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Abstract: A few experiments have detected icosahedral superclusters in undercooled 

liquids. These superclusters survive above the crystal melting temperature Tm because all 

their surface atoms have the same fusion heat as their core atoms, and are melted by liquid 

homogeneous and heterogeneous nucleation in their core, depending on superheating time 

and temperature. They act as heterogeneous growth nuclei of crystallized phase at  

a temperature Tc of the undercooled melt. They contribute to the critical barrier reduction, 

which becomes smaller than that of crystals containing the same atom number n. After 

strong superheating, the undercooling rate is still limited because the nucleation of 13-atom 

superclusters always reduces this barrier, and increases Tc above a homogeneous 

nucleation temperature equal to Tm/3 in liquid elements. After weak superheating, the most 

stable superclusters containing n = 13, 55, 147, 309 and 561 atoms survive or melt and 

determine Tc during undercooling, depending on n and sample volume. The experimental 

nucleation temperatures Tc of 32 liquid elements and the supercluster melting temperatures 

are predicted with sample volumes varying by 18 orders of magnitude. The classical Gibbs 

free energy change is used, adding an enthalpy saving related to the Laplace pressure 

change associated with supercluster formation, which is quantified for n = 13 and 55. 

Keywords: thermal properties; solid-liquid interface energy; crystal nucleation; 

undercooling; superclusters; liquid-solid transition; overheating; non-metal to metal 

transition in cluster; Laplace pressure 

 
  

OPEN ACCESS



Metals 2014, 4 360 

 

 

1. Introduction 

An undercooled liquid develops special clusters that minimize the energy locally which are 

incompatible with space filling [1–3]. Such entities are homogeneously formed in glass-forming  

melts, and act as growth nuclei of crystals above the glass transition [4]. The formation of icosahedral 

nanoclusters has often been studied by molecular dynamics simulations into or out of liquids [5–8]. 

Silver superclusters containing the magic atom numbers n = 13, 55, 147, 309, 561 are more stable. 

Their formation temperature out of melt and their radius have been determined [5]. Icosahedral gold 

nanoclusters do not premelt below their bulk melting temperature [6]. Nanoclusters have been 

prepared out of liquids [9–14]. The density of states of conduction electrons at the Fermi energy being 

strongly reduced for particle diameters smaller than one nanometer leads to a gap opening [9,10].  

The growth nuclei are expected to have analogous electronic properties.  

Superclusters containing magic atom numbers are tentatively viewed for the first time as being  

the main growth nuclei of crystallized phases in all liquid elements. I already considered that an energy 

saving resulting from the equalization of Fermi energies of nuclei and melts cannot be neglected in  

the classical crystal nucleation model [15,16]. An enthalpy saving εv per volume unit of critical radius 

clusters equal to εls × ΔHm/Vm was introduced in the Gibbs free energy change ΔG2ls which gives  

rise to spherical clusters that transform the critical energy barrier into a less effective energy barrier,  

thereby inducing crystal growth around them at a temperature Tc much higher than the theoretical 

homogeneous nucleation temperature equal to Tm/3. This enthalpy depends on ΔHm the melting heat 

per mole at the melting temperature Tm, Vm the molar volume and εls a numerical coefficient. The 

experimental growth temperature Tc is often interpreted in the literature as a homogeneous nucleation 

temperature. This view is not correct, because the Tc of liquid elements is highly dependent on the 

sample volume v [17]. The crystallization temperatures are known to be driven by an effective critical 

energy barrier that is strongly weakened by the Gibbs free energy change associated with impurity 

clusters in the liquid [18,19]. The presence of εv has for consequence to prevent the melting above  

Tm of the smallest clusters acting as intrinsic growth nuclei reducing the critical energy barrier in 

undercooled liquids. The critical energy saving coefficient εls was shown for the first time as 

depending on θ2 = [(T − Tm)/Tm]2 in liquid elements with a maximum at Tm equal to 0.217 [15,16]. 

