterized by SXRD by combining SEM and
EDX analysis. The first phase is refined to Al13Fe3 (space group R3c) with cell parameters
a = b = 14.5956(9) Å, c = 7.6929(4) Å, α = β = 90◦, and γ = 120◦. The second phase is refined
to Al13Fe4 (space group C2/m) with cell parameters: a = 15.498(4) Å, b = 8.0814(17) Å,
c = 12.488(3) Å, β = 107.790(8)◦. All atoms in these two phases are fully occupied. Topolog-
ical analysis reveals that both phases have distorted icosahedrons as structural building
units. Furthermore, structural models for coexistence of the Al13Fe3 and Al13Fe4 phases
were obtained from analyzing the SXRD datasets in reciprocal space as well as the refined
three models in real space.

The crystallographic orientation relationships of interfaces between the Al13Fe3 and
Al13Fe4 phases were built by studying the synthesized precession planes from the SXRD
datasets. Seven orientation relationships (named OR1 to OR7) were found by analyzing the
(0kl), (h0l), and (hk0) planes of these phases. The distribution of atoms inside the interfaces
is illustrated with a preliminary interface model of OR3.

The present research provides a protocol for analyzing the detailed crystal structures
of three intergrowth phases and investigating their orientation relationships as well as
interfaces between intergrowth phases, which will definitely stimulate further related
works involving advanced scanning and transmission electron microscopy techniques and
will shed light on clarifying the mechanism of multi-growth samples that are frequently
found in the complex metallic alloys.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met14040463/s1. The Supplementary Materials contain a stere-
ographic projection illustrating the orientation relationships between Al13Fe3 and Al13Fe4, as well
as SEM and EDX analysis of the single crystal sample. Additionally, precession images of the (1kl),
(h1l), and (hk1) planes to (5kl), (h5l), and (hk5) planes are provided. Figure S1: scanning electron
microscope (SEM) micrographs of single crystal sample. EDX analysis was performed for various
locations as indicated in Table S1. Table S1: The EDX results conducted at every scanning location.
Figure S2: The precession images of (a) Al13Fe3-1(0kl), (b) Al13Fe3-1(h0l), (c) Al13Fe3-1(hk0),
(d) Al13Fe4(0kl), (e) Al13Fe4(h0l), (f) Al13Fe4(hk0); Figure S3: The precession images of intergrowth

https://www.mdpi.com/article/10.3390/met14040463/s1
https://www.mdpi.com/article/10.3390/met14040463/s1
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crystals: (a) Al13Fe3-2(0kl), (b) Al13Fe3-2(h0l), (c) Al13Fe3-2(hk0), (d) Al13Fe4(0kl), (e) Al13Fe4(h0l),
(f) Al13Fe4(hk0). Figure S4: The precession images of (a) Al13Fe3-1(1kl), (b) Al13Fe3-1(h1l), (c) Al13Fe3-
1(hk1), (d) Al13Fe4(1kl), (e) Al13Fe4(h1l), (f) Al13Fe4(hk1). Figure S5: The precession images of (a)
Al13Fe3-1(2kl), (b) Al13Fe3-1(h2l), (c) Al13Fe3-1(hk2), (d) Al13Fe4(2kl), (e) Al13Fe4(h2l), (f) Al13Fe4(hk2).
Figure S6: The precession images of (a) Al13Fe3-1(3kl), (b) Al13Fe3-1(h3l), (c) Al13Fe3-1(hk3),
(d) Al13Fe4(3kl), (e) Al13Fe4(h3l), (f) Al13Fe4(hk3). Figure S7: The precession images of (a) Al13Fe3-
1(4kl), (b) Al13Fe3-1(h4l), (c) Al13Fe3-1(hk4), (d) Al13Fe4(4kl), (e) Al13Fe4(h4l), (f) Al13Fe4(hk4). Figure
S8: The precession images of (a) Al13Fe3-1(5kl), (b) Al13Fe3-1(h5l), (c) Al13Fe3-1(hk5), (d) Al13Fe4(5kl),
(e) Al13Fe4(h5l), (f) Al13Fe4(hk5). Figure S9: The precession images of (a) Al13Fe3-2(1kl), (b) Al13Fe3-
2(h1l), (c) Al13Fe3-2(hk1), (d) Al13Fe4(1kl), (e) Al13Fe4(h1l), (f) Al13Fe4(hk1). Figure S10: The precession
images of (a) Al13Fe3-2(2kl), (b) Al13Fe3-2(h2l), (c) Al13Fe3-2(hk2), (d) Al13Fe4(2kl), (e) Al13Fe4(h2l),
(f) Al13Fe4(hk2). Figure S11: The precession images of (a) Al13Fe3-2(3kl), (b) Al13Fe3-2(h3l), (c) Al13Fe3-
2(hk3), (d) Al13Fe4(3kl), (e) Al13Fe4(h3l), (f) Al13Fe4(hk3). Figure S12: The precession images of (a)
Al13Fe3-2(4kl), (b) Al13Fe3-2(h4l), (c) Al13Fe3-2(hk4), (d) Al13Fe4(4kl), (e) Al13Fe4(h4l), (f) Al13Fe4(hk4).
Figure S13: The precession images of (a) Al13Fe3-2(5kl), (b) Al13Fe3-2(h5l), (c) Al13Fe3-2(hk5),
(d) Al13Fe4(5kl), (e) Al13Fe4(h5l), (f) Al13Fe4(hk5).
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Appendix A

