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Abstract: The structural, mechanical, dislocation, and electronic properties of the Sc3AlC
MAX phase under applied pressure are investigated in detail using first-principles calcula-
tions. Key parameters, including lattice parameter ratios, elastic constants, Young’s modu-
lus, bulk modulus, shear modulus, brittle-to-ductile behavior, Poisson’s ratio, anisotropy,
Cauchy pressure, yield strength, Vickers hardness, and energy factors, are systematically
analyzed as a function of applied pressure. The results demonstrate that the Sc3AlC MAX
phase exhibits remarkable mechanical stability within the pressure range of 0 to 60 GPa.
Notably, applied pressure markedly improves its mechanical properties, such as resis-
tance to elastic, bulk, and shear deformations. The B/G ratio suggests a tendency toward
ductile behavior with increasing pressure, and the negative Cauchy pressure indicates
the directional characteristics of interatomic bonding in nature. Vickers hardness and
yield strength increase under pressures of 0 to 10 GPa and then decrease sharply above
50 GPa. High pressure suppresses dislocation nucleation due to the increased energy fac-
tors, along with twinning deformation. Furthermore, electronic structure analysis confirms
that high pressure enhances the interatomic bonding in the Sc3AlC MAX phase, while
the enhancement effect is not substantial. This study offers critical insights for designing
MAX phase materials for extreme environments, advancing applications in aerospace and
electronics fields.

Keywords: MAX phase; first-principles calculations; mechanical properties; energy factor;
high pressure

1. Introduction
Ceramic materials are valued for their high hardness, as well as excellent corrosion

and oxidation resistance. Nevertheless, their inherent brittleness restricts their use in
structural applications. On the other hand, metallic materials exhibit superior toughness
despite inherently inferior corrosion and oxidation resistance [1,2]. In order to combine the
advantages of both, a class of materials known as cermets has emerged. Specifically, MAX-
phase ceramics (transition metal carbides/nitrides) have attracted significant attention due
to their unique layered atomic structure and an exceptional combination of physicochemical
properties. As a result, these materials synergistically integrate high hardness and strength
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with excellent electrical conductivity and thermal stability, thereby positioning them as
promising candidates for diverse advanced engineering applications [3,4]. Furthermore,
MAX phases exhibit outstanding plasticity at elevated temperatures, alongside high fracture
toughness, thermal shock resistance, and stiffness. Consequently, these attributes render
them suitable for applications in high-temperature components, wear-resistant coatings,
and corrosion-resistant systems [5–9].

As a typical MAX-phase cermet, Sc3AlC exhibits unique performance advantages,
especially in the aerospace industry. Owing to its high specific strength, excellent oxidation
resistance, and superior corrosion resistance [10,11], Sc3AlC is well-suited for manufac-
turing high-performance aerospace engine components (e.g., engine components under
hypersonic flight loads), as well as structural materials for aircraft. In the field of electron-
ics, the semiconductor properties and outstanding electrical performance of Sc3AlC [12]
facilitate its application in the development of advanced electronic devices, including field-
effect transistors and solar cells, thereby driving advancements in electronic technology.
Compared to mainstream materials, such as titanium alloys (e.g., Ti-6Al-4V) and nickel-
based superalloys in aerospace, or silicon and gallium arsenide in electronics, Sc3AlC offers
distinct advantages. Titanium alloys provide excellent strength-to-weight ratios but suffer
from inferior oxidation resistance at high temperatures, requiring protective coatings that
increase costs and complexity. Nickel-based superalloys, while robust at high temperatures,
are denser and less corrosion-resistant in harsh environments. Sc3AlC, with a density
comparable to titanium alloys (~4.5 g/cm3) and superior oxidation resistance, reduces the
need for coatings and enhances durability in oxidative environments [10,11]. In electronics,
silicon is cost-effective but lacks the mechanical robustness of Sc3AlC, which can integrate
structural and functional roles in next-generation devices. Other MAX phases, such as
Ti2AlC or Ti3AlC2 [9], share similar advantages but may have lower specific strength or elec-
trical conductivity compared to Sc3AlC due to differences in composition and bonding [4,6].
Despite its promising properties, the widescale implementation of Sc3AlC faces several
obstacles, primarily the high cost and limited availability of scandium, which is a rare and
expensive element compared to titanium or other transition metals used in MAX phases
like Ti2AlC or Ti3AlC2 [9]. Synthesis challenges also pose barriers, as producing high-purity
Sc3AlC requires precise control to avoid defects or impurities that could degrade its me-
chanical and electrical properties. Additionally, scalable manufacturing processes, such as
cost-effective powder metallurgy or additive manufacturing, are not yet fully optimized
for scandium-based MAX phases, limiting their commercial viability [3]. However, recent
progress is addressing these challenges. Advances in synthesis techniques, such as spark
plasma sintering and reactive hot pressing, have improved the quality and affordability of
MAX phases like Ti3SiC2 and Ti2AlC, which are now used in applications such as turbine
blades, heat exchangers, and protective coatings [3,9]. Similar methods have been success-
fully applied to Sc3AlC, with recent studies reporting high-purity synthesis via reactive
sintering at reduced temperatures, enhancing feasibility for industrial-scale production [12].
These developments, coupled with the growing industrial adoption of other MAX phases
in aerospace, suggest a promising trajectory for Sc3AlC in high-value applications.

