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Abstract: It is generally accepted that the martensitic transformations (MTs) in the shape 

memory alloys (SMAs) are mainly characterized by the shear deformation of the crystal 

lattice that arises in the course of MT, while a comparatively small volume change during 

MT is considered as the secondary effect, which can be disregarded when the basic 

characteristics of MTs and functional properties of SMAs are analyzed. This point of view 

is a subject to change nowadays due to the new experimental and theoretical findings. The 

present article elucidates (i) the newly observed physical phenomena in different SMAs in 

their relation to the volume effect of MT; (ii) the theoretical analysis of the aforementioned 

volume-related phenomena. 
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1. Introduction 

The widely used functional properties of the shape memory alloys (SMAs) stem from the martensitic 

transformation (MT) they exhibit during cooling or under the action of external fields of a different 

nature. The most important feature of martensitic transformation is the appearance of uniform shear 

strain of crystal lattice below the MT temperature resulting in the formation of martensitic phase [1–3]. 

Furthermore, MT is accompanied by the local shears within an invariant crystal lattice of the 

martensitic phase. These shears proceed in different directions and cause formation of the specific 

microstructure, which consists of the physically equivalent domains of the low temperature martensitic 

phase with the differently oriented crystallographic axes. Because of their physical equivalence, the 

domains of martensitic phase (martensite variants) are separated by the coherent, and therefore mobile, 

interfaces. The shear character of MT strains and appearance/presence of mobile interfaces give rise to 

a complicate thermoelastic behavior of the shape memory alloys and their engineering and medical 

applications [3–7]. The most of these applications are based on the shape memory effect and 

accessibility of large strain values under the moderate mechanical loading. 

The ferromagnetic and metamagnetic shape memory alloys (FSMAs and MetaMSMAs) form a 

special class of the multifunctional materials (see [8–14] and references therein). These materials 

undergo both the ferromagnetic ordering and martensitic transformation (MT) on cooling. The 

considerable change in the martensitic structure of some FSMAs under the magnetic field occurs due 

to the extremely high mobility of coherent interfaces between the martensite variants. These changes 

cause the giant (up to 12%) magnetically induced deformation under the moderate (about 0.1 T or even 

less) magnetic field [15–17]. 

The martensitic transformations are accompanied by the small volume changes. The value of 

volume change (that is the volume effect of MT) was recognized since early development of SMAs as 

an important factor influencing the thermoelastic character of MT [1,2,18]. Particularly, a reduced 

volume effect during MT was observed in Fe-Ni-Co-Ti alloys [19]; it appeared as one of the crucial 

factors ensuring thermoelastic character of MT in these unique alloys [20–23]. 

The early experiments with the SMAs under hydrostatic pressure P have readily shown the 

interdependence between volume of SMA and characteristic MT temperature T0 [24–27]. Depending 

on the sign of volume change during MT the hydrostatic pressure increases or decreases MT 

temperatures. The positive sign of dT0/dP is observed, e.g., for the Au-Cd, Ti-Ni and Ni-Mn-Ga  

alloys [24,25,28], while Fe-Ni-Co-Ti SMAs show a strong negative slope of MT temperature as a 

function of hydrostatic pressure [26,27]. 

Generally, the volume changes caused by MT, hydrostatic pressure or external magnetic field are 

considered mainly as a subject of academic interest. Nevertheless, these issues applied to SMAs have 

also practical importance as already mentioned above. No wonder, the relevant studies are still 

continuing (e.g., [29]). In particular, the intriguing results were obtained recently for the MTs in 

FSMAs and MetaMSMAs. First, the decisive role of volume magnetostriction in the kinetics of a 

coupled magnetostructural phase transformation of Ni-Mn-Ga alloy was demonstrated [30]. Second, 

the large contribution of the magnetic subsystem to the entropy change ΔS accompanying the MTs of 

the SMAs was discovered: it has been found that ∆S strongly decreases with the distance between the 

MT temperature and the Curie point TC [31–33]. As far as this behavior of the entropy change 
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appeared to be inherent to the magnetic SMAs belonging to the different alloy systems, the 

spontaneous volume magnetostriction arising at the Curie point was assumed to be the universal factor 

that stipulates the magnetic contribution to the entropy change [33]. This assumption was confirmed by 

the quantitative theoretical analysis of the experimental data available for the Ni-Mn-Ga FSMAs. 

Third, the drastic influence of strong magnetic field (1T < H < 20T) on the MTs of Ni-Mn-In and  

Ni-Mn-Sn MetaMSMAs was discovered (see [32,34] and references therein). In particular, the  

so-called “magnetic arrest” of forward MT and magnetically induced reverse MT were observed. 

Inasmuch as the driving force (the difference of the Gibbs potential of two phases) for the thermally 

induced MT is given by the product ∆S∆T, where ∆T is the supercooling below the phase equilibrium 

temperature, the arrest of forward MT is promoted by the combination of two physical effects, which 

are the decrease of the forward MT temperature TMF measured for the Ni-Mn-X (X = In, Sn, Sb) alloys 

under the elevated magnetic field and the decrease of ∆S value caused by the increase of the difference 

TC − TMF [32]. A substantial contribution of spontaneous volume magnetostriction to the entropy 

change [33] suggests an idea about the role of forced volume magnetostriction in the arrest of forward 

MT and magnetic assistance to reverse MT. 

Geometrically, the shear deformation of crystal lattice can be performed without the volume 

change. However, the rigorous theoretical analysis shows, that the shear deformation of crystal lattice 

and, in particular, the martensitic transformations are always accompanied by the volume change 

although the tendency to volume conservation exists in the literature and retards the measurement of 

volume change (see [28] and references therein). Furthermore, a consistent theoretical consideration 

shows that the crystal defects formation/redistribution during/after MT is also accompanied by the 

volume change. This volume change is thermodynamically conjugated to the “internal pressure” [35], 

which can stabilize [36] or destabilize [37] martensitic phase, depending on the type of MT and 

conditions of experiment. 

Both stabilization and destabilization of martensitic state changes the functional properties of SMA, 

and therefore, the consideration of stabilizing and destabilizing pressures induced by the by external 

forces or internal factors is not only of academic interest but of practical importance as well. 

In the present review article, a systematic analysis of physical effects related to the volume change 

during MT is presented. The analysis is based on the formal resemblance between the hydrostatic 

pressure produced by the hydrostatic mechanical load and internal pressure created by the crystal 

defects or thermodynamically conjugated to volume magnetostriction. This resemblance is substantiated in 

Section 2 using the symmetry conforming theory of cubic-tetragonal and cubic-rhombohedral MTs. 

The effect of hydrostatic pressure on the MT temperature, MT strain and soft elastic modulus of SMA 

is considered in Section 3. The martensite stabilization and destabilization caused by the martensite 

aging and cyclic MTs is considered in Sections 4 and 5, respectively. The role of the internal pressure 

in the appearance quasi-second-order MTs is discussed in Section 6. The experimental data that are 

relevant to the cubic-rhombohedral and cubic tetragonal MTs in the Ti-Ni, Au-Cd and  

Ni-Mn-Ga are used in the Sections 3–5 for the quantitative estimations. In Section 7, the magnetic 

contribution to the entropy change during the MT is related to the volume magnetostriction and 

evaluated for the Ni-Mn-Ga and Ni-Fe-Ga alloys. A reasonable agreement between the theoretical 

results and experimental data is stated. As a whole, this review uncovers the unprecedented role of 
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volume variation due to MT, defects reconfiguration or magnetostriction in the phenomena exhibited 

by practically important martensitic multifunctional materials. 

2. Quantitative Theory of Thermoelastic Behavior of SMAs 

2.1. Symmetry Conforming Approach to the Problem 

The SMAs undergo phase transformations from high-symmetry (austenitic) to low-symmetry 

(martensitic) phase. The tendency to the minimum of elastic energy is commonly considered as the 

basic principle of transformational behavior of SMAs. To use this principle for the description of 

functional properties of SMAs, the elastic energy is expanded as a series in the strain tensor 

components εik. The mathematical structure of series is prescribed by the symmetry of crystal lattice: 

the series contains all combinations of strain tensor components, which are invariant with respect to 

the symmetry group of the crystal lattice in the high-symmetry (cubic) phase. The invariant series 

constructed for the different symmetry groups are presented in [38]. 

The elastic part of the Helmholtz free energy of cubic crystal can be expressed in terms of the linear 

combinations of strain tensor components, which are the basic functions of the one-dimensional,  

two-dimensional and three-dimensional irreducible representations of cubic group. The basic function 

of one-dimensional representation 

3/)(1 zzyyxxu εεε ++=  (1) 

is invariant with respect to the cubic symmetry group, while the basic functions 

)(32 yyxxu εε −= , xxyyzzu εεε −−= 23 , (2) 

and  

xyxzyz uuu εεε === 654 ,, , (3) 

of the two-dimensional and three-dimensional representations are transformed with the help of 2 × 2 

and 3 × 3 square matrices, respectively. (The coordinate axes are parallel to <100> crystallographic 

directions of the cubic crystal). The free energy of the crystal undergoing MT is expressed as 
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(4) 

where the coefficients 

)2(3 12111 CCc += , 3/'6/)( 12112 CCCc ≡−= , 443 4Cc =  (5) 
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are expressed through the elastic modules Cα,β (α, β = 1,2,…6) of the crystal in the cubic phase, the 

coefficients of third-order and fourth-order energy terms are the linear combinations of the third-, and 

fourth-order elastic modules in the cubic phase [28,39]. 

The Gibbs potential of SMA is presented by the equation 

)(2)(
6

1
3 665544332211 uuuuuuFG σσσσσσ ++−+−−= ,  (6) 

where 

3/)(1 zzyyxxP σσσσ ++=−= , )(32 yyxx σσσ −= , 

xxyyzz σσσσ −−= 23 , yzσσ =4 , xzσσ =5 , xyσσ =6 , 
(7) 

ikσ  are stress tensor components, P is pressure. 

To clarify the use of the Gibbs potential for the description of MTs the following remarks about the 

free energy, Equation 4, are pertinent. 

First, the equilibrium strain values satisfy the extremum conditions ∂G/∂uα = 0, which are 

equivalent to the conditions ∂F/∂uα = 0 if σα = 0. The subscripts α = 1,2,3 and α = 4,5,6 correspond to 

the diagonal and non-diagonal stress/strain tensor components, respectively. It is of importance that the 

terms linear in uα values with α = 4,5,6 are absent in the Equation 4 for the free energy. It is easy to see 
that the equilibrium states with 0, 32 ≠uu , 0654 === uuu  may exist in this case. These states can 

have the tetragonal symmetry and the values 2u , 3u  form the two-component order parameter of the 

cubic-tetragonal MT [39,40]. The terms linear in uα with α = 2,3 are present in Equation 4, but they 
vanish if u4 = u5 = u6. Due to this, the rhombohedral state with 0654 ≠== uuu , 01 ≠u ,  

u2 = u3 = 0 may exist [28]. In the presence of the terms of nuu 643,2 −  type (n = 1,2,3) the cubic-tetragonal 

MT is not possible, because the extremum conditions for the Gibbs potential show that in the course of 
phase transformation characterized by the two-component order parameter 3,2u  the concomitant 

nondiagonal strains nuu 3,264 ~−  must appear. The appearance of these strains leads to the appropriate 

lowering of tetragonal symmetry of the product phase. In presence of the energy terms of nuu 3,264−  type 

the phase transformation characterized by the three-component order parameter is accompanied by the 
appearance of the concomitant strains nuu 643,2 ~ −  and the appropriate lowering of rhombohedral 

symmetry of the product phase. 
Second, the series Equation 4 involves the terms of nuu α1  type. As so, the cubic-tetragonal phase 

transition is characterized by the appearance of the concomitant component 2
3

2
21 ~ uuu + , while the 

concomitant component 2
6

2
5

2
41 ~ uuuu ++  arises in the course of the cubic-rhombohedral phase 

transition. The role of concomitant components is especially important for the purview of this article, 

because the value of 3u1 is the trace of strain tensor, and therefore, it is related to the volume change of 

the alloy as 

)()(3 1 PvTvu MT += , (8) 

where νMT(T) is the volume change that accompanies MT of the unstressed alloy and ν(P) is the 

volume change under the pressure. According to Equations 6–8 the mathematical expression for the 

Gibbs potential involves the term Pν, which is linear in both volume change and pressure. If the 
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Helmholtz free energy involves the bilinear combination kXν of some physical value X and volume 

change v  (here k  is dimensionless constant), the combination kX can be considered as an “internal” 

pressure acting on the ideal cubic lattice. The crystal defects, impurities and spatially ordered spins or 

dipole moments of atoms are the most important sources of the internal pressure. 

Finally, it is of importance that the Equation 4 involves the third-order terms in the order parameters 

components (the coefficients of these terms are a4 and a5). As so, all MTs are the  

first-order phase transitions (see [41] and references therein). The detailed consideration of the role of 

third-order energy terms in the transformational behavior of alloys will be presented in Section 6.2. 

2.2. Cubic-Tetragonal MT 

In the case of cubic-tetragonal MT the non-diagonal strain tensor components u4, u5 and u6 are 

equal to zero in both parent and product phases. The tendency to volume conservation during MT is 

observed for all phase transformations of martensitic type. This tendency is expressed by strong 
inequality 2

3
2
2

2
1 uuu +<<  and therefore, the energy terms 4

11ub , )( 2
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2
2

2
12 uuub +  and 3

11ua  can be 

considered small as compared with 22
3

2
24 )( uub +  and )( 2

3
2
212 uuua + . In that case the equation for the 

Gibbs potential takes the following form 
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(9) 

The nondiagonal stress components are not conjugated with the order parameter of cubic-tetragonal 

MT and are omitted in Equation 9 hence. The coefficient c2(T) changes sign when the cubic-tetragonal 

MT occurs. Due to this, the cubic-tetragonal MT is accompanied by a pronounced softening of the 

elastic modulus 'C , see Equation 5. The volume change that accompanies cubic-tetragonal MT can be 

interrelated with the order parameter components. The condition ∂G/∂u1 = 0 results in the  

following relationship: 
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Using Equation 10, the u1 value can be excluded from Equation 9 and the Gibbs potential can be 

expressed through the order parameter components as  
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and the dimensionless parameter 27 / ab=Ω  are introduced. 