During the processing of data, the orientation matrix plays a crucial role as it is a 3 × 3
matrix that specifies the values and orientations of the three reciprocal axes based on the x,
y, and z coordinates on the goniometer. This matrix holds the fundamental information that
defines the reciprocal cell and its spatial orientation. In reciprocal space, the orientation
matrix can be characterized as:

R =

a*
x b*

x c*
x

a*
y b*

y c*
y

a*
z b*

z c*
z

 (A1)

where a*
x, a*

y, and a*
z represent the coordinate components of the reciprocity vector a∗ in the

x, y, and z directions, respectively, based on the diffractometer coordinates. Similarly, the
second and third columns represent the coordinate components of b∗ and c∗, respectively.

According to Section 3.1, we know there are two sets of Al13Fe3. Now, the gray
diffraction point corresponds to the Al13Fe3-1 phase and the yellow diffraction point
corresponds to the Al13Fe3-2 phase. The orientation matrix of the Al13Fe3-1 phase, Al13Fe3-2
phase, and Al13Fe4 phase in reciprocal space can be found using the APEX3 software, where
the orientation matrix in reciprocal space of the Al13Fe3-1 phase is:+0.07726900 +0.05223162 −0.00936381

−0.01660753 +0.05673444 −0.03000876
+0.00178704 +0.01739432 +0.12599610

 (A2)
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The orientation matrix in reciprocal space of the Al13Fe3-2 phase is: +0.5312165 +0.07719827 −0.00363642
+0.05774164 −0.01607857 +0.02432341
+0.00946710 −0.00524772 −0.12749440

 (A3)

The orientation matrix in reciprocal space of the Al13Fe4 phase is:+0.02463529 −0.02672067 −0.06323070
−0.05067153 +0.06340674 −0.05297208
+0.03764391 +0.10283705 +0.01623344

 (A4)

Starting from the fundamental correspondence between real space and reciprocal space:

a·a∗ = b·b∗= c·c∗ = 1 (A5)

The orientation matrix of these three phases in real space can be derived. The orienta-
tion matrix in real space of the Al13Fe3-1 phase is:+10.91316436 −9.59578453 −1.47479968

+2.90159188 +13.87577253 +3.52064947
−0.55511139 −1.77963193 7.47148199

 (A6)

The orientation matrix in real space of the Al13Fe3-2 phase is: +3.10098452 +14.06396551 +2.58737191
+10.82854274 −9.60619433 −2.13761384
−0.216569920 +1.44058379 −7.57090465

 (A7)

The orientation matrix in real space of the Al13Fe4 phase is: +9.64924243 −9.04020620 +8.08117528
−1.74532373 +4.14156070 +6.71704330
−11.31930567 −5.27289202 +0.30998032

 (A8)

It is achievable to build complete models of Al13Fe3-1, Al13Fe3-2, and Al13Fe4 described
with cell edges in real space utilizing the orientation matrix for those phases in real space.
as displayed in the main text’s Figure 9a.

By recognizing the experiment’s orientation matrix and the orientation matrix associ-
ated with the Crystallographic Information File (CIF), the particular atoms for both phases
to the orientation models described with cell edges can be added. First, the real-space
locations of the Al13Fe4 phase’s atoms are introduced. We designated matrix B as the
experimental orientation matrix of the phase in real space. The Al13Fe4-related CIF-related
orientation matrix is defined as follows:

A =

 15.49800015 0 0
0 8.08139992 0

−3.81544784 0 11.89085782

 (A9)

By utilizing matrix A and matrix B, it is possible to establish the transformation
relationship between the two matrices. By setting AC = B, we can solve for matrix C:

C =

+0.62261210 −0.58331437 +0.52143342
−0.21596799 +0.51248060 +0.83117323
−0.75215445 −0.63061031 +0.19338238

 (A10)

The CIF of Al13Fe4 contains the Cartesian coordinates of its atoms, which are then
transformed into the corresponding positions in real space by multiplying them with matrix
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C. This process is also applied to obtain the coordinate positions of the atoms in the Al13Fe3-
1 and Al13Fe3-2 phases. By following this procedure, comprehensive oriented structural
models of the Al13Fe3-1, Al13Fe3-2, and Al13Fe4 phases in real space were obtained and are
presented in Figure 9b of the main text.
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