Currently, research on Sc3AlC MAX-phase materials has made significant progress.
From a structural perspective, both experimental studies and theoretical calculations have
confirmed that its crystal structure is of the anti-perovskite type, with a space group of Pm-
3m [13–15]. Nevertheless, research on Sc3AlC under high-pressure conditions is still limited.
Owing to limitations in high-pressure experimental techniques, the available data on its
mechanical properties and electronic structure evolution under extreme pressure are scarce,
thereby hindering the acquisition of comprehensive and precise information. Consequently,
current studies are still constrained in fully elucidating the complex effects of high pressure
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on its structural stability and electronic characteristics. Several critical scientific issues
require further investigation. These include systematic investigation of the evolution of
mechanical properties, particularly the variation of elastic modulus and yield strength
under high pressure; exploration of the mechanisms by which high pressure influences its
electronic structure, including changes in band structure and electronic density of states;
and analysis of the phase transition behavior of Sc3AlC under extreme conditions and its
impact on overall performance. Therefore, this study aims to systematically investigate
the structural, mechanical, dislocation, and electronic properties of the Sc3AlC MAX phase
under high pressure. Addressing these critical issues will not only contribute to a deeper
understanding of the high-pressure behavior of the Sc3AlC MAX phase, but also provide
valuable guidance for extreme environment applications.

2. Methodology
First-principles calculations based on density functional theory (DFT) are executed

using the Vienna ab initio Simulation Package (VASP) [16,17] to systematically investigate
the electronic structure and mechanical properties of Sc3AlC. The ion-electron interactions
are modeled using the Projected Augmented-Wave (PAW) method [18] to ensure accurate
electronic structure modeling. The generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) functional is adopted to describe the exchange-correlation
potential [19]. The calculations, performed within the DFT framework, utilize a cubic
Sc3AlC structure (space group Pm-3m). A plane-wave basis set with a kinetic energy cutoff
of 550 eV is applied to expand the electronic wavefunctions. The Brillouin zone is sampled
using an 11 × 11 × 11 Γ-centered k-point mesh to ensure high-precision k-space integra-
tion [20]. Convergence criteria are set to 0.01 eV/Å for atomic forces and 10−6 eV/atom for
total energy. To evaluate pressure-dependent behavior, applied pressures range from 0 to 60
GPa. Total energy calculations under compressive strains are conducted to assess mechan-
ical properties and high-pressure stability. The electronic structure is evaluated through
density of states (DOS) calculation. The results are employed to examine element-specific
contributions (Sc, Al, C) to the electronic structure. The electronic configurations—Sc (3d1

4s2), Al (3s2 3p1), and C (1s2 2s2 2p2)—critically influence bonding characteristics and
material stability. Figure 1 depicts the cubic crystal structure of the Sc3AlC unit cell.
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3. Results and Discussions
3.1. Structure Properties and Stability

