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Abstract: The replication casting process is used for manufacturing open-pore aluminum 

foams with advanced performances, such as stability and repeatability of foam structure 

with porosity over 60%. A simple foam structure model based on the interaction between 

sodium chloride solid particles poorly wetted by melted aluminum, which leads to the 

formation of air pockets (or “air collars”), is proposed for the permeability of porous 

material. The equation for the minimum pore radius of replicated aluminum foam is 

derived. According to the proposed model, the main assumption of the permeability model 

consists in a concentration of flow resistance in a circular aperture of radius rmin. The 

permeability of aluminum open-pore foams is measured using transformer oil as the fluid, 

changing the fractions of initial sodium chloride. Measured values of minimum pore size 

are close to theoretically predicted ones regardless of the particle shape. The expression for 

the permeability of replicated aluminum foam derived on the basis of the “bottleneck” 

model of porous media agrees well with the experimental data. The obtained data can be 

applied for commercial filter cells and pneumatic silencers. 

Keywords: aluminum foam; porous casting; replication process; permeability of aluminum 

open-pore foams 
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1. Introduction 

Open-pore metal sponges offer a wide range of possible applications, such as heat-exchangers, fuel 

cells, filtering processes, etc. Accordingly, many state-of-the-art technologies are used for obtaining 

such permeable materials [1,2].  

Replication casting can provide the advanced performances such as stability and repeatability of 

foam structure. Briefly, the process can be described by the following steps. The porous bed of 

preheated NaCl particles is infiltrated with molten metal. The resulting composite after solidification 

can be shaped into the desirable form, and then salt is subsequently removed by dissolution in water. 

Infiltration can be actuated by vacuum suction [3] or under high gas pressure [4]. Sodium chloride can 

be preheated either in the mold before the infiltration [4], or separately [5]. 

A similar technology was applied commercially by Composite Materials Ltd. (Ekaterinburg, 

Russia). Here, granular sodium chloride is preheated in a special furnace and is then cast into the mold. 

Molten aluminum infiltrates the salt bed by vacuum suction. The technology reduces production costs 

significantly and facilitates the manufacture of a variety of porous cast aluminum items, mainly filter 

cells and pneumatic silencers. 

The main characteristic that determines the dimensions and features (wall thickness, surface area) of 

porous casting is permeability K in an integrated form of Darcy’s law:  

μ

K P F
Q

l

⋅ Δ ⋅=
⋅

 (1)

where Q (m3/s) is an average volumetric flow rate through the porous medium, ΔP is the pressure drop 

experienced by a fluid of dynamic viscosity μ traversing through the porous medium, l is the thickness of 

the porous medium along the direction of fluid flow, F is the average cross-section area (m2) of the 

porous medium perpendicularly to the direction of fluid flow. 

The permeability K is determined by porous medium structure, which is the result of capillary 

interaction between molten metal and solid salt granules. 

2. Theory 

Let us assume that NaCl granules are of spherical shape with the uniform radius R. Consequently 

poor wettability of NaCl by molten aluminum at the contact between nearest NaCl granules leads to 

the formation of air pockets or “air collars” (Figure 1). 

After solidification of the metal and dissolution of NaCl, the porous medium consists of cavities, 

shaped by parent NaCl granules connected through the air collars (Figure 2). Thereby, the replicated 

metal foam structure is described by two defined pore sizes: the maximum is equal to 2R and the 

minimum is equal to 2rmin where rmin is the internal radius of an air collar (see Figure 1).  
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Figure1. Air collars formation due to infiltration of melted metal into the layer of NaCl granules. 

 

Figure 2. Porous structure model. 

 

The shape of the air collar is described by Laplace’s Equation: 

min

1 1

σ

P

r r
= +  (2)

where σ is the surface tension of the molten metal, r is the external radius of the air collar, Р is the 

pressure on the surface of the air collar determined as a vector sum of external pressures:  

Р = Рat − Рac + ρgh (3)

where Рat is the atmospheric pressure and Рac is the pressure of air entrapped during melt filtration in 

the air collar, ρ is the melt density, h is the height of liquid column. 

Since the radii of the air collar’s curvatures are in mutually perpendicular planes, Laplace’s 

Equation (2) can be rearranged to:  

2rmin 
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min

1 1

σ

P

r r
= −  (4)

The angle β (Figure 1) is equal to the wetting angle θ that can be geometrically defined from Figure 1. 