In this article, each cluster having a radius smaller than the critical radius has its own energy saving 

coefficient εnm depending on θ2, n and its radius Rnm. In this case too, the cluster surface energy is  

a linear function of εnm instead of a function of θ or T [20–25]. The Gibbs free energy change 

derivative [d(ΔG2ls)/dT]p = −ΔSm at Tm continues to be equal to the entropy change whatever the 

particle radius is because (dεls/dT)T=Tm is equal to zero. All the surface atoms of growth nuclei have  

the same fusion heat as their core atoms [21]. They survive for a limited time above the melting 

temperature because they are not submitted to surface melting. A melt bath needs time to attain the 

thermodynamic equilibrium above the melting temperature Tm. This finding is the basic property 

permitting to assume for the first time that the growth nuclei in all liquid elements are superclusters 

instead of crystals. These superclusters are melted by homogeneous nucleation of liquid in their core 

instead of surface melting. A prediction of superheating effects is also presented for the first time  

for 38 liquid elements together with the predictions of undercooling rates depending on sample 

volumes and supercluster magic atom numbers n. The undercooling temperatures of gold and titanium 
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have already been predicted using a continuous variation of growth nucleus radii and quantified values 

of εv [22,23]. 

The equalization of Fermi energies of liquid and superclusters is not realized by a transfer of 

conduction electrons from nuclei to melts as I assumed in the past [15,16,24]. I recently suggested that 

a Laplace pressure change Δp applied to conducting and nonconducting superclusters accompanied by 

an enthalpy saving per mole equal to Vm × Δp = εls × ΔHm is acting [25]. This quantity is proportional 

to 1/Rnm down to values of the radius Rnm, for which the potential energy is still equal to the quantified 

energy. Superclusters containing 13 and 55 atoms have an energy saving coefficient εnm0 which is 

quantified. This coefficient εnm0 associated with an n-atom supercluster strongly depends on n up to the 

critical number nc of atoms, giving rise to crystal spontaneous growth when εnm0 is equal to 0.217 in 

liquid elements [15]. 

The quantified values of εv are known solutions of the Schrödinger equation which are obtained 

assuming that the same complementary Laplace pressure Δp could be created by a virtual s-electron 

transfer from the crystal to the melt or from the melt to the crystal, creating a virtual surface charge 

screening associated with a spherical attractive potential [24]. All values of εv for radii smaller than  

the critical values lead to a progressive reduction of electron s-state density as a function of n [23]. 

Reduced s-state density of superclusters depending on their radius and electronic specific heat of Cu, 

Ag and Au n-atom superclusters are studied, imposing a relative variation of Fermi energies during 

their formation in noble metal liquid state equal to −2/3 of the relative volume change. The radii of Ag 

superclusters calculated by molecular dynamics simulations in [5] are comparable with the critical 

radius values R*2ls(T) deduced from this constraint. 

This article follows the plan below: 

2. The supercluster formation equations leading to crystallization. 

2.1. Gibbs free energy change associated with growth nucleus formation. 

2.2. Thermal dependence of the energy saving coefficient εnm of an n-atom condensed supercluster. 

2.3. Crystal homogeneous nucleation temperature and effective nucleation temperature. 

3. The model of quantification of the energy saving of superclusters. 

4. Prediction of crystallization temperatures of 38 supercooled liquid elements at constant molar volume. 

5. Homogeneous nucleation of 13-atom superclusters and undercooling rate predictions. 

6. Maximum overheating temperature applied to melt superclusters at constant molar volume. 

7. Electronic properties of Cu, Ag and Au superclusters. 

8. Silver supercluster formation into and out of undercooled liquid. 

9. Melting of Cu, Ag and Au superclusters, varying the overheating temperatures and times. 

9.1. Superheating of Cu, Ag and Au superclusters. 

9.2. Analysis of the influence of Cu superheating time on the undercooling rate. 

10. Conclusions. 
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2. Supercluster Formation Equations Leading to Crystallization 

2.1. Gibbs Free Energy Change Associated with Growth Nucleus Formation 

The classical Gibbs free energy change for a growth nucleus formation in a melt is given in 

Equation (1): 
3

2m
1ls 1ls

m

4
4

3

H R
G R

V

Δ πΔ = θ + π σ  (1)

where R is the nucleus radius, σ1ls the surface energy, ΔHm the melting heat, Vm the molar volume  

and θ = (T − Tm)/Tm the reduced temperature. Turnbull has defined a surface energy coefficient α1ls  

in Equation (2) which is equal to Equation (3) [19,26]: 
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where NA is the Avogadro number, kB the Boltzmann constant, ΔSm the melting entropy and  

ln(Kls) = 90 ± 2. 