The equilibrium crystal structure of Sc3AlC in the MAX phase is determined through
first-principles calculations. The total energy-volume dependence is characterized using
the Birch-Murnaghan equation of state [21], providing a precise description of energy
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variations as a function of volume. The equilibrium volume is evaluated by systematically
varying the volume from 0.9 V0 to 1.1 V0, where V0 denotes the equilibrium volume under
the condition of P = 0 and T = 0. Figure 2 demonstrates that the structure reaches its
minimum total energy (Et = −34.548438 eV) at an equilibrium volume of V0 = 91.13 Å3.
The equilibrium lattice constant (a0) is calculated as 4.500 Å. These results are derived
under the condition of P = 0 and T = 0, confirming that the calculated values reflect the ideal
equilibrium structure of Sc3AlC in the MAX phase. Table 1 illustrates that the calculated
results show good agreement with prior experimental and theoretical studies [10,12,22–27].
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Table 1. Lattice parameter of Sc3AlC MAX phase compared with experimental and theoretical values.

Sc3AlC Present Experimental Values Theoretical Values

Lattice parameter 4.500 4.498 [22], 4.48 [10], 4.508 [26], 4.480 [25], 4.508 [23],
4.5004 [12] 4.51 [27], 4.51 [24], 4.5119 [12]

To further investigate the effect of high pressure on the crystal structure of Sc3AlC, this
study conducts a series of systematic structural optimization calculations under different
pressure conditions, accurately determining the equilibrium lattice constant and volume
of Sc3AlC within the pressure range of 0 to 60 GPa. The corresponding trends are shown
in Figure 3. It is clearly observed that as the pressure increases from 0 to 60 GPa, both
the lattice constant ratio a/a0 and the volume ratio V/V0 exhibit a decreasing trend. This
indicates that under high pressure, the interatomic distances within Sc3AlC continuously
decrease, leading to a denser atomic arrangement and enhanced electron interactions.
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In anisotropic materials, structural stability is intrinsically linked to elastic constants
Cij, which indicate the material’s ability to resist elastic deformation. Elastic constants Cij not
only characterize the material’s response to external stresses but also highlight directional
variations in mechanical properties. For cubic crystals, especially under high-pressure or
large-strain conditions, elastic constants (C11, C12, and C44) are critical in determining the
material’s resistance to stress-induced deformation. In solid-state physics, the stability of
cubic crystals is primarily evaluated based on their elastic constants [28–30]. The stability
criteria are defined by specific conditions related to elastic constants, ensuring that the
crystal remains stable under diverse external stresses.

(C11 − C12) > 0, C11 > 0, C44 > 0, (C11 + 2C12) > 0 (1)

The computational results obtained in this study demonstrate strong agreement with
previous theoretical calculations reported in references [22–27], as evidenced by the compar-
ative analysis presented in Table 2. This consistency between our findings and established
theoretical frameworks not only corroborates the validity of our computational approach
but also reinforces the reliability and precision of the current research methodology.

Table 2. Calculated results compared with other theoretical data at T = 0 and P = 0 (Unit: GPa).

Sc3AlC Present Theoretical Data

C11 235.2 220.85 [26], 224.90 [25], 219.20 [23], 220 [24], 225 [27], 220 [22]
C12 45.21 42.15 [26], 40.50 [25], 40.35 [23], 40 [24], 41.5 [27], 43 [22]
C44 80.08 80.12 [26], 80.80 [25], 80.19 [23], 79 [24], 80.3 [27], 79 [22]
B 108.54 101.72 [26], 101.60 [25], 99.98 [23], 99.91 [24], 102.70 [27], 102 [22]
E 203.62 197.03 [26], 199.70 [25], 196.40 [23], 195 [24], 199.27 [27]
G 85.74 83.69 [26], 85.10 [25], 83.80 [23], 83.26 [24], 84.68 [27], 83 [22]
σ 0.16 0.18 [26], 0.17 [25], 0.17 [23], 0.17 [24], 0.18 [27], 0.18 [22]