The expansion of the Gibbs potential in terms of the order parameter components (Equation 11) 

enables the description of the cubic-tetragonal MT in the framework of Landau theory of phase 
transitions. The conditions 0// 32 =∂∂=∂∂ uGuG  result in the equations describing the dependencies 
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of the order parameter components on the temperature and pressure. A zero solution of these equations 

corresponds to the high-temperature (cubic) phase. The nonzero solutions correspond to three 

equivalent variants of tetragonal lattice, which are usually referred to as the x- y- and z-variants of 

martensitic phase. The principal axis (c-axis) of x-variant is parallel to the crystallographic direction 

[100] of cubic phase, the principal axes of y- and z-variants are aligned with [010] and [001] directions, 

respectively (for more details see [39,40]). 

For the sake of definiteness, let us consider the transformation of cubic phase into z-variant of 

tetragonal phase occurring in the absence of anisotropic stressing (i.e., in the case of σ2 = σ3 = 0). For 

this variant of martensitic phase εxx = εyy and therefore, u2(T,P) = 0 in both austenitic and martensitic 

phases. The solution of the equation 
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As far as the volume change νMT is substantially smaller than the equilibrium value u0 of the order 

parameter u3, an approximate equality εxx + εyy ≈ −2εzz is held. Due to this, the equilibrium value of the 

order parameter can be evaluated from the experimental values of lattice parameters of cubic and 
tetragonal phases (a0 and ca, , respectively) using the relationships  

)/1(2/)(33 000 acaacu M −=−=≈ ε , (16) 

(see Equations 1 and 2). Here the value [001]ε εM ≡  is the specific elongation/contraction of the unit cell 

of cubic lattice caused by MT; this value is referred to as the martensitic transformation strain. 

In accordance with the general principles of Landau theory, the high-temperature (austenitic) phase 
is stable if the coefficient of the second-order energy term is positive, that is if 0),(*

2 >PTc . The 

solution describing the low-temperature (martensitic) phase is stable if )(),(*
2 PcPTc t< . If the 

coefficients, Equation 12, are known, the equations 

),(),(,0),( 1
*
22

*
2 PcPTcPTc t==  (17) 

enable determination of the lability lines )(2 PTT =  and )(1 PTT =  for the austenitic and martensitic 

phases, respectively. In view that the cubic-tetragonal phase transformations (forward MTs) are 
observed on cooling, the energy coefficient *

2c  is the increasing function of temperature, so the 

inequality 21 TT >  is held. 

It should be emphasized that Equations 15–17 are suitable for a description of the transformational 

and deformational properties of the imperfect samples of paramagnetic and magnetically ordered shape 

memory alloys. Both defect formation/reconfiguration and magnetic ordering of the alloy results in the 
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volume change, and therefore, induces an “internal” pressure. The pressure caused by the defects 

formation/reconfiguration is proportional to their concentration; the pressure that is induced due to the 

magnetic ordering is strictly related to the volume magnetostriction of an alloy. 

For the quantitative description of the cubic-tetragonal MT, the coefficients of the Landau 

expansion for Gibbs potential (Equation 11) must be expressed through the basic measurable 

characteristics of SMA. For this purpose the relationships 
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can be used. These relationships show that 
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where ),( 2 PTa , ),( 2 PTc  are the lattice parameters of tetragonal lattice. 

In accordance with Equation 12, the *
4b  value is independent of pressure. As so, the Equation 19 

predicts that the shear modulus of cubic phase measured just before the start of MT depends on the 

pressure as the second power of MT strain measured just after the finish of MT. This prediction can be 

verified experimentally. 

The expression 
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which follows from Equation 10, establishes the interrelation between the MT strain and volume 
change during MT. However, this interdependence involves the undetermined parameters 2a  and Ω . It 

may be assumed that all third-order and fourth-order energy coefficients are in roughly the same ratio 
to each other. This assumption results in the estimation: 11

04427 |3|||~|/|~|/||| −− ==Ω Muabab ε .  

In this case the order of magnitude of the energy coefficient 2a  can be determined from the  

approximate relationship 
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where the values C11, C12, εM, and νMT < 0 can be determined from the experiments. 

2.3. Cubic-Rhombohedral MT 

The cubic-rhombohedral MT is accompanied by the appearance of non-zero values of shear strains 

u4, u5, u6 while the diagonal strain tensor components u2 and u3 are equal to zero in both cubic and 

rhombohedral phases. The tendency to volume conservation during MT is expressed by inequality 
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considered negligibly small as compared with 22
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In this case the expression for the Gibbs potential, Equation 4, is reduced to the form 
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The coefficient )(3 Tc  changes sign when the cubic-rhombohedral MT occurs. This coefficient is 

proportional to the shear modulus C44 in the cubic phase (Equation 5), and therefore, the  

cubic-rhombohedral MT is accompanied by the pronounced softening of this modulus. The extremum 

condition for the Gibbs potential ∂G/∂u1 = 0 establishes the following interrelation between the volume 

change and order parameter components: 
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The substitution of the u1 value (Equation 23) into Equation 22 results in the following Landau 

expansion for the Gibbs potential 
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and the dimensionless parameter 38 / ab=Λ  is introduced. 

The dependencies of the order parameter components on the temperature and pressure values obey 

the equations ∂G/∂u4–6 = 0. A zero solution of these equations corresponds to the high-temperature 

phase. The nonzero solutions correspond to the four equivalent variants of rhombohedral lattice with 
the principal crystallographic axes parallel to [111], ]111[ , ]111[  and ]111[  crystallographic 

directions (for more details see, e.g., [28]). For the sake of definiteness, let us consider the 

transformation of cubic phase into the [111]-variant of rhombohedral lattice occurring in the absence 
of anisotropic stressing (i.e., at 064 =−σ ). For [111]-variant of rhombohedral lattice Ruuuu ≡== 654 . 

The solution of the equation 
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An equilibrium value of the order parameter is related to the specific elongation/contraction of the 

cubic unit cell in [111] direction as 

Mu εε ≡= ]111[02 . (29) 

The high-temperature phase is stable if 0),(*
3 >PTc . The solution describing the low-temperature 

phase is stable if )(),(*
3 PcPTc R< . In the case when the Landau expansion coefficients are determined 

from the equations Equation 25, the conditions 

),(),(,0),( 1
*
32

*
3 PcPTcPTc R==  (30) 

enable determination of the lability lines )(2 PTT =  and )(1 PTT =  for the austenitic and martensitic 

phases, respectively. The cubic-rhombohedral phase transformations (forward MTs) are observed on 
cooling of the alloys, so the energy coefficient *

3c  is the increasing function of temperature and the 

inequality 21 TT >  holds. 

The Equations 27–30 are suitable for description of the transformational and deformational 

properties of the imperfect paramagnetic and magnetically ordered shape memory alloys. The 

coefficients of Equation 25 in the Landau expansion for the Gibbs potential depend on the effective 

pressure that may be induced by the hydrostatic load, defects formation/reconfiguration, magnetic 

ordering of SMA, etc. For the quantitative description of the cubic-rhombohedral MT, these 

coefficients must be expressed through the basic measurable characteristics of SMA. The relationships 
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result in the expressions 
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In accordance with Equation 25, the *b  value is independent of pressure and hence Equation 32 

predicts that the elastic modulus C44 of cubic phase measured just before the start of MT depends on 

the pressure as the second power of MT strain measured just after the finish of MT. The 

interdependence between the soft elastic modulus and MT strain can be verified in the experiments 

with the different alloys belonging to the same alloy family. 

The expression 

)2(8

]3/),(1)[,(3

1211

2]111[2
2

]111[3

CC

PTPTa
vMT +

Λ+
−=

εε
, (33) 
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which follows from Equation 23, describes the interrelation between the order parameter and volume 
change of MT. The Equation 33 involves the undetermined parameters 3a  and Λ . 

If all third-order and fourth-order energy coefficients are in roughly the same ratio to each other, the 
estimation 1

]111[
1

0
*
5

*
38 ||2||~|/|~|/||| −− ==Λ εuabab  is valid and the energy coefficient 3a  can be 

estimated by the order of magnitude from the relationship 

)0,(

)2(
|~|

2
2

]111[

1211
3 T

CCv
a MT

ε
+− , (34) 

which involves the measurable values C11, C12, εM, and νMT < 0.  

2.4. Summary of Basic Points and Preview of Applications of the Theory 

Summarizing the main points of the symmetry conforming theory of MTs in the SMAs, we can 

conclude that this theory starts from the invariant (with respect to the cubic symmetry group) 

expression for the Gibbs potential. This expression can be represented as the Landau expansion in the 

order parameter components (see Equations 11 and 24). The expansion coefficients depend on the 

pressure produced by the hydrostatic mechanical load or on the “internal” pressure caused by 

crystallographic defects formation, chemical or magnetic ordering of the alloy, and any other physical 

factor, which changes the volume of SMA. 

Formally, the pressure results in the renormalization of the Landau expansion coefficients. It is 
especially important for the purview of this article that the renormalization of the coefficients )(2 Tc  

and )(3 Tc  of the second-order energy terms is proportional to (i) pressure value and (ii) the ratio of 

volume change during MT to the squared MT strain, that is  

Pvcc MMT )/( 2
3,2

*
3,2 ε∝− . (35) 

This follows from Equations 12 and 21 for c2 and Equations 25 and 34 for c3. In this line of 

reasoning, all physical effects, which can be described in terms of the internal pressure, must be 

closely related to the volume changes that accompany MTs. 

The drastic influence of the volume change on the elastic, thermodynamic and magnetic properties 

of SMAs will be demonstrated in the next sections of this overview. Special attention will be paid to 

the effects caused by hydrostatic loading, martensite aging and cyclic across forward/reverse MTs. The 

physical consequences of spontaneous volume magnetostriction of ferromagnetic SMAs will be also 

described. The Landau expansion coefficients will be estimated for the representative Ti-Ni, Au-Cd 

and Ni-Mn-Ga alloys. The interdependence between the volume changes caused by the MTs in these 

alloys, on the one hand, and MT temperatures, MT strains and elastic modules, on the other hand, will 

be studied. The contribution of volume magnetostriction to the entropy change during MT of 

ferromagnetic shape memory alloy will be disclosed by consideration of the representative Ni-Mn-Ga 

and Ni-Fe-Ga alloys. 

It is commonly known that the cubic-orthorhombic or cubic-monoclinic MTs are observed in many 

alloys. In some cases the product phases arising in the course of these MTs are characterized by the 

slightly distorted tetragonal or rhombohedral crystallographic cells. In these cases Equation 35 

approximately relates the volume change to the main component of MT strain. It may be  
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expected therefore that the conclusions derived from this equation are valid for the majority of 

thermoelastic alloys. 

3. Martensite Stabilization/Destabilization under Hydrostatic Pressure 

3.1. Interrelation between the Volume Change during MT and Pressure Effects 

The hydrostatic compression stabilizes the martensitic phase if the volume of alloy decreases during 

the forward MT (i.e., if νMT < 0) and destabilizes it otherwise. The stabilization/destabilization of 

martensitic phase under pressure manifests itself basically as 

a) an increase/decrease of the characteristic MT temperatures [24–26,42,43]; 

b) an increase/decrease of the soft elastic modulus of martensite. 

If the transformation goes in the quasiequilibrium way, the shifts of martensite start and martensite 

finish temperatures under pressure are approximately equal to the shifts of the lability temperatures of 

the martensitic and austenitic phases T1 and T2. In the simplest approach, the influence of pressure on 
MT can be characterized by the change of the average temperature 2/)( 210 TTT +≡ . This change 

proves to be strictly proportional to the pressure value [25,26] and the coefficient of proportionality 
dT0/dP can be estimated from the Clausius–Clapeyron relationship qmTvdPdT MT // 00 = , where m is 

mass density, q is the latent heat of MT normalized to the unit of mass. Hence, the shift of MT 

temperature under hydrostatic pressure is expressed as 

P
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Tv
T MT








=Δ 0 . (36) 

The MT of cubic-tetragonal or cubic-rhombohedral type is accompanied by the pronounced 

softening of the shear elastic modulus C' or C44, respectively. The pressure influence on the value of 

shear modulus in the austenitic phase of alloy can be estimated using the relationship 
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, (38) 

which follows from Equations 12,21,25,34, respectively. One can see now that the influence of 
pressure on the MT temperature and shear modulus of an alloy is proportional to the product MTPv . 

This result is in agreement with Equation 35 and general conclusion derived from this equation in the 

Section 2.4. 

Every physical factor, which causes the martensite stabilization, noticeably changes the functional 

properties of SMAs. In the particular case of martensite stabilization by alloy aging, this statement is 

confirmed by the numerous experiments (see [44–47] and references therein). To extend this statement 

to include the other factors of martensite stabilization, the influence of hydrostatic pressure on the MT 

strain and shear elastic modulus of SMA will be considered below. The Ti-Ni alloy system will be 
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chosen as the illustrative example. The properties of Ti-Ni alloys deserve a consideration because of 

the broad use of these alloys in the medicine [6] and engineering [4,5,7]. 

3.2. Landau Expansion Coefficients Estimated from the Shear Modulus of Ti-Ni Alloy 

The Ti–Ni alloys exhibit both cubic-monoclinic (B2→B19) and cubic-rhombohedral (B2→R) 

transformations [48]. A consistent theory of the cubic-monoclinic phase transformation is not 

developed yet, while the cubic-rhombohedral transformation can be studied using Equations 26–30. 
The coefficients of Equation 26 can be estimated from the shear modulus )(

44
AC , which describes the 

elastic response of alloy in the austenitic state to the mechanical loading in [111] crystallographic 
direction. In the presence of stress ]111[σσ ≡  , Equation 26 is modified as 

02])(),([ 2**
5

*
3 =−++ σRRR ubuPaPTcu . (39) 

The solution of Equation 39 can be presented as a sum of the spontaneous shear strain 0u   

(Equation 27) and elastic strain Ru~ . The substitution of the values RR uPTuu ~),(0 +=  and 
)(

44
*
3 4),( ACPTc =  into Equation 39 leads to the formula that interrelates the MT strain and the 

difference of shear modules characterizing the martensitic and austenitic states of an alloy: 
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44 PTubPTuPaPTCPTC AM +=−  (40) 

It is quite natural that the difference of the elastic modules of two phases tends to zero in the 
limiting case 00 →u , because in this case the phases become physically equivalent. Using Equation 26, 

one can express the elastic modulus of martensitic phase as 
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44 PTubPTuPaPTC M += . (41) 

Substituting **
520 /)(),( bPaPTu −=  (see Equation 31) into Equation 41, one can derive  

the relationships 

),(4),( 1
)(

442
)(

44 PTCPTC AM =  (42) 

and 

),(/),(4 2
2
02

)(
44

* PTuPTCb M= . (43) 

The Equations 28,39,42,43 enable the solution of two following problems: 

(i) a theoretical evaluation of the shear modulus from the experimental temperature dependencies 

of lattice parameters in the martensitic phase; 

(ii) a restoring of the temperature dependence of MT strain from the temperature dependence of 

the shear modulus. 