An energy saving per volume unit εls × ΔHm/Vm is introduced in Equation (1); the new Gibbs free 

energy change is given by Equation (4), where σ2ls is the new surface energy [15,27]: 
3
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The new surface energy coefficient α2ls is given by Equation (5): 
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The critical radius R*2ls in Equation (6) and the critical thermally-activated energy barrier 

ΔG*2ls/kBT in Equation (7) are calculated assuming (dεls/dR)R=R*2ls = 0: 
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They are not infinite at the melting temperature Tm because εls is no longer equal to zero [15,16]. 

The homogeneous nucleation temperature T2 (or θ2) occurs when the nucleation rate J in Equation (8) 

is equal to 1, lnKls = 90 ± 2 in Equations (9) and (10) respected with ΔG*2ls/kBT = 90 neglecting the 

lnKls thermal variation [28]: 
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The unknown surface energy coefficient α2ls in Equation (10) is deduced from Equations (7) and (9): 
2
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 (10)

The surface energy σ2ls in Equation (5) has to be minimized to obtain the homogeneous nucleation 

temperature T2 (or θ2) for a fixed value of εls. The derivative dα2ls/dθ is equal to zero at the temperature 

T2 (or θ2) given by Equation (11), assuming that ln(Kls) does not depend on the temperature: 
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T T
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The homogeneous nucleation temperature T2 is equal to Tm/3 (or θ2 = −2/3) in liquid elements and 

εls (θ) is equal to zero at this temperature [15,24]. 

The surface energy coefficient α2ls is now given by Equation (12), replacing θ by Equation (11) in 

Equation (10) for each value of εls: 
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The classical crystal nucleation Equation (4) is transformed into Equation (13) with the introduction 

of the energy saving coefficient εls: 

3
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The Laplace pressure p and the complementary Laplace pressure Δp applied on the critical  

nucleus are calculated from the surface energy σ2ls with the Equations (13) and (6) and Δp is given  

by Equation (14) [21,25]: 
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where δσ2ls is the complement proportional to εls in the surface energy in Equation (13). The 

complement Δp is equal to the energy saving εls(θ) × ΔHm/Vm. The Gibbs free energy change ΔG2ls in 

Equation (13) directly depends on the cluster atom number n and the energy saving coefficient εnm of 

the cluster instead of depending on its molar volume Vm and its radius R as shown in Equation (15): 

1/3
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The formation of superclusters having a weaker effective energy barrier than that of crystals 

precedes the formation of crystallized nuclei in an undercooled melt [5,29]. A spherical surface 

containing n atoms being minimized, a supercluster having a radius smaller than the critical radius 

cannot be easily transformed into a non-spherical crystal of n atoms because the surface energy  

would increase. The critical radius of superclusters could be larger than that of crystals because  

the supercluster density could be smaller, as already predicted for Ag [5] and confirmed in part 7.  

In these conditions, the transformation of a supercluster into a crystal is expected to occur above  

the critical radius for crystal growth when the Gibbs free energy change begins to decrease with the 
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radius, while that of a supercluster increases up to its critical radius. It is shown in parts 3 and 4 that 

the supercluster energy saving εnm × ΔHm is quantified, depends on cluster radius R and atom number 

n, and is larger than the critical energy saving 0.217 × ΔHm. The cluster’s previous formation during 

undercooling determines the spontaneous growth temperature Tc reducing the effective critical energy 

barrier. The smallest homogeneously-condensed cluster controls the heterogeneous growth of crystals 

at temperatures higher than the homogeneous nucleation temperature Tm/3 (θ2 = −2/3) even in liquids 

which are at thermodynamic equilibrium at Tm before cooling. 

2.2. Thermal Dependence of the Energy Saving Coefficient εnm of an n-Atom Condensed Cluster 

All growth nuclei that are formed in an undercooled melt are submitted to a complementary Laplace 

pressure. The energy saving coefficient εnm of an n-atom cluster given in Equation (16), being a 

function of θ2 as already shown [15], is maximum at Tm, with (dεnm/dT)T=Tm equal to zero: 
2

m m
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 (16)

where εnm0 is the quantified energy saving coefficient of an n-atom cluster at Tm depending on the 

spherical nucleus radius R [24]. 

This thermal variation has for consequence that the fusion entropy per mole of a cluster of radius  

R is equal to the fusion entropy ΔSm of the bulk solid [15,24] 
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In these conditions, cluster surface atoms having the same fusion heat as core atoms, the cluster 

melts above Tm by liquid droplet homogeneous nucleation above Tm rather than by surface melting  

as expected for superclusters [6]. This θ2 thermal variation has already been used to predict the 

undercooling rate of some liquid elements [22,23]. 