To explore the effect of high pressure on the elastic properties of Sc3AlC, the elastic
constants are calculated in the pressures range of 0 to 60 GPa. Figure 4 depicts the variation
of elastic constants (C11, C12, and C44) as a function of pressure. As pressure increases
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from 0 to 60 GPa, the elastic constants exhibit a monotonic increase, rising steadily from
their initial values. This behavior indicates that Sc3AlC maintains structural stability under
high pressure. Notably, these elastic constants fulfill the stability criterion defined by
Equation (1). The results demonstrate that Sc3AlC retains structural stability under high
pressure and exhibits enhanced resistance to structural phase transitions.
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3.2. Mechanical Properties

The moduli of materials, including bulk modulus B, Young’s modulus E, and shear
modulus G, play a crucial role in evaluating mechanical properties [31,32]. The magnitude
of these moduli is directly related to the material’s strength. Materials with high modulus
usually have high strength, indicating that they can maintain their shape and resist defor-
mation under external stresses. The Voigt-Reuss-Hill (VRH) method is a commonly used
approach to calculate the effective moduli of composite or anisotropic materials [33,34], as
with the Equations (2)–(4). It can be used to estimate the relationships between different
moduli (such as bulk modulus, Young’s modulus, and shear modulus), contributing to
evaluate the material’s performance under varying stress and deformation conditions.
Table 2 presents the computed moduli and compares them with previous studies.

B =
1
3
(C11 + 2C12) (2)

G =
1
2
(GV + GR) (3)

E =
9BG

3B + G
(4)

In the aforementioned equations, GV and GR represent Voigt and Reuss shear modulus,
respectively, which are mathematically expressed by Equations (5) and (6):

GV =
(C11 − C12 + 3C44)

5
(5)
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GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
(6)

Figure 5 illustrates the variations of bulk modulus (B), Young’s modulus (E), and shear
modulus (G) within the pressure range of 0 to 60 GPa. As the pressure increases from 0
to 60 GPa, the bulk modulus (B), Young’s modulus (E), and shear modulus (G) all exhibit
an upward trend. The increase in Young’s modulus (E) is the most significant, gradually
rising from its initial value to considerably higher values. This indicates that under high
pressure, the ability of Sc3AlC to resist elastic deformation is significantly enhanced, and the
atomic bonding strength increases substantially as pressure increases. The bulk modulus
(B) also increases steadily, reflecting the gradual enhancement of the ability of Sc3AlC to
resist uniform compression under high-pressure conditions, indicating that the internal
structural stability of the crystal improves as the pressure increases. The shear modulus
(G) also increases with pressure, although the rate of change is more moderate compared
to Young’s modulus (E) and bulk modulus (B), suggesting that under high pressure, the
ability of Sc3AlC to resist shear deformation improves, although the rate of change is more
moderate. These trends in moduli suggest that the mechanical properties of Sc3AlC are
reinforced under high-pressure conditions.
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The brittle-to-ductile transition represents a critical mechanical phenomenon wherein
a material undergoes a fundamental transformation in its failure mode, transitioning
from brittle fracture characteristics to ductile deformation behavior under applied stress
conditions. At certain temperatures and pressures, the plasticity and toughness of a material
depend on its crystal structure and the strength of atomic interactions. Specifically, the
brittle-to-ductile transition is strongly correlated with the ratio between bulk modulus
(B) and shear modulus (G), denoted as B/G [32]. This ratio is an effective indicator for
predicting the material’s toughness and brittleness behavior under different temperature
or stress conditions. The B/G ratio serves as a critical indicator for material toughness, with
the threshold value of 1.75 demarcating distinct mechanical behavior;: values exceeding
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1.75 typically signify enhanced toughness and ductile characteristics, while ratios below
this critical value are indicative of reduced toughness and increased brittleness [35]. As
shown in Figure 6, as pressure gradually increases from 0 to 60 GPa, the B/G ratio exhibits a
continuous upward trend, rising steadily from approximately 1.3 to nearly 1.7. This change
indicates that under high-pressure conditions, the ability of Sc3AlC to resist uniform
compression (represented by the bulk modulus B) improves more significantly compared
to its ability to resist shear deformation (represented by the shear modulus G). Within the
pressure range of this study, the B/G ratio remains below 1.75 but gradually approaches
this value with increasing pressure, suggesting that as pressure increases, Sc3AlC tends
to transition towards more toughness mechanical behavior while maintaining relative
brittleness characteristics within the 0–60 GPa pressure range.
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3.3. Anisotropy