An example of the solution of the first problem, the cubic-tetragonal MT was described in [49]. The 

solution of the second problem is presented below. 
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For the sake of definiteness, let us consider the experimentally observed cubic-rhombohedral MT in 
Ti49.5Ni50.5 alloy [50]. The temperature dependence of 44C  modulus of Ti49.5Ni50.5 alloy measured  

in [50] is shown in Figure 1 by circles. 

Figure 1. Experimental values of shear elastic modulus of the Ti49.5Ni50.5 alloy [50] 

(circles) and the extrapolation of experimental data used for computation of martensitic 

transformation (MT) strain (line). The arrows point to the characteristic MT temperatures 

and correspondent values of shear modulus.  

 

The lability temperatures of martensitic and austenitic phases derived from the experimental values 
of soft modulus are K 3111 =T  and K 3002 =T , respectively (see arrows in Figure 1). Moreover, the 

experiment shows that GPa. 18)( 244 =TC  In this case Equation 42 results in the value 

GPa 5.4)( 144 =TC . The energy coefficients GPa 1045.1)0( 4*
5 ×=a and GPa 109.2 7* ×=b  can be found 

from Equation 32 using experimental value %1)(2 20]111[ −≈= Tuε  [48] and estimation νMT ≈ −5 × 10−4 

resulting from the Clausius-Clapeyron relationship (for more details see [28]). To describe an 

influence of the hydrostatic pressure, a dimensionless parameter Λ  that is involved in the renormalized 
energy coefficients, Equation 25, should be estimated to be 200||2|~| 1

]111[ ≈Λ −ε   

(see the last paragraph of Section 2.3). The estimated values enable calculation of the ratio 13 / ca  and 

coefficients ),(3 PTc , )(*
5 Pa  from Equations 33 and 25. Due to this, a quantitative description of the 

transformational behavior of the single-crystalline sample under the action of uniaxial mechanical 

loading becomes possible (the appropriate theoretical procedure is described in [49]). 

3.3. The Influence of Pressure on the MT Strain and MT Temperature 

Solving of Equation 41 with respect to u0 value enables the quantitative description of the pressure 
influence on the MT strain ]111[ε  if the parameter Λ , energy coefficients *

5a , *b , and function C44 (T,0) 

are known. The energy coefficients were determined above for the Ti49.5Ni50.5 alloy. The C44 (T,0) 

function must coincide with experimental temperature dependence obtained for the austenitic and 

martensitic phases of this alloy and satisfy Equation 42. This function is shown in Figure 1 by the solid 

line. The figure demonstrates that experimental temperature dependence of shear modulus does not 

satisfy the condition of Equation 42. A disagreement between theory and experiment is obviously 

caused by the appearance of mixed two-phase state in the temperature range of T2 < T < T1. 

Figure 2(a) shows the solutions of Equation 41 computed for different Λ  values using the C44 (T,0) 

function shown in Figure 1 by the solid line. It is seen that the pressure of 1 GPa noticeably changes 
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the temperature dependencies of the MT strain if 200−=Λ  or 400 but leaves it almost unchanged if 

200=Λ . It means that the computations show the non-monotone dependence of MT strain on Λ  

value. If 200−=Λ  , the theory predicts a monotone dependence of MT strain on pressure; the pressure 

of 2 GPa increases the absolute value of MT strain by 25% (Figure 2(b)). 

Figure 2. (a), (b) The temperature-dependent MT strains restored from the temperature 

dependence of soft elastic modulus. 

 

 

The shifts of MT temperatures caused by a hydrostatic pressure are measured in experiments  

(see, e.g., [25,26,28]). It is observed that the shifts of the forward and reverse MT temperatures are 

close in value. To describe the influence of pressure on the MT temperatures, an average value 
2/)]()([)( 210 PTPTPT +=  of lability temperatures )(1 PT  and )(2 PT  can be computed. This value is 

shown in Figure 3(a). It is seen that the variation of MT temperature is roughly equal to 10 K/GPa and 
2 K/GPa for the values 200=Λ  and 200−=Λ , respectively. The difference )()()( 21 PTPTPT −=Δ  

(that is the width of two-phase range) also depends on pressure (see Figure 3(b)). The pressure 

application diminishes the width of two-phase temperature range. This diminution is especially 

pronounced if the parameter Λ  is positive: in this case the width of two-phase temperature range is 

less than 2 K for the wide interval of pressures.  
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Figure 3. (a) Theoretical dependence of the MT temperature T0 on the hydrostatic 

pressure. (b) Theoretical dependence of two-phase temperature interval on pressure. 

 

 

It should be remembered that the conclusions derived from Figures 2 and 3 are valid in the case of 
negative value of the MT strain ]111[ε . If the MT strain is positive, the sign of parameter Λ  should be 

changed to keep in force these conclusions. 

3.4. The Influence of Pressure on the Shear Elastic Modulus 

A measurement of the shear elastic modulus C44 of SMA in the martensitic phase is a difficult task 

even in the absence of pressure. In the same time, the value of this modulus strongly affects the 

temperature dependence of heat capacity [51] and other thermodynamic properties of SMAs. It 

stipulates an importance of the calculation of the pressure and temperature dependencies of shear 

modulus. The results of computations are presented in Figure 4. 
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Figure 4. (a) Pressure influence on temperature dependence of shear modulus computed 

for the negative Λ values. (b) Pressure influence on temperature dependence of shear 

modulus computed for the positive Λ values. 

 

 

The computations show that the pressure of about 1 GPa drastically increases the shear modulus in 

the martensitic phase and decreases it in the austenitic phase. This result explicitly demonstrates the 

stabilization of martensitic phase and the appropriate destabilization of the austenitic one. If the 

parameter Λ  is negative, the pressure influence on the shear elastic modulus of austenite is less 

pronounced than if 0>Λ  but still observable, nevertheless. 

It should be stressed, that in view of the ambiguity in Λ values, an uncertainty of the theoretical 

results arises. However, these results are in a qualitative agreement with experimental data reported  

in [52]. Therefore, the strong influence of the hydrostatic pressure on the MT strains and soft elastic 

modules of SMAs should be expected. This influence can manifest itself, in particular, as the change of 

heat capacity of the alloy in the wide temperature range (see [51]). 

4. Stabilization of Martensitic Phase by Its Aging 

4.1. Isotropic Mechanism of Martensite Stabilization 

It is commonly known that a spatial distribution of the lattice defects evolves slowly during aging 

of the shape memory alloys in a martensitic phase [46,53]. This evolution causes the well-pronounced 

physical effects, which include: 

(i) a considerable difference in the stress–strain dependencies measured before and after 

martensite aging [45,46,53]; 

(ii) a gradual change of the lattice parameters during martensite aging [54]; 
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(iii) a martensite stabilization [44,47,55–57], that is an increase of the reverse (from martensitic to 

austenitic phase) MT temperature caused by martensite aging. 

The works interrelating the effects of aging to the spatial symmetry of defect subsystem can be 

singled out from the numerous publications related to this subject [44,53,57–59]. For the particular 

case of the point defects, the Symmetry-Conforming Short-Range-Order (SC-SRO) principle has been 

formulated [53]. According to this principle, the energy of the crystal with defects is minimal when the 

probabilities of finding point defects in the certain crystallographic positions have the same symmetry 

as the crystal lattice has. A substantial generalization of SC-SRO principle follows from the special 

version of a Landau theory of phase transitions, which has been developed very recently for the 

description of interplay between the deformation of crystal lattice during MT and reconfiguration of 

defect subsystem [35–37]. Firstly, this theory states that the defects of any type induce the “internal” 

(that is existing even in the absence of external forces) mechanical stress and the energy of every 
(austenitic or martensitic) phase is minimal when the symmetry of stress tensor )(i

ikσ  corresponds to the 

symmetry of crystal lattice in this phase. Secondly, the theory takes into account that the tendency of 

the crystal with defects to the ground state is accompanied by a volume change. 
Stress tensor )(i

ikσ  describes an influence of defects on the crystal lattice, and therefore, depends on 

time t  due to a slow reconfiguration of the defect subsystem during martensite aging. This tensor can 

be subdivided into the isotropic and axial parts as 

)()()( )()()( ttPt ax
ikik

ii
ik σδσ += , (44) 

where ikδ  is the Kronecker symbol, the scalar )(iP  is interpreted as the "internal" pressure, which is 

responsible for the volume change accompanying the evolution of defect subsystem during the 
martensite aging. An axial part of the internal stress is described by the tensor )()( tax

ikσ , the trace of this 

tensor is equal to zero. 

Time-variation of the axial stress is controlled by the SC-SRO principle and is responsible  

for the difference in the yield stresses characterizing the stress–strain tests performed before  

and after the martensite aging. Moreover, the axial internal stress contributes to the martensite 

stabilization [35,36,60,61]. 

A volume change caused by the evolution of a defect subsystem after MT does not result in the 

symmetry change, and therefore, is an extrinsic to the SC-SRO principle. This volume change provides 

an additional (to symmetry conformation) physical mechanism for the martensite stabilization: if the 

volume changes arising during and after forward MT are of the same sign, the latter retards the reverse 

MT and stabilizes martensitic phase therefore. This is the isotropic mechanism of martensite 

stabilization [35,36,62]. 

It was shown recently that the martensite stabilization in the representative Au-Cd and Ni-Mn-Ga 

alloys is caused mainly by the isotropic mechanism [35,36]. Due to this, an evolution of the 

transformational properties of these alloys is satisfactorily described by the equations presented in the 

Sections 2 and 3, if in these equations, the hydrostatic pressure P  is replaced by the time-dependent 
internal pressure )()( tP i . In accordance to the arguments presented in Sections 2.4 and 3.1, an 

influence of the internal pressure on transformational properties of SMA is characterized by a product 
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)()(2 tPv i
MMT
−ε . It means that the larger is a ratio of the volume change during MT to the MT strain 

(other parameters being equal), the more pronounced are aging effects.  

The isotropic mechanism of a martensite stabilization can be illustrated by the consideration of 

martensitic transformation of Au-Cd alloy. 

4.2. Martensite Stabilization in Au-Cd Alloys 

The Au-Cd alloys exhibit MT of the cubic-rhombohedral type. For the theoretical description of 

martensite stabilization by aging, the Gibbs potential, Equation 24, with time-dependent coefficients 
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−=
 (45) 

should be minimized. Note that the Equations 45 are obtained from Equations 25 by the )()( tPP i→  

change. The time-dependence of the internal pressure can be determined from the simple physical 

considerations: the )(iP  value is constant in the equilibrium state, which corresponds to the minimal 

energy of crystal with defects; the rate of change of )(iP  is roughly proportional to the deviation from 
the equilibrium value )()( ∞iP , which can be formally reached after the infinite time period; a duration 

of the transformation cycle is small in comparison with aging time. These considerations are 

formalized by the equation 

τ
)()()( )()()( tPP

dt

tdP iii −∞= , (46) 

where τ  is characteristic time of the relaxation of defect subsystem to the equilibrium. It is convenient 

to count the internal pressure from its value in the “fresh” martensitic state appearing at 0=t . In this 

case the internal pressure arises in the course of martensite aging and stabilizes the martensitic state. 

An appropriate solution of Equation 46 















−−∞=

τ
t

PtP ii exp1)()( )()(  (47) 

explicitly shows that the stabilizing pressure (SP) appears immediately after MT and tends to the 
saturation value of )()( ∞iP  during a martensite aging (more formal substantiation of Equation 47 is 

presented in [36]). 

Few thermodynamic characteristics of the Au-Cd alloy are needed for the determination of the  

time-dependent coefficients of the Gibbs potential, Equation 45. Unfortunately, the complete set of 

characteristics has never been measured for one certain alloy, and therefore, some representative  

alloy belonging to the Au–Cd alloy family should be considered. The experimental values of  
T2 ≈ 300 K [63], GPa 40)( 144 ≈TC  [64] and %8.02 −≈= RM uε  [65] are reported for few Au–Cd alloys 

and the typical value of volume change during the thermoelastic MT, 3103 −×−≈MTv  [66], can be 

accepted. A negative value of 2502 1 −==Λ −
Mε  can be chosen (see below). With known shear 

modulus, the transformation strain and volume change enable us to evaluate the coefficients 13 / ca , 

GPa 106.1)0( 5
5 ×=a  and GPa 104)0( 7* ×=b  from Equations 31–34. The Clausius–Clapeyron 
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relationship with the values 1g J 1 −≈q  and 3cm g 14 −≈m  [28] results in the characteristic temperature 

value of  K8.3061 =T .  

The values presented above prescribe a time evolution of the ),(*
3 tTc  coefficient whose temperature 

dependence leads to the phase transformation. As a consequence, the characteristic MT temperatures 

determined from the Equation 30 prove to be time-dependent. 

The dependence of austenite start and finish temperatures on aging time t  can be  
characterized by the temperature differences )0()( *

2
*

2 TtTAS −≡Δ  and ).0()( *
10

*
1 TtTAF −≡Δ  The value 

)()( *
2

*
112 tTtT −≡Δ  is the temperature range for the two-phase region, that represents a mixture of 

austenitic-martensitic structures. These temperature differences were computed using the aforementioned 

set of physical values and Equations 46 and 47. The relaxation time of min 50=τ  and the saturation 
value of internal pressure GPa 8.3)()( =∞iP  were determined by fitting )(tAFΔ  theoretical curve to 

the experimental values reported in [57]. The results of computations are shown in Figure 5 together 

with the austenite finish temperature changes experimentally observed in [57]. 