We have found the length of the segment DB applying Pythagorean theorem to triangle АDB, and the 

cosine theorem to triangle DОB. Simple algebraic manipulations yield: 

r2 + 2rrmin = −2rRcosθ (5) 

The simultaneous solution of Equations (4) and (5) gives the equation for the minimum pore radius 

of replicated aluminum foam: 

2

min
3σ 9σ 8σ cosθ

2

RP
r

P

− + −=  (6)

We used the model of thermal conductivity of a granular medium in vacuum [6] to predict the 

permeability of replicated foam. The model shows that the main resistance concentrates at contact 

spots between grains, which form the minimal pore in the structure of replicated foam. Thereby, the 

main assumption of the permeability model consists in concentration of flow resistance at circular 

aperture of radius rmin [5]. 

A similar “bottleneck” model was applied to derive the permeability of replicated aluminum foam  

in [4]. 

We can consider the pressure drop ΔPr at this aperture (presented as aperture in a thin plane)  

by the following expression: 

3
min

3 μ
r

q
P

r
Δ =  (7)

where q is the flow rate through one aperture of radius rmin.  

We can divide the porous media into slabs of thickness 2R along the average flow direction.  

Because the air collar is located in the zone of contact between grains, the number of apertures of 

radius rmin for one grain defined as coordination number N, is described by Equation [7]: 

Δ
+Δ−Δ++Δ=

2

1093 2

N  (8)

where Δ is the porosity of the NaCl bed. Due to the large ratio between maximum and minimum pore 

sizes, the porosity of replicated aluminum foam is close to (1 − Δ).  

Each sphere is in contact with N adjoining spheres, so that the direction of each mutually 

perpendicular axis corresponds to N/3 contacts and each of the opposite directions along one axis 

corresponds to N/6 contacts. The physical meaning of this proposition consists in a numerical value of 
the flow rate vector q


 through one aperture of radius rmin in one slab along the macroscopic  

flow direction: 

6

N
qq =


 (9)
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The number of spheres contained in one slab is given by:  

2

3(1 )

2π

F
n

R

− Δ=  (10)

Let us suppose that isobars are corresponding with planes, perpendicular to the direction of 

filtration. Then the loss of pressure in each slab is ΔPn, and the flow rate through one slab is equal to 

the flow rate through the porous medium Q. Therefore, the flow rate through one slab is given by the 

joint solution of Equations (7), (9) and (10). 

3
min

2

(1 )

12π μ
nP r NF

Q
R

Δ − Δ=  (11)

We assume a homogeneous distribution of the pressure loss along the flow direction. Then, we 

calculate the combined loss of pressure through a porous medium (contained l/2R slabs) as:  

min

6π μ
32 (1 )

P l Q RlnP
R F Nr

Δ
Δ = =

− Δ
 (12)

The solution of Equations (1), (8) and (12) leads to the expression for permeability of replicated 

aluminum foam: 

3
min(1 )

К
6π

N r

R

− Δ ⋅=  (13)

3. Experimental Procedures and Results 

Replicated aluminum foam was produced by the process described in Reference [3,5]. Pure sodium 

chloride of spherical shape was sieved to obtain the following fractions: 0.32–0.63 mm, 0.63–0.8 mm, 

0.8–1.0 mm. Fraction 1.0–1.5 mm had a fragmental shape. Then sodium chloride was heated to 700 °C 

in an electric furnace and was poured into a metal mold of 80 mm diameter and 140 mm height, 

preheated to 500 °C. Molten metal (99.95% Al) was poured over the surface of the NaCl bed and then 

infiltrated with vacuum suction. 

The porosity of NaCl bed varied from 50% up to 65% (in case of the compaction by vibration). The 

gauge DV8009-Kc of the membrane type with an error of 2.5% was used to estimate the  

pressure vacuum. 

The resulting Al-NaCl composite with monolithic Al casting head was extracted from the mold 

after solidification. The total height of castings ranged from 120 to 140 mm with 20–40 mm metal 

head. In fact the height of metal head is irrelevant to the determination of the hydrostatic pressure. 

Samples of one inch diameter and 10 mm height were cut from the bottom part of the composite  

(10 mm from bottom surface). Sodium chloride was subsequently removed by dissolution in water. 

The hydrostatic pressure was determined individually for each casting. The contribution of the 

hydrostatic pressure is in the range of 2% to 14%. 