Elastic anisotropy represents a fundamental physical parameter that plays a pivotal
role in characterizing and understanding the mechanical behavior of crystalline materials
with anisotropic characteristics, particularly in determining their directional dependence of
elastic properties. The anisotropy of materials is often characterized using the anisotropy
factor A, and a greater deviation of anisotropy factor A from the one indicates stronger
anisotropy [36,37]. The cross-slip pinning model provides a theoretical framework for
analyzing dislocation behavior, slip systems, and pinning effects in metallic materials [38].
It is particularly effective in analyzing the mechanisms of plastic deformation and their
relationship with anisotropy factor. This model integrates the phenomena of cross-slip
and pinning, enabling a more comprehensive understanding of stress transmission and
dislocation glide in anisotropic materials. The anisotropy factor for the Sc3AlC MAX phase
can be calculated using the following formulas [39,40]:

A(100)[001] =
2C44

C11 − C12
(7)
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A(110)[001] =
C44(C′ + 2C12 + C11)

C11C′ − C2
12

(8)

where C′ = (C11 + C12)/2 + C44, and both A(100)[001] and A(110)[001] represent the
anisotropy factors along the (100)[001] and (110)[001] crystallographic directions, respec-
tively. According to Equations (7) and (8), Figure 7 illustrates the variation trends of
anisotropy factors along the (100)[001] direction (labeled as A(100)[001]) and the (110)[001]
direction (labeled as A(110)[001]) under increasing pressure. As the pressure rises from 0 to
60 GPa, both A(100)[001] and A(110)[001] exhibit a declining trend. This suggests that under
high pressure, the degree of anisotropy in Sc3AlC along these two directions gradually
increases, and the differences in mechanical properties along these directions increase with
increasing pressure. The pressure-dependent variation in the anisotropy factors reflects
the rearrangement of atoms, including changes in interatomic distances. These factors
lead to the gradual increases in the differences in mechanical responses along different
crystallographic directions.
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Poisson’s ratio σ is a physical quantity that describes the ratio of transverse strain
to longitudinal strain when a material is subjected to tension or compression, typically
ranging between 0 and 0.5. For different types of materials, Poisson’s ratio is closely related
to plasticity properties. According to Equations (9) and (10) [39,41], Figure 8 illustrates
the variation trends of Poisson’s ratio σ[001] in the [001] direction and σ[111] in the [111]
direction under increasing pressure. In general, a large Poisson’s ratio typically suggests
good plasticity. At the initial stage, the Poisson ratio in both directions of the [001] and
[111] is small, and with the increase of pressure, the Poisson ratio in both crystal directions
increases, which indicates that the increase of pressure is conducive to improving the
plasticity of the material. Furthermore, the value of σ[111] consistently exceeds that of σ[001]
throughout the pressure range, suggesting that under the same pressure conditions, Sc3AlC
exhibits better plasticity in the [111] direction compared to the [001] direction.

σ[001] =
C12

C11 + C12
(9)
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σ[111] =
C11 + 2C12 − 2C44

2(C11 + 2C12 + C44)
(10)

To further elucidate the evolution of the mechanical properties of Sc3AlC under
high pressure, other relevant properties are calculated within the pressure range of 0
to 60 GPa, with the variations illustrated in Figure 9. Figure 9 presents the trends of
C12 − C14 (representing the Cauchy pressure), G(100)[010] (shear modulus G(100)[010] = C44

in the (100)[010] direction), G(110)[110] (shear modulus G(110)[110] = (C11 − C12)/2 in the