Figure 5. Time evolution of the austenite start (dotted line), austenite finish (solid line), 

and two-phase temperature range (dashed-dotted line). The experimental values (circles) 

for the austenite finish temperature are taken from [57] and used for the evaluation of 

relaxation time and saturation value of stabilizing internal pressure. 

 

It was shown in the Section 2.3 that the absolute value of the dimensionless parameter Λ  can be 
estimated as 12|| −≈Λ Mε . The negative value of Λ  was used for obtaining results presented in Figure 5. 

The negative value was chosen because in this case the theory shows that the martensite aging causes 

broadening of the two-phase temperature range of the reverse MT (see two-side arrow in Figure 5). 

This feature of the transformational behavior of aged alloys is indirectly confirmed by the experiments 

in [67–70]. 

The computations performed for the positive Λ  values demonstrate a narrowing of the two-phase 

temperature range by the martensite aging. This type of transformational behavior of an alloy is not 

typical but, indeed, it was observed for Co-Ni-Ga alloy [71]. 
It should be emphasized that the stabilizing pressure renormalizes the parameter *

5a , which 

prescribes that MT must be the first-order phase transition. According to Equation 45 and 

argumentation presented in Section 2.4, we have: 
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The values presented above result in the following estimation )(]GPa 1.0[~)0(/ )(1
5

*
5 ∞Δ − iPaa . This 

estimation shows that the jumps of physical values observed in the course of MT would be enlarged by 

factor of 1.4 if the stabilizing pressure of the order of 4 GPa should appear. 

Let us sum up the new aspects of a martensite stabilization effect considered in [35,36,62]. 

(i) The time evolution of the crystal defects subsystem leads to a gradual volume change of the 

SMA aged in the martensitic state. 

(ii) According to the general principles of thermodynamics, the time-dependent internal pressure 

can be defined as the thermodynamic value, which is conjugated to the volume change. 

(iii) The internal pressure contributes to the martensite stabilization effect but does not change the 

symmetry of the crystal lattice; therefore, the gradual volume change of the alloy, held in the 

martensitic phase, provides the isotropic mechanism of martensite stabilization, which is 

extrinsic to the commonly known SC-SRO principle formulated in [44,53]. 

(iv) The quantitative theoretical analysis of the experimental results in Ref. [57] shows that the 

stabilization of rhombohedral martensitic phase of Au-Cd is caused mainly by the isotropic 

mechanism and the corresponding value of internal pressure is about 3.5 GPa [36]. 

5. Destabilization of Martensitic Phase by Thermomechanical Cycling 

5.1. Introductory Statement 

As we had demonstrated, the reconfiguration of defect system strongly influences the elastic and 

transformational properties of SMA. In particular, holding an alloy during long time in the martensitic 

phase leads the crystal lattice with defects to the quasiequilibrium state and causes the martensite 

stabilization. It suggests an idea that the cyclic thermally- or stress-induced MTs can disturb the crystal 

lattice with defects and move it out of an equilibrium. As so, the changes in the alloy properties, which 

are opposite to those described in the previous section, can be observed. This idea was confirmed  

in the course of cooperative (experimental and theoretical) studies of the cyclic thermally- and  

stress-induced MTs [37]. 

5.2. Experiment 

The effect of the thermal, mechanical and combined thermomechanical cycling on the elastic 

properties and transformation behavior of Ni57.5Mn22.5Ga20.0 alloy has been studied [37,72]. The alloy 
undergoes MT from cubic phase with lattice parameter nm 587.00 =a  to a non-modulated tetragonal 

phase with lattice parameters nm 543.0=a and nm 665.0=c  ( 22.1/ =ac ). 

The Sample 1 with dimensions of 0.19 × 0.5 × 9.1 mm3 and Sample 2 with dimensions of  

0.27 × 0.28 × 8.5 mm3 were cut from the same Ni57.5Mn22.5Ga20.0 single crystal. Both samples were 

oriented in [100] crystallographic directions. The details of specimen preparation are reported  

in [37,72]. A TA Instruments Q800 dynamic mechanical analyzer (DMA) was used to measure:  

(a) the temperature dependence of the low-frequency elastic modulus in the dynamic tensile mode and 

(b) the tensile stress–strain curves in a quasi-static mode. 
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Experimental temperature dependence of the elastic modulus of Sample 1 is shown in Figure 6  

by the solid line. An abrupt change of elastic modulus in the temperature ranges of the forward  

(545 K < T < 575 K) and reverse (585 K < T < 625 K) MTs is observed. The horizontal arrows in 

Figure 6 illustrate that the modulus measured at martensite finish temperature TMF = 545 K or austenite 

start temperature TAS = 585 K is four times as large as that measured at martensite start temperature 

TMS = 575 K or austenite finish temperature TAF = 625 K, respectively. 

Figure 6. Elastic modulus of Sample 1 of Ni57.5Mn22.5Ga20.0 single crystal. 

 

After measurements of the elastic modulus, Sample 1 was subjected to the stress–strain cycles for 

obtaining a stress–temperature phase diagram. The cycles were performed at different temperatures Tn, 
where 15...2,1=n  is the cycle number; the sample was heated to 673 K and held at this temperature 

during 10 min before each cycle. The critical stress values )(TAFσ  and )(TMSσ , which correspond to 

the finish of reverse MT and the start of forward MT, were determined from the stress–strain curves. 

These values are shown in Figure 7. 

Figure 7. (a) Experimental stress values corresponding to the finish of reverse MT of 

Sample 1. (b) Experimental stress values corresponding to the start of forward MT of 

Sample 1.  
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Figure 7. Cont. 

 

The temperature dependence of elastic modulus was measured again after the 15th cycle to study 

the influence of thermomechanical cycling on the alloy properties. A drastic decrease of elastic 

modulus after the thermomechanical cycling was observed (see Figure 8). 

Figure 8. (a) An influence of the thermomechanical cycling on the elastic modulus 

measured on cooling of Sample 1. (b) The influence of thermomechanical cycling on the 

elastic modulus measured on heating of Sample 1. The dashed lines show the theoretical 

temperature dependencies of elastic modulus that are derived in Section 5.4. 

 

 

Sample 2 was used to investigate the influence of the cyclic stress-induced MTs on the superelastic 

properties. Ten sequential stress–strain cycles have been performed at constant temperature 673 K. The 

stress–strain loops obtained during the first and tenth cycles are shown in Figure 9. 

 



Metals 2013, 3 260 

 

 

Figure 9. The influence of mechanical cycling on the superelastic behavior of Sample 2 of 

Ni57.5Mn22.5Ga20.0 single crystal. 

 

After mechanical cycling, the unloaded Sample 2 was subjected to 10 heating–cooling runs through 
MT and a noticeable shift of the reverse MT temperature 2/)( AFASR TTT +≡  was observed (see  

Figure 10). The shift of start of the forward MT temperature MST  proved to be comparable with the 

scatter of experimental points. 

Figure 10. The influence of thermal cycling on the forward (bottom curve) and reverse 

(upper curve) MT temperatures of Sample 2. 

 

5.3. Qualitative Explanation of Experimental Results 

The experiments demonstrate a noticeable softening of the elastic modulus of martensite after 

thermomechanical cycling (Figure 6). This effect suggests that cycling through the forward and reverse 

MTs destabilizes the martensitic state of the alloy. The suggestion is confirmed by an elevation of the 

plateau-like segments of the superelastic stress–strain loops in the course of the cyclic stress-induced 

MTs of Sample 2 (Figure 9): a destabilization of martensitic phase has to be accompanied by a 

decrease of MT temperature, and so, the martensite destabilization broadens an interval between the 

MT temperature and the constant temperature of alloy maintained during the cyclic mechanical 

loading. The movement of MT temperature away from the alloy temperature retards the stress-induced 

MT and elevates the critical stress value, which starts this MT [73–77]. 

The observed destabilization of martensitic phase admits a simple explanation. If the SMA is in the 

martensitic state during rather long time, the internal stress brings the real crystal lattice, which 
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consists of the atoms situated in the regular crystallographic positions and crystal defects, into its 

equilibrium state, and therefore, stabilizes the martensitic phase. The cyclic MTs disturb an 

equilibrium state of the real crystal lattice and destabilize the martensitic phase. So, the martensite 

destabilization by cyclic MTs and martensite stabilization by aging can be considered as the opposite 

physical effects. 

It is convenient to describe the martensite destabilization in terms of destabilizing internal stress, 

i.e., to count up the internal stress from its value reached before a thermomechanical cycling. In this 

case the destabilizing stress caused by cycling and the stabilizing stress that arises during the martensite 

aging are of the same order of magnitude with the opposite signs. Due to this, the expected absolute 

value of destabilizing stress can be roughly estimated from the experiments on martensite aging.  

The martensite destabilization may be, in principle, caused by both isotropic and axial part of the 

internal stress, Equation 44. However, the absolute value of axial internal stress (about few tens of 

megapascals [63]) observed in the experiments on martensite aging is not sufficiently large to be 

responsible for the strong influence of cycling on the elastic modulus. In the same time, the elastic 

modulus can be changed by the internal pressure (see Sections 3 and 4). This assumption is supported 

by the comparatively large volume changes (about 0.5% [78]) observed during MTs of Ni-Mn-Ga 

alloys into a non-modulated tetragonal phase with 1/ >ac . 

5.4. Quantitative Description of the Martensite Destabilization Effects 

Physical considerations, which are essentially similar to those presented in Section 4.2, lead to the 

following dependence of destabilizing internal pressure on the cycle number n :  

[ ])/exp(1)()( 0
)()( nnPnP ii −−∞= ,  (49) 

where 0n  is the characteristic integer prescribed by a rate of the defect subsystem reconfiguration, 

constP i =∞)()(  (for more details see [37]). For the Ni-Mn-Ga alloys, the volume effect of MT is 

negative (νMT < 0) and therefore, the destabilizing internal pressure must be negative, that is the 

cycling must increase the volume of the crystal. 

The transformational properties of Ni-Mn-Ga alloys are described by minimization of the Gibbs 

potential, Equation 11. The Gibbs potential coefficients depend on the cycle number as 
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These dependencies were obtained from Equation 12 by substitution )()( nPP i→ . 

The further analysis of problem is similar to that presented in the Sections 2 and 3. The austenitic 
phase is stable if 0),(*

2 >nTc , whereas the martensitic phase is stable for )(),( **
2 ncnTc t< . The 

equations )(),( *
1

*
2 ncnTc t=  and 0),( 2

*
2 =nTc  prescribe the values of the lability temperatures )(1 nT  and 

)(2 nT . The shear elastic modulus of austenitic phase 2/][ )(
12

)(
11

)( AAA CCC −≡  is related to the coefficient 

of the second-order energy term as 

),(3),( *
2

)( nTcnTC A = . (51) 
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The value of this modulus in the martensitic phase )(MC  can be expressed through the equilibrium 
value of the order parameter 0u  as explained in the Section 3.2, the resultant expression 

[ ]2*
04

*
0

*
4

)( ),(6),()(3),( nTubnTunanTC M +=  (52) 

is similar to Equation 40 obtained there for the rhombohedral martensitic phase. The condition  

),(4),( )()( nTCnTC MS
A

MF
M = . (53) 

proves to be valid. (This condition is similar to Equation 42 and was derived in the same way). The 

experimental data presented in Figure 6 confirm the validity of this condition. 

Now, let us use the experimental temperature dependence of the elastic modulus, measured before 

cycling of the Ni–Mn–Ga alloy (Figure 6), for a consistent description of the effect of cycling on this 

modulus (Figure 8) and MT temperatures (Figure 10). To this end, the Gibbs potential coefficients 

must be evaluated. It can be done assuming that the measured elastic modulus is close in value to the 
Young's modulus E(T). The latter can be approximately expressed as )(3)( ),(),( TCTE MAMA ≈  [49], 

because the soft elastic modulus of SMA is substantially smaller than its bulk modulus. 

In view that the Landau theory does not describe the hysteresis phenomena properly, Equation 15 

are considered to be applicable to both the forward and reverse MT. Therefore, the conditions 
)()( 00 AFMS TuTu = and )()( 00 ASMF TuTu =  are accepted. These conditions together with Equation 52 

result in the relationships )()( )()(
AF

A
MS

A TCTC =  and )()( )()(
AS

M
MF

M TCTC = . The experimental 

temperature dependencies of the elastic modulus validate these theoretical relationships (see Figure 6). 
The coefficients )(2 Tc , 4a  and *

4b  correspond to the state of the real crystal before cycling (that is 

to zero value of destabilizing stress). To evaluate these coefficients, the experimental dependencies of 

elastic modulus were approximated by the straight dashed lines shown in Figure 6 and Equations 18 and 19 

with C' (T1,2) ≈ E(TMS,MF)/3 were used. The approximation was made taking into account Equation 53. In 

addition, the experimental values of tetragonality ratio 22.1/ =ac  and the volume change 
%5.0−≈MTv  [78] were used for computations. These experimental values give rise to the estimations 

44.0)1/(2)(0 =−= acTu MF , GPa 1.104 −=a , GPa 96.22*
4 =b  and 017.0/ 12 =ca , which are the same 

for both forward and reverse MTs. Note, that the procedure of obtaining these estimations is similar to 

that described in Sections 3.3 and 4.2. The difference between the forward and reverse MTs arises 

when the different experimental temperature dependencies of the elastic modulus (see Figure 6) and 
correspondent characteristic temperatures ( MSTT =1 , MFTT =2  for the forward MT, and AFTT =1 , 

ASTT =2  for the reverse MT) are substituted into Equations 51 and 52. 

Using values obtained above, the functions )15,(*
2 =nTc  and )15(*

4 =na  were calculated for 

theoretical description of the influence of thermomechanical cycling on the temperature dependence of 
elastic modulus of Sample 1. The expression for )(*

4 na  involves a dimensionless parameter Ω . 

According to argumentation presented in Section 2.2, the value )(2 2
1

0 Tu −=Ω  was accepted. For the 

sake of definiteness, the value n0 = 4 was used for computations. Characteristic values of the internal 
pressure GPa 6)()( −=∞iP  (for the forward MT) and GPa 5.7)()( −=∞iP  (for the reverse MT) were 

adjusted to achieve a reasonable agreement between the theoretical and experimental temperature 

dependencies of the elastic modulus. Figure 8 shows that an agreement between the experimental and 



Metals 2013, 3 263 

 

 

theoretical dependencies takes place in rather wide temperature interval, ~100 K, below the martensite 

finish (for the forward MT) and austenite start (for the reverse MT) temperatures. 