The photomicrograph of the flat surface of replicated foam (Figure 3) was examined by SIAMS 

(System of Image Analysis and Modeling Structures, SIAMS Ltd., Ekaterinburg, Russia) based on 
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SIMAGIS software for image analysis [8]. The error of pore’s size determination in this case doesn’t 

exceed 0.5% so it complicates the showing of error bars on the Figure 4.  

Figure 3. Photomicrograph of flat surface of replicated foam. 

 

Figure 4. Relation between aperture radius and NaCl particle size (P = 25 kPa). 

 

The aperture radius between the big pores corresponding to the radius of the air collar and the 

minimum pore radius of replicated aluminum foam was calculated using rmin= 
π

S
 ,where S is the 

average area of 10 apertures in one sample. 

Figure 4 shows the results of experimental rmin in comparison with theoretical calculations by  

Equation (5). Data of capillary interaction of molten aluminum alloys with inorganic salts are given  

in [9]. According to [9], the wetting angle θ for system of NaCl and pure aluminum is equal to  

140 degrees and the surface tension σ is 945 MJ/m2. 

The set up for measuring the permeability of replicated aluminum foam is shown in Figure 5. The 

liquid (transformer oil of viscosity μo from a standard measuring flask) flowed through the porous 

sample. The measured value of viscosity of the oil was 0.0216 Pa·s ± 2.5% (at 20 °С). The height of 

the liquid column changed from h2 to h1 during filtration. Minimum filtration time was equal to 100 s 

at the highest value of permeability and was measured three times for each experimental condition. 
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Figure 5. Set up for measuring the permeability of porous sample. 

 

The reduction of the liquid column according to Darcy’s law is given by the Equation (1) in the 

differential form:  

ρd

d μо о

K ghFh

lFτ
=  (14)

where h is the height of the liquid column, ρ is the density of filtrated liquid, Fo is the sectional area of 

the measuring flask. After this, Equation (14) is integrated: 

2

1

μ
ln

ρ τ
о оF l h

K
F g h

⋅ ⋅=  (15)

Figure 6 shows experimental results of K observation in comparison with theoretical calculations by 

Equation (13). The porosity of replicated aluminum foam (1 − Δ) was about 60% in this case. Finally 

the micrograph of real foam is given in Figure 7. The total instrument’s error did not exceed 3.5% in 

all experiments. 

Figure 6. Permeability of replicated aluminum. 
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Figure 7. Micrograph of real foam samples. 

 

4. Discussion 

Measured values of average minimum pore size are close to theoretically predicted ones, regardless 

of the particle shape. Because of their fragmental shape some particles are interconnected with sharp 

angle to flat, others with flat to flat angle. Subsequently, the minimum pore size varies over a wide 

range, but the average value is close to that calculated by Equation (6). Therefore, Equation (6) can be 

applied easily for the estimation of the minimum pore size of replicated aluminum foam. Equations (6) 

and (13) are consequently solved. Predictions of Equation (13) are in compliance with experiment 

(Figure 6), especially for the samples produced at higher pressure drop. We notice significant 

discrepancy between experimental data and results of theoretical calculations at low pressure drop. The 

explanation can be found in the impossibility to represent the pore of minimum radius as an aperture in 

a thin plate. In case of low pressure drop the proportion between minimum and maximum size of pores 

is more than one quarter, and the flow of liquid is close to the modified Cozeny-Carman formula that 

connects the permeability with the average capillary radius (K = f (R + rmin)
2) [10]. Therefore, the 

permeability at low pressure drop differs from that calculated by Equation (13). Nevertheless, we use 

Equation (13) to design porous castings because they are usually produced for industrial applications at 

higher pressure drop.  

The agreement with experiments is found to be very satisfying, especially due to the consecutive 

application of two models.  

5. Conclusions 

A model describing the interaction between solid particles poorly wetted by molten metal with the 

associated formation of an “air collar” has been developed. The derived expression for the internal 

radius of the air collar that is equal to the minimum pore radius in replicated aluminum foam, rmin 

presented in Equation (6), represents experimental data very well (Figure 4). 

The expression for the permeability of replicated aluminum foam derived on the basis of the 

“bottleneck” model of a porous medium also agrees well with the experimental data. The expression 

can be applied successfully to design porous castings for filtering and noise reduction.  
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