(110)
[
110

]
direction), and E⟨100⟩ (Young’s modulus in the <100> direction) as functions of

pressure, where E⟨100⟩ is expressed by E⟨100⟩ = (C11 − C12)[1 + C12/(C11 + C12) ] [42,43].
As the pressure increases from 0 GPa to 60 GPa, E⟨100⟩ exhibits a significant upward
trend, steadily rising from its initial value to a high level, which indicates that under
high pressure, the ability of Sc3AlC to resist elastic deformation in the <100> direction
is significantly enhanced, with the interatomic bonding forces in this direction markedly
increasing with pressure. Both G(100)[010] and G(110)[110] also increase with increasing
pressure, although their growth rates are relatively smaller compared to E⟨100⟩. This
suggests that in a high-pressure environment, the resistance of Sc3AlC to shear deformation
in these two directions is improved. Generally, a negative Cauchy pressure indicates
that the material possesses directional bonding characteristics, and a positive Cauchy
pressure suggests metallic characteristic [43–45]. The Cauchy pressure C12 − C14 remains
negative throughout the pressure range; however, it gradually increases and asymptotically
approaches zero as the pressure rises. This trend indicates a weakening of the directional
characteristics of interatomic bonding within the material, accompanied by an enhancement
of metallic properties.
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3.4. Hardness and Yield Strength

Hardness and yield strength are essential parameters for characterizing a material’s
resistance to deformation, and they are closely related to the material’s mechanical prop-
erties [46]. Specifically, hardness is defined as the ability of a material’s surface to resist
localized plastic deformation, such as indentation, scratching, or wear. An increased hard-
ness value implies that the material is less susceptible to plastic deformation. On the other
hand, yield strength σy is defined as the minimum stress where a material begins to undergo
permanent deformation during tension or compression. Once the applied stress exceeds
the yield strength, the material translates from elastic to plastic deformation. Previous
studies [47–50] indicate that the Vickers hardness (HV) of a material can be determined
using Equation (11), where k = G/B [51]. The Vickers hardness (HV) is approximately
three times yield strength (σy), as expressed in Equation (12).

To explore the effects of high pressure on the Vickers hardness and yield strength
of Sc3AlC, the relevant data are calculated within the pressure range of 0 to 60 GPa, as
illustrated in Figure 10. Figure 10a shows the variation of Vickers hardness versus applied
pressure, while Figure 10b presents the changes in yield strength under pressure. From
Figure 10a, the value of Vickers hardness is about 17.52 GPa at ambient pressure, aligning
well with the calculated result (HV = 17.81 GPa) of Rayhan et al. [26], and it can be observed
that within the pressure range of 0 to 10 GPa, the Vickers hardness increases rapidly from
approximately 17.52 GPa to about 18.16 GPa. This indicates that during the initial stage of
pressure increase, the resistance to localized plastic deformation significantly improves in
the Sc3AlC MAX phase. Subsequently, from 10 GPa to 50 GPa, HV fluctuates within the
range of 17.52 GPa to 18.16 GPa, remaining relatively stable. This suggests that changes
in pressure have a minimal impact on Vickers hardness of Sc3AlC phase. However, when
the pressure exceeds 50 GPa, HV drops sharply, reaching approximately 16.84 GPa at
P = 60 GPa, which demonstrates that the hardness value decreases significantly under high
pressure. In Figure 10b, the yield strength shows an increase from 5.84 GPa to 6.05 GPa
within the 0 to 10 GPa range, indicating that the stress to resist plastic deformation increases.
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From 10 GPa to 50 GPa, σy fluctuates between 5.84 GPa and 6.05 GPa, remaining relatively
stable, which suggests that the yield characteristics of the material are relatively stable
within this pressure range. However, when the pressure reaches 60 GPa, σy decreases to
about 5.61 GPa, indicating a reduction in the material’s yield strength under the conditions
of high pressure.