Both experiment and theory shows a significant reduction of the elastic modulus in the martensitic 

phase and a noticeable decrease of MT temperatures after cycling. These two features reveal a 

martensite destabilization effect. 
Finally, the experimentally observed effect of thermal cycling on the reverse MT temperature 

(Figure 10) should be described theoretically. For this purpose, the experimentally determined temperature 
values 2/)]()([)( nTnTnT AFASR +=  are compared with the calculated ones T0 (n) = [T1 (n) − T2 (n)]/2 

(see Figure 10). The theory demonstrates a noticeable decrease of the T0 temperature in the course of 

thermal cycling. The agreement between the theoretical and experimental data takes place if the value 

of internal pressure is put equal to GPa 1.5− . The decrease of TR temperature demonstrates that the 

thermal cycling destabilizes the martensitic phase and the destabilizing pressure is close in value to the 

pressure that arises in the course of the mechanical cycling (see [37]). The theoretical dependence  

T1(n), which must be compared with the experimental TMS(n) values, is less pronounced. The 

experiment does not show a noticeable change of TMS temperature in view of the scattering of 

experimental temperature values, this scattering being comparable in magnitude to the temperature 

change predicted by theory. 

5.5. Summary of Destabilization Effects 

It can be summarized now that the destabilization of the Ni57.5Mn22.5Ga20.0 martensite has been 

discovered in the course of the experimental and theoretical studies of the cyclic MTs. The thermal 

and/or mechanical cycling of the shape memory alloy disturbs the equilibrium between the crystal 

lattice and defects. The deviation from the equilibrium is characterized by the internal stress, which 
destabilizes the martensitic phase. Due to the rather large volume effect of MT ( %5.0−≈MTv ), the 

majority of experimentally effects of cycling observed in Ni57.5Mn22.5Ga20.0 alloy can be attributed 

mainly to the influence of negative internal pressure that is the isotropic part of internal stress. Both 

experiment and theory shows that the cyclic MTs of the alloy result in 

(i) a decrease of the elastic modulus of martensitic phase (Figure 8); 

(ii) a decrease of the MT temperature (Figure 10). 

Experiment shows that the cycling increases noticeable the stress value, which in turn triggers the 

stress-induced MT. As it was shown in [37], this effect can be attributed to the influence of internal 
pressure as large as , GPa 7.1−  but a theoretical description of the stress–strain dependence is 

obviously impossible as long as the axial stress is disregarded. A consideration of the axial stress is 

beyond the scope of the present article. 

The theoretically estimated negative internal pressure (causing an isotropic dilatation of the crystal 

lattice) is about –2 GPa, in the case of mechanical or thermal cycling [37], and –6 GPa, in the case of 

thermomechanical cycling. A drastic difference between two estimated values of the internal pressure 

shows that combined thermomechanical cycling destabilizes the martensitic phase stronger than the 

pure mechanical or thermal cycling procedures performed in the experiments [37]. 
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6. Quasi-Second-Order Martensitic Transformations 

6.1. General Considerations 

The numerous experiments show that MTs normally are the first-order phase transitions, but in 

some cases the quasi-second-order MTs are observed as well [48]. As far as the transformational 

behavior of SMAs is believed to be controlled by a principle of the minimum elastic energy, an 

observation of the second-order MT is in contradiction to a Lifshitz criterion (see [41] and references 

therein). The latter states that the second-order phase transition is impossible if the symmetry of the 

crystal allows the presence of cubic term of the order parameter in the Landau expansion for the free 

energy. It should be remembered that all quadratic, cubic and fourth-order invariant combinations of 

the order parameter components must be included in the expression for the free energy. This statement 

cannot be referred to as the “model assumption”; actually it is the basic principle of the theory of 

various physical phenomena in crystals (optical, ultrasonic, piezoelectric, ferroelectric, magnetic,  

and so on). 
The Landau expansion for the free energy, Equation 4, involves the terms )3( 2

2
2
334 uuua −  and 

6545 uuua , which are proportional to the third power of the order parameters of the cubic-tetragonal and 

cubic-rhombohedral MTs. It means that the martensitic transformations must be the first-order phase 

transition and the jumps of the values of lattice parameters and elastic modules at MT temperature 

must be predetermined by a4 or a5 values (for the alloys exhibiting cubic-tetragonal or cubic-rhombohedral 

MT, respectively).  

An obvious disagreement between the theory of phase transitions and experimental observations of 

quasi-second-order MTs can be resolved in two ways. 

First, the axial internal stress can be assumed to be present in the alloy specimens. This stress can 

reduce the cubic symmetry of crystal to tetragonal, rhombohedral, monoclinic or triclinic ones. In this 

case the MT is not accompanied by the symmetry change and appearance/disappearance of some 

physical value at MT temperature [79]. As so, the MT can be registered only by the observation of the 

jumps of the lattice parameters and jump-like changes of relevant physical values. If the axial stress 

exceeds some critical value, the jumps of lattice parameters vanish and the phase transition disappears; 

instead, the smooth nonlinear temperature dependence of lattice parameters takes place (for more 

details see [80,81]). 

Second, the internal pressure can be induced by the crystal defects or chemical disorder. These 
factors are formally described by a renormalization of the energy coefficients )( )(*

44
iPaa →  and 

)( )(*
55

iPaa → , see Equations 45 and 50, respectively. Using the Equations 20 and 33, the renormalized 

coefficients can be expressed through the volume effect of MT and MT strain as follows: 
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(54) 

Let some internal process or factor induce an internal pressure )(iP . The positive/negative internal 
pressure decreases/increases the volume of an alloy. The negative/positive value MTv  corresponds to 
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the spontaneous decrease/increase of the volume during the forward MT. The internal process or factor 

results in the stabilization of martensitic phase if the spontaneous and forced volume changes are  
sign-like (see e.g., [25]), that is if the values )(iP  and MTv  are of the opposite signs. It means 

0)( <MT
i vP  for the stabilizing pressure and 0)( >MT

i vP  for the destabilizing one. 

The martensite stabilization results in an increase of the absolute value of MT strain, and therefore, 
denotes an increase of the absolute values of the energy parameters *

4a  or *
5a . If so, the values 4a  and 

Ω or 5a  and Λ  must be of the opposite signs. In the same time, the signs of parameters *
4a  and *

5a  are 

opposite to the signs of MT strains (see Equations 15 and 28). Therefore, the parameter Ω  or Λ  must 

be of the same sign as the strain arising in the course of cubic-tetragonal or cubic-rhombohedral MT. 

The martensite stabilization accompanies the martensite aging. Therefore, the martensite aging denotes 
an increase of || *

4a  or || *
5a  magnitude and makes the first-order character of MT more pronounced.  

It should be expected that the process or factor that destabilizes martensitic phase (reduces the MT 
temperature) denotes the decrease of || *

4a  or || *
5a  magnitudes and glosses over the first-order 

character of MT. The destabilizing internal pressure is of the same sign as the spontaneous volume 
change MTv . It may be possible to observe a quasi-second order MT in presence of destabilizing 

internal pressure, which considerably reduces the absolute values of the coefficients || *
4a  and || *

5a . 

6.2. Application to the Ni-Mn-Ga and Au-Cd Alloys 

The energy coefficient *
4a  has been evaluated for Ni-Mn-Ga alloy with 1/ <ac  ( 12.00 −≈u )  

in [41]. The reported in this work data show that the destabilizing internal pressure of about of 
GPa 3−  reduces the *

4a  value by one order of magnitude if the values 1
02 −=Ω u  and %5.0−=MTv  are 

accepted for estimations. The choice of Ω  value is explained in Section 2.3. The values of volume 

changes during MTs in the Ni-Mn-Ga alloys with 1/ <ac  are disputed: the X-ray diffraction data 
result in the large value 2102 −⋅−≈MTv , while the values estimated from thermodynamic measurements 

are smaller by almost one order of magnitude (see [28] and references therein). In view of this 
ambiguity, the ratio 4

*
4 /)( aPa  is presented in Figure 11 for the low (0.1%), intermediate (0.5%) and 

high (2%) volume changes. 

Figure 11. The influence of internal pressure on the coefficient of the third-order energy 

term, which predetermines the first-order character of martensitic transformation in the  

Ni-Mn-Ga alloy considered in [41]. 
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In the case of intermediate and large volume changes, the internal pressure can reduce the *
4a  value 

by one order of magnitude. In this case the MT in the alloy considered in [41] may bear resemblance to 

the second-order phase transition. It should be noticed that the theoretical analysis of aging effects in 

Ni-Mn-Ga martensite with 1/ <ac  gave a comparatively low value of stabilizing pressure 
GPa 1)()( <tP i  [35], but larger in the absolute value destabilizing pressure can be induced by the 

thermomechanical cycling of alloy specimens or some other mode of treatment. 

The influence of internal pressure on the transformational and elastic properties of the 

rhombohedral Au-Cd martensite and tetragonal Ni-Mn-Ga martensite with 1/ >ac  was considered in 

the Sections 4 and 5 and the values of physical parameters inherent to these alloys were listed. It is 

worth to compute the energy coefficients, Equation 54, for these martensites. The results of 

computations are shown in Figure 12. 

Figure 12. Influence of internal pressure on the coefficient of the third-order energy  

term, which predetermines the first-order character of martensitic transformation in the 

rhombohedral Au-Cd martensite and tetragonal Ni-Mn-Ga martensite, considered  

in [36,37]. 

 

The stabilizing pressure GPa 8.3)( =iP  was estimated for the aged Au-Cd alloy in Section 4.2. The 
arrows in Figure 12 illustrate that the destabilizing pressure of the same absolute value reduces *

5a  

coefficient by factor of 0.55. 

The destabilizing pressure of about –6 GPa was induced by thermomechanical cycling of Ni-Mn-Ga 

martensite with 1/ >ac  (see [37] and Section 5.3). The arrows in Figure 12 illustrate that this pressure 
reduces *

4a  value by factor of 0.93 only. The weak renormalization of the *
4a  coefficient follows from 

the large value %15≈Mε  being inherent to the considered Ni-Mn-Ga martensites: according to 

Equation 54, the renormalization of *
4a  is proportional to the ratio of the dimensionless values 

32 /1~/ MM εεΩ , which is approximately equal to 300 for the Ni-Mn-Ga alloys with 1/ >ac  and is of 

the order of 410−  for the Ni-Mn-Ga alloys with 1/ <ac . 

It should be stressed that in view of an ambiguity in Ω , Λ  and )(iP  values, the data presented in 

Figures 11 and 12 have the illustrative character. Nevertheless, these data and the results reported  

in [41,81] provide a plausible explanation of the quasi-second-order MTs in some shape memory 

alloys. Moreover, the consideration presented above shows that the resemblance between MT and the 

second-order phase transition presumes not only the certain alloy composition but also a special route 

of preparation of the alloy specimen. 
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7. Volume Changes Contributing to the Entropy in Magnetic Shape Memory Alloys 

7.1. Elastic and Magnetic Components of the Entropy Change during MT 

Ferromagnetic and metamagnetic shape memory alloys (FSMAs and MetaSMAs) are attracting 

considerable interest due to the unique properties they show as a consequence of the coupling between 

their transformational properties and magnetism. The recent measurements of the entropy change ∆S 

accompanying the MTs in the different representatives of MetaSMAs, such as Ni-Mn-In and  

Ni-Mn-In-Co alloy systems, discovered one of the most obvious manifestations of this coupling. It has 

been found that ∆S strongly decreases with the distance between the MT temperature, TM, and the 

Curie temperature, TC ≥ TM [31,32]. A similar decrease was observed when the available experimental 

data about the entropy change and transformation heat were collected and analyzed for the Ni-Mn-Ga 

FSMAs with TC ≥ TM [33]. It suggests that the magnetic subsystem of the FSMAs and MetaSMAs 

considerably contributes to the entropy change. Inasmuch as the spontaneous deformation of crystal 

lattice is considered as the key feature of MT, a coupling between the strain tensor components and 

magnetic moments of atoms, commonly referred to as magnetoelastic coupling [79], would be 

thereafter taken into account to estimate the magnetic contribution to the entropy change that 

accompanies MT. In the case of ferromagnetic ordering, the magnetoelastic coupling is described by 

the energy terms that are linear in the strain tensor and quadratic in the magnetization vector 

components. According to arguments advanced in the Sections 2.1 and 2.4, the magnetoelastic energy 

can be expressed through the magnetically induced internal stress, which, in its turn, can be subdivided 

into the isotropic and anisotropic parts. The isotropic part (magnetoelastic pressure) is responsible for 

volume magnetostriction. 

In the absence of external forces, the Gibbs potential of thermodynamic system coincides with the 

Helmholtz free energy. The expression for the free energy of FSMA that exhibits cubic-tetragonal MT 

can be presented in the form 

),,()(),( 32
22

32 uuMFMFuuFF kmekmel ++= . (55) 

Elastic part of the free energy elF  is expressed through the linear combinations 2u , 3u  of diagonal 

strain tensor components by Equation 11 with 032 === σσP : 
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The magnetic part of free energy )( 2
km MF  is the sum of spin-exchange and magnetic anisotropy 

energies expressed through the magnetization vector components kM  as 

)()(
2

1 22
kAm MFTJF += M , (57) 

where J (T) = ζ (T − TC)/TC is the spin-exchange parameter, TC is the Curie temperature, and ζ is a 

dimensionless phenomenological constant. If the Curie temperature is near to room temperature, the 
spin-exchange energy is much greater than magnetic anisotropy energy )( 2

kA MF . 



Metals 2013, 3 268 

 

 

In accordance with the general principles formulated in Section 2.1 the expression for 

magnetoelastic energy is invariant with respect to the symmetry group of the cubic (paramagnetic 

austenitic) phase of the alloy. This expression is  

])2()(3[ 3
222

2
22

1
2 uMMMuMMuMF xyzyxexme −−+−−−= δδ , (58) 

where δex and δ are the dimensionless magnetoelastic constants, describing the volume and axial 

magnetostriction of the single crystalline alloy, respectively [82]. The volume magnetostriction and 

axial magnetostriction arise because the spin-exchange energy and magnetic anisotropy energy of alloy 

vary in the course of deformation process. 

The Equation 58 can be presented in the form 
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where 

3/2)( MP ex
me δ−=  (60) 

is magnetoelastic pressure and the values 

)(36 22)(
2 yx

me MM −= δσ , )2(6 222)(
3 xyz

me MMM −−= δσ , (61) 

represent the anisotropic components of magnetoelastic stress. 

It is commonly known that the axial magnetostress must be taken into account when the anisotropic 

properties of FSMAs or non-scalar physical values (as the axial magnetic-field-induced strain) are 

considered. However, the volume magnetostriction and magnetoelastic pressure are caused by the 

spin-exchange interaction, whereas the anisotropic part of magnetoelastic energy and anisotropic part 

of magnetoelastic stress are mainly related to the spin-orbit interaction. Therefore, the isotropic part of 

magnetoelastic interaction is much larger than the anisotropic part, and so, the latter can be omitted 

when the influence of magnetoelastic coupling on the martensitic transformation heat and the relevant 

entropy change are considered. Noteworthy, in the Ni-Mn-Ga alloys, which are the most studied 

FSMAs, the magnetoelastic pressure exceeds the anisotropic magnetoelastic stress by two orders of 

magnitude [41,82–85], at least, and the disregard of this stress is substantiated by the numerical 

calculations. The neglect of anisotropic magnetic and magnetoelastic energy terms with respect to 

isotropic ones results in the expression  

1
)(2

32 3)(
2

1
),( uPTJuuFF me

el ++= M . (62) 

In view that we are interested mainly in the magnetic contribution to the entropy change, the 

FSMAs, exhibiting the martensitic transformations in ferromagnetic state will be considered below. 

The procedure of calculation of the entropy change caused by the phase transition is described by 

L.D. Landau and E.M. Lifshitz [79]. The calculation has to be performed in two steps. At the first step, 

the partial derivative TFS ∂−∂= /  of free energy has to be calculated considering that the order 

parameter is temperature-independent. At the second step, the equilibrium values of the order 

parameter that are inherent to the austenitic and martensitic phases have to be substituted into the 
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obtained expression for the entropy and the difference of the resultant entropy values MA SSS −≡Δ  

has to be calculated. 

According to Landau theory, the coefficients of third- and fourth-order terms of elastic energy 

(Equation 56) are temperature independent. By differentiating Equation 62, one obtains the expression 
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c
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∂
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1
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222
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The free energy, Equation 62, and entropy, Equation 63, are counted of the entropy of paramagnetic 

cubic phase. In the ferromagnetic austenitic phase the values of the order parameter components and 

the concomitant u1 value are caused by the ordinary magnetostriction and are much smaller than MT 

strain and volume change during MT. As so, these values can be put equal to zero. Due to this, the 

entropy of austenitic phase is approximately equal to 

[ ])()(
2

1 2 TMTJ
T

S A ∂
∂= , (64) 

whereas the entropy of martensitic phase is expressed as 
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22
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It should be remembered that the “magnetic energy”, Equation 57, is the energy of interaction 

between the magnetic moments of atoms in the high-symmetry phase, in our case, in the undistorted 

crystal lattice. By definition, the magnetoelastic energy is the total change of magnetic energy caused 
by the deformation of cubic lattice. That is why the derivative TTMTJ ∂∂ /)]()([ 2  is substituted in 

Equation 65 by the value Equation 64, which is inherent to the cubic ferromagnetic phase. 

Subtracting SA value from the right side of Equation 65, one can present the entropy change as the 

sum of elastic and magnetic parts 

magel SSS Δ+Δ=Δ  , (66) 

where 
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and 
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Equation 67 describes the elastic part of the entropy change through the temperature derivative of 

the second-order energy coefficient, which is not directly measurable. This coefficient is related to the 
shear elastic modulus of austenitic phase as 3/'2 Cc = , but the interrelation between 2c  and elastic 

modulus of martensitic phase is more complicated (see Equation 52). However, the )(2 Tc  is a 

monotone function and it can be assumed that the slope of )(2 Tc  curve does not vary noticeably in the 

temperature interval MSMF TTT << . In this case the elastic part of the entropy change can be estimated 

from the relationship 
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where a  and c  are the lattice parameters of a tetragonal phase. 

A contribution of magnetic subsystem of the alloy, Equation 68, proved to be directly proportional 

to: (i) the temperature derivative of magnetization value; (ii) the volume change during MT; and  

(iii) the magnetoelastic constant. These points are physically clear because: (i)' both ∆Smag and 
TM ∂∂ /  characterizes the change of degree of magnetic ordering; (ii)' the volume change 

characterizes the transformation of crystal lattice in the isotropic approximation; and (iii)' the volume 

magnetostriction constant characterizes the interdependence between the volume of alloy specimen 

and the intensity of spin-exchange process, which provides the main contribution to the magnetic 

energy expressed by Equation 57. 

The magnetoelastic constant is not directly measurable. Its value can be determined, in principle, 

from the measurements of a volume magnetostriction. A spontaneous volume magnetostriction 
)()( Tv me accompanies magnetic ordering. Using condition 0/ 1 =∂∂ uF  and Equations 4 and 58, it can 

be expressed as 

)2/()()( 1211
2)( CCTMTv ex

me += δ . (70) 

Therefore, the magnetic entropy change 
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proves to be proportional to the product of volume change during MT and spontaneous  

volume magnetostriction. 

The evaluation of the magnetic and elastic parts of the entropy change may be hampered by the 

difficulties in determination of the volume magnetostriction and temperature derivatives from the 
experimental )(TM  and )(' TC  values. In this regard, the relationship 

m

TC

S
TT MSM

MFMS 2

)('31 2ε⋅
Δ

≈−  (72) 

may be useful [33]. Moreover this expression is very significant in its own right because it implies a 

linear interdependence between the width of the temperature interval of MT and 1−ΔS  value and so, 

can be verified easily in the experiment. 

Another way of the determination of magnetic entropy change is proposed in [33] for the case when 

the experimental temperature dependence of magnetization of FSMA with TMS < TC obeys the  

standard equations 
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where M0 = M(0), Curie temperature TC is the temperature of ferromagnetic ordering of FSMA in 

austenitic phase and *T  is referred to as the “virtual” temperature of ferromagnetic ordering of the 
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martensitic phase. The difference between the actual and virtual temperatures of ferromagnetic 
ordering can be related to volume change during MT: the 1u  variable is equal to zero before the 

forward MT and to the constant value 3/MTv  immediately after it. According to Equations 60 and 62, 

the volume change results in the renormalization of the spin exchange parameter 

MTexvTJTJTJ δ
3

2
)()(*)( −=→ . (74) 

The temperatures CT  and *T  satisfy the conditions 0)( =CTJ  and 0*)(* =TJ , which result in the 

relationship )/1(* ζκ+= CTT  involving the dimensionless parameters ζ  and 

MTexvδκ )3/2(≡ . (75) 

The parameter κ relates the magnetic entropy change to the magnetization of FSMA  

(see Equation 68).  

The experiments with different FSMAs demonstrate a stepwise change of magnetization value in 

the narrow temperature interval below TMS. The characteristic temperatures TC and T* can be found by 

fitting the solutions of Equation 73 to the high-temperature (T > TMS) and low-temperature(T > TMF) 

segments of the experimental M(T) curve. The relationship ζ ≈ nkBTC ( n  is the amount of magnetic 

atoms in the unit volume) enables the estimation of the parameter 

CC TTT /)*( −= ζκ  (76) 

and magnetic entropy change, Equation 68. 

The findings of general theoretical analysis of the entropy change during MT can be summarized in 

the following principal points: 

I) The entropy change during MT is inversely proportional to the width of the temperature 

interval of mixed (austenitic-martensitic) state. 

II) The magnetoelastic energy of a deformable magnetic solid, such as FSMA, is the difference 

between the magnetic energies of its deformed and undeformed states. 

III) The magnetic contribution to the total entropy change caused by the deformation of 

magnetic solid is the partial temperature derivative of magnetoelastic energy taken with the 

opposite sign. 
IV) The ordinary magnetostriction of FSMA is substantially smaller than the MT strain MTv , 

and the axial magnetostriction is much smaller than the spontaneous volume 

magnetostriction )(mev  in the case if the Curie temperature is of the order of room 

temperature. In this case the magnetic entropy change is directly proportional to the product 
)()(

MF
me

MT Tvv . 

V) Not only the magnetic entropy change during MT but also the magnetization jump is caused 
by the magnetoelastic coupling and interrelated with the product )()(

MF
me

MT Tvv . This follows 

from the Equations 70,73,75 (for more details see [33,83]). 
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7.2. Magnetic Entropy Change during MT of Ni-Mn-Ga Alloy 

The Ni-Mn-Ga alloys undergoing the cubic-tetragonal MTs in the ferromagnetic state are the most 

studied to date FSMAs. The magnetization functions of some of these alloys are well described by the 

Equation 73, and therefore, the virtual Curie temperatures and κ  values can be estimated for these 

alloys by fitting theoretical M(T) curves to the experimental values of magnetization [84]. In particular, 

the fitting procedure was performed for a Ni52.6Mn23.5Ga23.9 alloy (Alloy 1) that undergoes MT to the 
5-layered tetragonal phase with 1/ <ac . For this alloy K 275≈MFT , a good fit of the theoretical 

)(TM  curves to experimental values of the magnetization takes place for K 375=CT , K 405* =T  

and G 7150 =M  [84]. For the Ni-Mn-Ga alloy family, the estimation GPa 1.02
0 ≈Mζ  is valid [83], 

thus the Equation 76 gives the value 150=κ . In this case the numeric computation of )(TM  function 

and its derivative results in the estimation 11Kkg J 3.14 −−=Δ magS . This entropy change corresponds to 

the heat exchange 1
0 g J 07.4 −=Δ= magmag STq . It is astonishing that the theoretical estimation of the 

“magnetic” heat exchange is very close to the experimental value of total transformation heat 
1g J 2.4 −≈q  reported for Alloy 1 [78,86]. The experimental value of transformation heat corresponds to 

the total entropy change of 11Kkg J 7.14 −− . 

The solid line in Figure 13 shows the magnetic entropy change magSΔ  that was computed from 

Equation 68 by setting different T = TMF values in the argument of M(T) function keeping fixed the rest 

of parameters such as those shown above for Alloy 1. The experimental values of the total entropy 

changes are shown by circles in Figure 13. To present these values, we collected the available 

experimental data for Ni-Mn-Ga martensites with 1/ <ac  [30,87–91]. The arrow points to the 

experimental value obtained for Alloy 1. The theoretical dependence of the magnetic entropy change 

on the temperature difference TC −TMF demonstrates that ∆Smag quickly increases when the MT 

temperature approaches the Curie temperature and is less than 5 J kg−1 K−1 for the alloys with 
K 200>− MFC TT . The experimental values obviously correlate with the computed ones in spite of the 

fact that the different alloys are characterized by different )(TM  curves, while the curve used for 

computations is relevant only to the Alloy 1. The proximity of the experimental points to the 

theoretical curve suggests that the magnetic part of the total transformation heat exceeds all 
nonmagnetic parts for the Ni-Mn-Ga alloys with K 150<− MFC TT , at least. It should be noted, that the 

same conclusion can be deduced from the experimental data collected for different Ni-Mn-In and  

Ni-Mn-In-Ga alloys [92]. 

The calculated values of the magnetic entropy change are very close or even exceed the values of 

total entropy changes measured for Ni-Mn-Ga alloys. It suggests that the magnetic entropy change is 

overestimated. The overestimation can be caused, in particular, by the inaccuracy in the evaluation of 

parameter ζ, which is absent in the equation for the magnetic entropy change and Equation 75 but is 

involved in Equation 76. It should be noticed, however, that a clear physical reason for the 

underestimation of the total entropy change exists. On the one hand, the cubic crystal lattice transforms 

to the spatially inhomogeneous martensitic state when the latent transformation heat is measured. The 

martensitic state is not completely self-accommodated and its energy is higher than the energy of 

thermodynamically equilibrium tetragonal phase considered above. Therefore, the measured 
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transformation heat is smaller than the latent heat, which characterizes the transformation from the 

cubic to the equilibrium tetragonal phase. 

Figure 13. Theoretical values of magnetic entropy change (line) and experimental values 

of total entropy change (circles) at MTs in the Ni-Mn-Ga alloys. 

 

7.3. Magnetic Entropy Change during MT of a Quasi-Stoichiometric Ni-Fe-Ga Alloy 

The temperature dependence of saturation magnetization of Ni53.5Fe19.5Ga27 alloy (Alloy 2) with 
G 4800 ≈M , K 330≈CT  and K 250≈MFT  is measured in [93]. This dependence is not described by 

Equation 73 [33,83] and the virtual temperature of ferromagnetic ordering cannot be determined in 

view of an ambiguity in the extrapolation of experimental M(T) dependence measured in the 

martensitic phase to the temperature range T > TMF. However, the experimental temperature 

dependence of magnetization measured in the martensitic phase (that is for TC – T > 80 K) can be used 
to illustrate that the magnetic entropy change drastically depends on the shape of )(TM  curve. For this 

purpose the computations could be performed in two ways: (i) using the experimental )(TM  curve; 

and (ii) using the solution of Equation 73 with G 4800 =M  and K 330=CT . The κ  and ζ  values 

estimated above for Alloy 1 can be accepted, because in this case Equation 73 gives the magnetization 
jump G, 15)()( ≈− MSMF TMTM  which follows also from the experimental )(TM  curve presented  

in [33,83]. 

It should be emphasized that Equation 73 describes the electron gas in the Weiss molecular field, 

that corresponds to the widely used Bragg–Williams approximation (see, e.g., [93]). As it is seen from 

Figure 14, the Bragg–Williams approximation is not applicable to Alloy 2. Therefore, the magnetic 

entropy changes, which accompany MTs in Ni-Fe-Ga alloys, cannot be evaluated using this equation. 

Moreover, the virtual temperature of ferromagnetic ordering cannot be calculated and the parameter κ  
relating ∆Smag to )(TM  dependence cannot be estimated from Equation 76. Therefore, this parameter 

has to be evaluated from Equation 75. In this case, the magnetoelastic constant must be determined and 

the volume change must be measured or estimated in some way. 