Hv = 2
(

k2G
)0.585

− 3 (11)

σy = HV/3 (12)
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3.5. Energy Factor K

In crystalline materials, the ability of dislocation nucleation is closely associated with
the material’s plasticity. The energy factor K is a crucial parameter that quantifies the
dislocation nucleation ability, representing the minimum energy for plastic deformation in
a specific direction, and the calculation of energy factor K is related to the elastic constant.
For cubic crystals, Equations (13) and (14) give the expressions of K factors of edge and screw
dislocations [52,53]. Based on the calculated results, Figure 11 illustrates the variation of the
energy factor K for edge and screw dislocations versus applied pressure. As the pressure
increases from 0 to 60 GPa, the energy factors K for both edge and screw dislocations
increase. For edge dislocations, the energy factor Kedge increases steadily from an initial
value of 107.45 GPa to 197.68 GPa, which suggests that under high-pressure conditions,
the nucleation energy of edge dislocations in Sc3AlC significantly increases, resulting in a
higher energy barrier that must be overcome for dislocation nucleation, thereby inhibiting
plastic deformation. For screw dislocations, the energy factor Kscrew gradually rises from
87.22 GPa to 148.38 GPa, indicating that the nucleation energy also increases with increasing
pressure, thus leading to the inhibition of screw dislocations.

Kscrew =

[
1
2

C44(C11 − C12)

] 1
2

(13)

Kedge = (C11 + C12)

[
(C11 − C12)C44

(C11 + C12 + 2C44)C11

] 1
2

(14)

The mixed dislocation factor Kmixed is a parameter that quantifies the nucleation of
mixed dislocations, and this factor can be characterized as a function of the orientation
angle θ. For mixed dislocations, the dislocation core width ζ represents the extent of
deformation within the dislocation region. The relationships between Kmixed, ζ, and other
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parameters are described by Equations (15) and (16) [53,54], where C = (C11 − C12)/2,
with d denoting the distance between adjacent slip planes. Figure 12 shows the calculated
curves of Kmixed and ζ versus applied pressure. In Figure 12a, as pressure increases, the
mixed dislocation factor Kmixed also increases, which is consistent with the conclusion in
Figure 11. In Figure 12b, it is evident that the dislocation core width gradually decreases as
pressure increases, which increases the stacking-fault energy of the Sc3AlC MAX phase,
and then inhibits twinning deformation.

Kmixed = Kedge · sin2 θ + Kscrew · cos2 θ (15)

ζ =
Kmixed · d

2C
(16)
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3.6. Electronic Properties

The electronic structure is intrinsically related to the bonding mechanisms and directly
affects the structural stability of a material. To examine the effects of high pressure on the
electronic structure of Sc3AlC, the variation of total density of states (TDOS) is analyzed
under pressures ranging from 0 to 60 GPa, as shown in Figure 13. As the pressure increases
from 0 to 60 GPa, the TDOS at the Fermi level slightly increases, and the DOS for both the
valence and conduction bands near the Fermi level shifts slightly to the right, indicating
that high pressure enhances the interatomic bonding in the Sc3AlC MAX phase, while the
enhancement effect is not substantial.
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4. Conclusions
This work systematically investigates the effects of pressure on the structural, mechan-

ical, dislocation, and electronic properties of the Sc3AlC MAX phase using first-principles
calculations. The main conclusions are as follows:

(1) Under pressures ranging from 0 to 60 GPa, the lattice constant ratio and volume ratio
decrease. The elastic constants satisfy stability criteria, indicating that the structure
remains stable under high pressure.

(2) As the pressure increases, the bulk modulus, Young’s modulus, and shear modulus in-
crease, enhancing resistance to material deformation. The B/G ratio rises, approaching
1.75, suggesting a tendency toward ductile behavior, but the material still maintains
its brittle characteristics.

(3) As the pressure increases, the anisotropy in the (100)[001] and (110)[001] directions
also increases. The Poisson’s ratio in the [001] and [111] directions increases, resulting
in the enhanced plasticity, with better plasticity along the [111] direction. The negative
Cauchy pressure indicates the directional characteristics of interatomic bonding.

(4) Vickers hardness and yield strength increase under pressures of 0 to 10 GPa and
remain relatively stable between 10 and 50 GPa, and then decrease sharply above
50 GPa.
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(5) High pressure increases the energy factors of edge and screw dislocations, suppressing
dislocation nucleation. The mixed dislocation factor increases with increasing pressure,
and the dislocation core width reduces, which may inhibit twinning deformation.

(6) High pressure enhances the interatomic bonding in the Sc3AlC MAX phase, while the
enhancement effect is not substantial.
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