The experimental values of lattice parameters reported for Alloy 2 [94] result in the estimation 
2103 −×−≈MTv , which corresponds to the value 01.01 −≈u . It is noteworthy that in the case of Alloy 1 

this value of the volume change gave rise to the above used value of κ  and provided for the excellent 

match between experimental and theoretical magnetization curves [84]. So, the used above value 
150=κ  may be correct for Ni-Fe-Ga alloys if the constant )( 0

2
0 TMexδδ ≡  is approximately equal to 
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GPa 4.00 −=δ  [83], which was estimated before for Ni-Mn-Ga alloys. To the best of our knowledge, 

the magnetoelastic constants are still not evaluated for Ni-Fe-Ga alloys. 

Figure 14. Theoretical values of magnetic entropy change computed using the experimental 

values of saturation magnetization (solid line) and the solution of Equation 73. 

 

7.4. Summary on the Entropy Change 

The consistent analysis of the entropy change that accompanies MT in FSMA demonstrates the 

important features of this physical value. 

(i) The total entropy change during MT is inversely proportional to the width of the 

temperature interval of mixed two-phase state. 

(ii) The elastic part of the entropy change is proportional to the value of temperature derivative 

of the shear elastic modulus. This feature illustrates that the cubic-tetragonal MT is caused 

by the instability of crystal lattice with respect to the vibrations corresponding to the TA2 

[110] phonon mode and to the softening of this phonon mode which leads to a decrease of 
'C  value in the vicinity of MT. In practice, the evaluation of elSΔ  from the temperature 

dependencies of shear modules of SMAs is hampered by an uncertainty in the experimental 

values of these modules. 

(iii) The elastic part of the entropy change is proportional to the squared tetragonal distortion of 
the unit cell, 2)/1( ac− , which is about of 2104 −×  for the Ni-Mn-Ga alloys with 1/ >ac , 

CMS TT >  and 3103 −×  for the alloys with 1/ <ac , CMS TT < . This feature is in line with the 

fact that the observed in [91] entropy change is noticeably larger for the Ni-Mn-Ga alloys 
with CMS TT >  than for those with CMS TT < . 

(iv) In the case of FSMAs with TMS < TC, the Landau theory confirms a crucial role of the 

interaction between the magnetic and elastic subsystems in the formation of thermodynamic 

characteristics of the MT. The magnetic part of the entropy change estimated from M(T) 

curves for Ni-Mn-Ga alloy (Alloy 1) appeared to be close in value to the experimentally 

observed total entropy change. In this connection, the entropy change demonstrates a sharp 

decrease when the MT temperature of the alloy moves away from the Curie temperature. 

The experiments show that this is a common feature of the Ni-Mn-Ga, Ni-Mn-In and  
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Ni-Mn-In-Co alloy systems [32]. Recently, a pronounced dependence of ΔS on MFC TT −  has 

been observed also in Ni-Mn-Ga-Co alloys [95]. 

(v) The computations illustrate that the evaluation of the magnetic entropy change from the 

temperature dependence of magnetization is very sensitive to the character of this 

dependence (see Figure 14). Moreover, it occurs that the standard equations corresponding 

to the Bragg–Williams approximation do not describe the magnetization of Ni-Fe-Ga alloys. 

It can be concluded, therefore, that the careful study of the magnetic structure and 

magnetization of every alloy system must be carried out for the correct evaluation of 

magnetic entropy change. 

(vi) Equation 71 shows that the magnetic entropy change is proportional to the volume 

magnetostriction. Therefore, a careful theoretical analysis of the effect of spontaneous and 

forced magnetostriction on the characteristic MT temperatures will be very important. 

The inverse proportionality of )( MFMS TT −  to SΔ  was verified very recently in the experiments 

with Ni-Mn-In alloys (see Figure 15) [96]. 

Figure 15. The experimental verification of the inverse proportionality of two-phase 

temperature interval to entropy change [96]. The dashed line presents a linear fit to the 

experimental points. 

 

The following important remark about the value of volume change during MT is appropriate. The 

agreement between the theoretical and experimental values, illustrated by Figure 13, is achieved for 
150=κ . This value corresponds to the magnetoelastic constant GPa 4.02

0 ≈Mexδ  [83,84] and  

volume change of the order of 1% directly given for Ni-Mn-Ga alloys by the X-ray data, while the  

Clausius–Clapeyron relationship results in a value for the volume change of about 0.1% estimated 

from the shift of MT temperature by the hydrostatic compression of Ni-Mn-Ga. The reduction of the 

volume change by one order of magnitude can be compensated only by the proportional increase of the 
magnetoelastic constant. The value GPa 22

0 ≈Mexδ  was reported in [85]. 

8. Discussion  

The volume conservation principle is often used for a comprehension of the thermoelastic behavior 

of shape memory alloys, while a few works include the consideration of equilibrium volumes of 
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different phases. (The excellent first principle calculations of this kind are performed in [97]). In the 

same time, the symmetry conforming theory shows that the volume change is an indispensable feature 

of the cubic-tetragonal and cubic-rhombohedral martensitic transformations. It may be expected that 

this conclusion is also valid for the MTs to the orthorhombic and monoclinic phases because one of 

MT strain components often being much greater than others. The theory relates the volume change to 

MT strain via the certain combinations of the third- and fourth-order elastic modules, but the values of 

these combinations are not known at present. On the one hand, it shows that the appearance of small 

MT strain may be accompanied by the comparatively large volume change, and vice versa, the large 

MT strain may occur with very small volume change. On the other hand, an uncertainty in the used for 

computations ratios of the third- and fourth order modules (parameters Λ  and Ω ) retards the 

quantitative analysis of experimental results. 

In spite of difficulties, the combined (experimental and theoretical) study of transformational 

properties of nonmagnetic and ferromagnetic shape memory alloys indicates the noticeable influence 

of the volume effect of MT and volume magnetostriction on the elastic and thermodynamic properties 

of these alloys.  

The importance of the volume effect of MT can be explained in a simple manner. The volume 

change during MT results in the energy density change, which can be estimated by the order of 
magnitude as GPa 10.1~||~|| 1 −Δ BvF MT , because the bulk elastic modulus B  is of the order of  

100 GPa and the inequalities 23 1010 −− ≤≤ MTv  are true in most cases. The spontaneous shear of crystal 

lattice during MT results in the energy density change GPa 10.1~'||~|| 2 −Δ CF Mε  because the MT 

strain satisfies the inequalities 12 1010 −− ≤≤ Mε  and the shear modulus of shape memory alloy is of the 

order of 10 GPa in the vicinity of MT temperature. The energy changes 1FΔ  and 2FΔ  are in general of 

the same order of magnitude, and therefore, the volume effect of MT cannot be neglected a priory: the 

disregard of this effect must be substantiated in every case by the numerical evaluations. 

We hope that the conclusion about the importance of volume changes will attract the attention of 

different researches teams and may be useful for planning the further experimental and theoretical 

studies of shape memory alloys. 

Acknowledgments 

V.A.L. is grateful to U. K. Rößler and M. E. Gruner for useful discussions during his stay in IFW, 

Dresden. A financial support from the Project No. MAT2011-28217-C02-01,02, by the Spanish 

Ministry of Science and Innovation, Project №0112U001009 by National Academy of Sciences of 

Ukraine (NASU) and STCU-NASU grant №5715 are greatly acknowledged. 

References 

1. Christian, J.W. Theory of Phase Transformations in Metals and Alloys; Pergamon Press: New York, 

NY, USA, 1975; pp. 1–973. 

2. Khachaturyan, A.G. Theory of Structural Transformations in Solids; Wiley: New York, NY, USA, 

1983; pp. 1–574. 

3. Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, 

UK, 1998; pp. 1–267. 



Metals 2013, 3 277 

 

 

4. Lagoudas, C. Shape Memory Alloys: Modeling and Engineering Applications; Springer-Verlag: 

New York, NY, USA, 2007; pp. 1–435. 

5. Kohl, M. Shape Memory Microactuators; Springer-Verlag: Berlin, Germany, 2004; pp. 1–245. 

6. Hannula, S.-P.; Söderberg, O.; Jämsä, T.; Lindroos, V.K. Shape memory alloys for biomedical 

applications. Adv. Sci. Technol. 2006, 49, 109–118. 

7. Humbeeck, J.V. Non-Medical applications of shape memory alloys. Mater. Sci. Eng. 1999,  

273–275, 134–148. 

8. O’Handley, R.C.; Allen, S.M. Shape-Memory Alloys, Magnetically Activated Ferromagnetic 

Shape-Memory Materials. In Encyclopedia of Smart Materials; Schwartz M., Ed.; Wiley: New 

York, NY, USA, 2002; pp. 936–951. 

9. Söderberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V.K. Giant Magnetostrictive 

Materials. In Handbook of Magnetic Materials; Buschow, J., Ed.; Elsevier Science: Amsterdam, 

the Netherlands, 2006; pp. 1–39. 

10. Chernenko, V.A. Advances in Shape Memory Materials; TTP: Zurich, Switzerland, 2008;  

pp. 1–302. 

11. Chernenko, V.A. Advances in Shape Memory Materials; TTP: Zurich, Switzerland, 2011;  

pp. 1–231. 

12. Entel, P.; Buchelnikov, V.D.; Khovailo, V.V.; Zayak, A.T.; Adeagbo, W.A.; Gruner, M.E.; 

Herper, H.C.; Wassermann, E.F. Modelling the phase diagram of magnetic shape memory 

Heusler alloys. J. Phys. D Appl. Phys. 2006, 39, 865–889. 

13. Acet, M.; Manosa, L.; Planes, A. Magnetic-Field-Induced Effects in Martensitic Heusler-Based 

Magnetic Shape Memory Alloys. In Handbook of Magnetic Materials; Buschow, J., Ed.; 

Elsevier Science: Amsterdam, the Netherlands, 2011; pp. 232–282. 

14. Entel, P.; Siewert, M.; Gruner, M.E.; Herper, H.C.; Comtesse, D.; Arroyave, R.; Singh, N.; 

Talapatra, A.; Sokolovskiy, V.V.; Buchelnikov, V.D.; Albertini, F.; et al. Complex magnetic 

ordering as a driving mechanism of multifunctional properties of Heusler alloys from first 

principles. Eur. Phys. J. B 2013, 86, 65–75. 

15. Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C.; Lograsso, T.A. 6% magnetic-field-induced 

strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 2000, 77,  

886–888. 

16. Heczko, O.; Sozinov, A.; Ullakko, K. Giant field-induced reversible strain in magnetic shape 

memory NiMnGa alloy. IEEE Trans. Magn. 2000, 36, 3266–3268. 

17. Sozinov, A.; Lanska, N.; Soroka, A.; Zou, W. 12% magnetic field-induced strain in Ni-Mn-Ga-based 

non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902:1–021902:5. 

18. Warlimont, H.; Delaey, L. Martersitic. Transformations in Copper-, Silver- and Gold-Based 

Alloys; Pergamon Press: New York, NY, USA, 1974; pp. 1–379. 

19. Kokorin, V.V.; Samsonov, Yu.I.; Khshanovskiy, L.F.; Chernenko, V.A.; Shevchenko, O.M.; 

Volume change during γ–α transformation in iron-nickel base alloys. Phys. Met. Metall. 1991, 

71, 141–146. 

20. Maki, T.; Kobayashi, K.; Minato, M.; Tamura, I. Thermoelastic martensite in an ausaged  

Fe-Ni-Ti-Co alloy. Scripta. Met. 1984, 18, 1105–1109. 



Metals 2013, 3 278 

 

 

21. Maki, T.; Furutani, S.; Tamura, I. Shape memory effect related to thin plate martensite with large 

thermal hysteresis in ausaged Fe-Ni-Co-Ti alloy. ISIJ Int. 1989, 29, 438–445. 

22. Kokorin, V.V.; Chernenko, V.A. Reversion stress evaluation in Fe-Ni-Co-Ti alloys. In 

Proceedings of the Second International Conference on Shape Memory and Superelastic 

Technologies, Pacific Grove, CA, USA, 1997; pp. 119–124. 

23. Jost, N.; Escher, K.; Donner, P.; Sade, M.; Halter, K.; Hornbogen, E. Steels with shape memory. 

WIRE 1990, 40, 639–640. 

24. Gefen, Y.; Halwany, A.; Rosen, M. Effect of hydrostatic pressure on the cubic-orthorhombic 

phase transformation in Au-47.5 at% Cd alloy. Phil. Mag. 1973, 28, 1–9. 

25. Kakeshita, T.; Yoshirnura, Y.; Shimizu, K.; Endo, S.; Akahama Y.; Fujita, F.E. Effect of 

hydrostatic pressure on martensitic transformations of Cu-Al-Ni shape memory alloy. Trans. Jpn. 

Inst. Metals 1988, 29, 781–789. 

26. Kakeshita, T.; Shimizu, K. Effects of hydrostatic pressure on martensitic transformations. Mat. 

Trans. JIM 1997, 38, 668–681. 

27. Zakrevskiy, I.G.; Kokorin, V.V.; Chernenko, V.A. Baroelastic martensitic transformation in  

Fe-Ni-Co-Ti alloy. Soviet Phys. Dokl. 1989, 34, 73–74. 

28. Chernenko, V.A.; L'vov, V.A. Thermodynamics of martensitic transformations affected by 

hydrostatic pressure. Phil. Mag. A 1996, 73, 999–1008. 

29. Aseguinolaza, I.R.; Reyes-Salazar, I.; Svalov, A.V.; Wilson, K.; Knowlton, W.B.; Mullner, P.; 

Barandiaran, J.M.; Villa, E.; Chernenko, V.A. Transformation volume strain in Ni-Mn-Ga thin 

films. Appl. Phys. Lett. 2012, 101, 241912:1–241912:4. 

30. Khovailo, V.V.; Takagi, T.; Tani, J.; Levitin, R.Z.; Cherechukin, A.A.; Matsumoto, M.; Note, R. 

Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural 

transition. Phys. Rev. B 2002, 65, 092410:1–092410:4. 

31. Ito, W.; Imano, Y.; Kainuma, R.; Sutou, Y.; Oikawa, K.; Ishida, K. Martensitic and magnetic 

transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory 

alloys. Metall. Mater. Trans. A 2007, 38, 759–766. 

32. Kustov, S.; Corró, M.L.; Pons, J.; Cesari, E. Entropy change and effect of magnetic field on 

martensitic transformation in a metamagnetic Ni–Co–Mn–In shape memory alloy. Appl. Phys. 

Lett. 2009, 94, 191901:1–191901:3. 

33. L’vov, V.A.; Cesari, E.; Recarte, V.; Pérez-Landazábal, J.I. Entropy change of martensitic 

transformation in ferromagnetic shape memory alloys. Acta Mater. 2013, 61, 1764–1772. 

34. Xu, X.; Ito, W.; Umetsu, R.Y.; Koyama, K.; Kainuma, K.; Ishida, K. Kinetic arrest of martensitic 

transformation in Ni33:0Co13:4Mn39:7Ga13:9 metamagnetic shape memory alloy. Mater. 

Trans. 2010, 51, 469–471.  

35. L'vov, V.A.; Kosogor, A.; Söderberg, O.; Hannula, S.-P. The symmetry-conforming theory of 

martensite aging. Mater. Sci. Forum 2010, 635, 13–19. 

36. Kosogor, A.; L’vov, V.A.; Soderberg, O.; Hannula, S.-P. Stabilizing internal stress as the 

thermodynamic factor of martensite aging effects. Acta Mater. 2011, 59, 3593–3601. 

37. L’vov, V.A.; Kosogor, A.; Barandiaran, J.M.; Chernenko, V.A. Destabilization of Ni–Mn–Ga 

martensite: Experiment and theory. Acta Mater. 2012, 60, 1587–1593. 



Metals 2013, 3 279 

 

 

38. Liakos, J.K.; Saunders, G.A. Application of the Landau theory to elastic phase transitions. 

Philos. Mag. A 1982, 46, 217–242. 

39. Gomonaj, E.V.; L'vov, V.A. Martensitic phase transition with two-component order parameter in 

a stressed cubic crystal. Phase Trans. 1994, 47, 9–21. 

40. Barsch, G.R.; Krumhansl, J.A. Twin boundaries in ferroelastic media without interface 

dislocations. Phys. Rev. Lett. 1984, 53, 1069–1072. 

41. Danilevich, A.G.; L’vov, V.A. Strong influence of ferromagnetic ordering and internal pressure 

on the elastic modulus of shape memory alloy. JMMM 2013, 333, 108–113. 

42. Patel, J.R.; Cohen, M. Criterion for the action of applied stress in the martensitic transformation. 

Acta Metall. 1953, 1, 531–538. 

43. Rohde, R.W.; Graham, R.A. The effect of hydrostatic pressure on the martensitic reversal of an 

iron-nickel-carbon alloy. Trans. Met. Soc. AIME 1969, 245, 2441–2445. 

44. Otsuka, K.; Ren, X. Mechanism of martensite aging effects and new aspects. Mater. Sci. Eng. A 

2001, 312, 207–218. 

45. Pelegrina, J.L.; Ahlers, M. Influence of a constant stress during isothermal β phase ageing on the 

martensitic transformation in a Cu–Zn–Al shape memory alloy. Scr. Mater. 2004, 50, 423–427. 

46. Cahn, R.W. Metallic rubber bounces back. Nature 1995, 374, 120–121. 

47. Picornell, C.; Pons, J.; Cesari, E. Effect of aging under compressive stress along [100] in  

Co–Ni–Ga single crystals. Funct. Mater. Lett. 2009, 2, 83–86. 

48. Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni based shape memory alloys. Prog. Mater. Sci. 

2005, 50, 511–678. 

49. L’vov, V.A.; Glavatska, N.; Aaltio, I.; Söderberg, O.; Glavatskyy, I.; Hannula, S.-P. The role of 

anisotropic thermal expansion of shape memory alloys in their functional properties. Acta Mater. 

2009, 57, 5605–5612. 

50. Brill, T.M.; Mittelbach, S.; Assmus, W.; Mullner, M.; Luthi, B. Elastic properties of NiTi.  

J. Phys. Condens. Matter. 1991, 3, 9621–9627. 

51. Chernenko, V.A.; Homenko, D.V.; L’vov, V.A.; Barandiaran, J.M. Specific heat of shape 

memory alloys with soft elastic moduli. J. Appl. Phys. 2011, 109, 013526:1–013526:6. 

52. Lapshin, V.P.; Grishkov, V.N.; Lotkov, A.I. On certain anharmonic characteristics of B2-Phase 

Ti(Ni, Fe) alloys under hydrostatic pressure. Russ. Phys. J. 2000, 43, 999–1002. 

53. Ren, X.; Otsuka, K. Origin of rubber-like behaviour in metal alloys. Nature 1997, 389, 579–582. 

54. Ishibashi, H.; Kogachi, M.; Ohba, T.; Ren, X.; Otsuka, K. Vacancy migration and long-range 

ordering due to ageing in AuCd shape memory alloys. Mater. Sci. Eng. A 2002, 329–331,  

568–572. 

55. Tadaki, K.; Otsuka, K.; Shimizu, K. Shape memory alloys. Ann. Rev. Mater. Sci. 1988, 18,  

25–45. 

56. Otsuka, K.; Ren, X. Mechanism of martensite aging effect. Scr. Mater. 2004, 50, 207–212.  

57. Murakami, Y.; Nakajima, Y.; Otsuka, K.; Ohba, T.; Matsuo, R.; Ohshima, K. Characteristics and 

mechanism of martensite ageing effect in Au-Cd alloys. Mater. Sci. Eng. A 1997, 237, 87–101. 

58. Ohta, T. Theory of rubber-like elasticity in shape memory alloys. Mater. Sci. Eng. A 2001, 312, 

57–65.  



Metals 2013, 3 280 

 

 

59. Ren, X.; Otsuka, K. Universal symmetry property of point defects in crystals. Phys. Rev. Lett. 

2000, 85, 1016–1019. 

60. Xue, D.; Zhou, Y.; Ding, X.; Otsuka, K.; Sun, J.; Ren, X. Martensite aging effects on the 

dynamic properties of Au–Cd shape memory alloys: Characteristics and modelling. Acta Mater. 

2011, 59, 4999–5011. 

61. Xue, D.; Zhou, Y.; Ding, X.; Lookman, T.; Sun, J.; Ren, X. Aging and deaging effects in shape 

memory alloys. Phys. Rev. B 2012, 86, 184109:1–184109:11. 

62. Kosogor, A.; Xue, D.; Zhou, Y.; Ding, X.; Otsuka, K.; L’vov, V.A.; Sun, J.; Ren, X. Impact of 

the volume change on the aging effects in Cu-Al-Ni martensite: experiment and theory. J. Phys. 

Condens. Matter, submitted for publication, 2013. 

63. Otsuka, K.; Ren, X.; Murakami, Y.; Kawano, T.; Ishii, T.; Ohba, T. Composition dependence of 

the rubber-like behavior in ζ2′-martensite of AuCd alloys. Mater. Sci. Eng. A 1999, 273,  

558–563. 

64. Ren, X.; Otsuka, K. The role of softening in elastic constant c44 in martensitic transformation. 

Scr. Mater. 1998, 38, 1669–1675. 

65. Otsuka, K.; Ren, X. Martensitic transformations in nonferrous shape memory alloys. Mater. Sci. 

Eng. A 1999, 273–275, 89–105. 

66. Otsuka, K.; Shimizu, K. Morphology and crystallography of thermoelastic Cu-Al-Ni martensite 

analyzed by the phenomenological theory. Mat. Trans. JIM 1974, 15, 103–108. 

67. Van Humbeeck, J.; Janssen, J.; Mwamba, N.; Delaey, L. The stabilisation of step-quenched 

copper-zinc-aluminum martensite part I: The reverse transformation temperatures. Scr. Metall. 

1984, 18, 893–898.  

68. Nakata, Y.; Yamamoto, O.; Shimizu, K. Effect of aging in Cu-Zn-Al shape memory alloys. Mat. 

Trans. JIM 1993, 34, 429–437. 

69. Kokorin, V.V.; Kozlova, L.E.; Titenko, A.N. Temperature hysteresis of martensite 

transformation in aging Cu–Mn–Al alloy. Scr. Mater. 2002, 47, 499–502. 

70. Kustov, S.; Pons, J.; Cesari, E.; Van Humbeeck, J. Pinning-induced stabilization of martensite: 

Part I. Stabilization due to static pinning of interfaces. Acta Mater. 2004, 52, 3075–3081. 

71. Chernenko, V.A.; Pons, J.; Cesari, E.; Zasimchuk, I.K. Transformation behaviour and martensite 

stabilization in the ferromagnetic Co–Ni–Ga Heusler alloy. Scr. Mater. 2004, 50, 225–229. 

72. Chernenko, V.A.; Villa, E.; Besseghini, S.; Barandiaran, J.M. Giant two-way shape memory 

effect in high-temperature Ni–Mn–Ga single crystal. Phys. Proced. 2010, 10, 94–98. 

73. Hsieh, S.F.; Chang, W.K. Martensitic transformation of an aged/thermal-cycled 

Ti30.5Ni49.5Zr10Hf10 Shape Memory Alloy. J. Mater. Sci. 2007, 37, 2851–2856. 

74. Wayman, C.M.; Cornelis, I.; Shimizu, K. Transformation behavior and the shape memory effect 

in thermally cycled TiNi. Scr. Metall. 1972, 6, 115–122. 

75. Miyazaki, S.; Igo, Y.; Otsuka, K. Effect of thermal cycling on the transformation temperatures of 

Ti-Ni alloys. Acta Metall. 1986, 34, 2045–2051. 

76. Hsieh, S.F.; Wu, S.K.; Lin, H.C. Martensitic transformation of a Ti-rich Ti51Ni47Si2 shape 

memory alloy. J. Alloys Compd. 2002, 335, 254–261. 

77. Perkins, J.; Muesing, W.E. Martensitic transformation cycling effects in Cu-Zn-Al shape 

memory alloys. Met. Trans. A 1983, 14, 33–36. 



Metals 2013, 3 281 

 

 

78. Chernenko, V.A.; Kokorin, V.V.; Babii, O.M.; Zasimchuk, I.K.; Phase diagrams in the  

Ni-Mn-Ga system under compression. Intermetallics 1998, 6, 29–34. 

79. Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; Volume 5 Statistical Physics; 

Pergamon Press: New York, NY, USA, 1980. 

80. L’vov, V.A.; Matsishin, N.; Glavatska, N. Thermoelastic behaviour of martensitic alloy in the 

vicinity of critical point in the stress–temperature phase diagram. Phase Trans. 2010, 83,  

293–301. 

81. Kosogor, A.; Matsishin, N.J.; L'vov, V.A. Modelling of hysteresis loops taken during the  

stress- and temperature-induced martensitic transformations. Phase Trans. 2013, in press. 

82. L’vov, V.A.; Gomonaj, E.V.; Chernenko, V.A. A phenomenological model of ferromagnetic 

martensite. J. Phys. Condens. Mat. 1998, 10, 4587–4596. 

83. Chernenko, V.A.; L'vov, V.A.; Pasquale, M.; Besseghini, S.; Sasso, C.; Polenur, D.A. 

Magnetoelastic behavior of Ni-Mn-Ga martensitic alloys. Int. J. Appl. Electromagn. Mech. 2000, 

12, 3–8. 

84. Chernenko, V.A.; L’vov, V.A.; Zagorodnyuk, S.P.; Takagi, T. Ferromagnetism of thermoelastic 

martensites: Theory and experiment. Phys. Rev. B 2003, 67, 064407:1–064407:6.  

85. Buchelnikov, V.D.; Khovailo, V.V.; Takagi, T. The thermal expansion coefficient and volume 

magnetostriction of Heusler Ni2MnGa alloys. JMMM 2006, 300, e459–e461. 

86. Chernenko, V.A.; Amengual, A.; Cesari, E.; Kokorin, V.V.; Zasimchuk, I.K. Thermal and 

magnetic properties of stress-induced martensites in Ni2MnGa alloys. J. Phys. IV 1995, 5, 95–98. 

87. Fukuda, T.; Maeda, H.; Yasui, M.; Kakeshita, T. Influence of magnetocrystalline anisotropy on 

martensitic transformation under magnetic field of single-crystalline Ni2MnGa. Scr. Mater. 

2009, 60, 261–263. 

88. Seguí, C.; Chernenko, V.A.; Pons, J.; Cesari, E. Low-Temperature-Induced intermartensitic 

phase transformations in Ni–Mn–Ga single crystal. JMMM 2005, 290, 811–815. 

89. Seguí, C.; Chernenko, V.A.; Pons, J.; Cesari, E. Two-Step martensitic transformation in  

Ni-Mn-Ga alloys. J. Phys. IV 2003, 112, 903–906. 

90. Chernenko, V.A.; Cesari, E.; Pons, J.; Seguí, C. Phase transformations in rapidly quenched  

Ni–Mn–Ga alloys. Mat. J. Res. 2000, 15, 1496–1504. 

91. Chernenko, V.A.; Cesari, E.; Kokorin, V.V.; Vitenko, I.N. The development of new ferromagnetic 

shape memory alloys in Ni-Mn-Ga system. Scr. Met. Mat. 1995, 33, 1239–1244. 

92. Cesari, E.; Salas, D.; Kustov, S. Entropy changes in ferromagnetic shape memory alloys.  

Mat. Sci. Forum 2011, 684, 49–60. 

93. Recarte, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Sánchez-Alarcos, V.; Cesari, E.; Pons, J. 

Vibrational and magnetic contributions to the entropy change associated with the martensitic 

transformation of Ni–Fe–Ga ferromagnetic shape memory alloys. J. Phys. Condens. Matter 

2010, 22, 416001:1–416001:7. 

94. Liu, Z.H.; Hu, H.N.; Liu, G.D.; Cui, Y.T.; Zhang, M.; Chen, J.L.; Wu, G.H. Electronic structure 

and ferromagnetism in the martensitic-transformation material Ni2FeGa. Phys. Rev. B 2004,  

69, 134415. 



Metals 2013, 3 282 

 

 

95. Seguí, C.; Cesari, E. Composition and atomic order effects on the structural and magnetic 

transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys. J. Appl. Phys. 2012, 111, 

043914:1–043914:7. 

96. Barandiaran, J.M.; Chernenko, V.A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I. 

Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. 

Appl. Phys. Lett. 2013, 102, 071904:1–071904:4. 

97. Gruner, M.E.; Entel, P. Impact of local lattice distortions on the structural stability of Fe-Pd 

magnetic shape-memory alloys. Phys. Rev. B 2011, 83, 214415:1–214415:11. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