The critical parameters for spontaneous supercluster growth are determined by an energy saving 

coefficient called εls in Equation (18): 
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where εls0 = 0.217 is the critical value at Tm and θ−2
0m = 2.25 in liquid elements[15,24]. A critical 

supercluster contains a critical number nc of atoms given by: 

3
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2.3. Crystal Homogeneous Nucleation Temperature and Effective Nucleation Temperature 

The thermally-activated critical energy barrier is now given by Equation (20): 
* 3
2ls ls ls
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where εls is given by Equation (18). The coefficient of ln(Kls) in Equation (20) becomes equal to 1 at 

the homogeneous nucleation temperature Tm/3 and the Equations (9) and (11) are respected. 

Homogeneously-condensed superclusters of n-atoms act as growth nuclei at a temperature generally 

higher than the homogeneous nucleation temperatures Tm/3 of liquid elements because they reduce  

the critical energy barrier as shown in Equation (21) [18]: 
*
2ls nm

sn ls sn
B B
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k k

G G
J v t K v t

T T

Δ Δ× × = × × − − =  (21)

where v is the sample volume, J the nucleation rate, tsn the steady-state nucleation time, lnKls = 90 ± 2, 

ΔG*2ls/kBT defined in Equation (20) and ΔGnm in Equation (15). The Equation (21) is applied, 

assuming that n-atom superclusters preexist in melts when they have not been melted by superheating 

above Tm. It can also be applied when the homogeneous condensation time of an n-atom supercluster is 

evolved and its own critical energy barrier crossed. The cluster thermally-activated critical energy 

barrier ΔG*nm/kBT and the effective thermally-activated critical energy barrier ΔGneff/kBT of an n-atom 

supercluster are given by Equations (22) and (23): 
3*
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where ΔGnm is given by Equation (15), εnm by Equation (16) and lnKls = 90 ± 2. The quantified value 

εnm0 × ΔHm of the cluster energy saving at Tm is defined in the next part. The transient nucleation time 

being neglected, the growth around these nuclei is only possible when the steady-state nucleation time 

tsn is evolved and the relation Equation (24) is respected: 

neff
n sn ls sn

B

ln( ) ln( )
k

G
J v t K v t

T

Δ× × = × × −  (24)

where v is the sample volume and tsn the steady-state nucleation time. The crystallization follows this 

cluster formation time when, in addition, Equation (21) is respected. The effective nucleation 

temperature deduced from Equation (21) does not result from a homogeneous nucleation because it 

strongly depends on the sample volume v. This phenomenon explains why the effective nucleation 

temperature in liquid elements is observed around θ = −0.2 in sample volumes of a few mm3 instead of 

θ varying from − 0.58 to −0.3 in much smaller samples [17,30]. 

3. Quantification of Energy Saving Associated with Supercluster Formation 

The potential energy saving per nucleus volume unit εls × ΔHm/Vm is equal to the Laplace pressure 

change Δp = 2 × δσls/R accompanying the transformation of a liquid droplet into a nucleus. The 

quantified energy is smaller than 2 × δσls/R at low radius R for n = 13 and 55. The calculation is made 

by creating a Laplace pressure on the surface of a spherical nucleus containing n atoms, which would 

result from a virtual transfer of n × Δz electrons in s-states from the nucleus to the melt, Δz being  

the fraction of transferred electrons per supercluster atom [31]. The potential energy U0 would be equal 

to Equation (25) and to zero beyond the nucleus radius R: 
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where e is the electron charge, and ε0 the vacuum permittivity ([32], p. 135). The quantified energy Eq 

at Tm is given by Equation (26): 
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where NA is the Avogadro number. The quantified energy saving is given by Equation (16) as a 

function of θ with (θ0m)−2 = 2.25 when εnm0 is known. 

The Schrödinger equation depends only on the distance R of an s-state electron from the spherical 

potential center. The quantified solutions Eq leading to the values of εnm0 are given by the two 

equations in Equation (27), depending on U0 which is equal to the complementary Laplace pressure Δp 

acting on an n-atom cluster having a volume equal to 4πR3/3 through an intermediate parameter called k: 
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where m0 is the electron rest mass and ħ Planck’s constant divided by 2π ([32], p. 135).  

The critical radii of liquid elements are sufficiently large at Tm to assume that U0 is equal to Eq and 

to deduce the values of Δz from the relation Equation (25) = (26) with R = R*2ls (θ = 0) and εnm0 = εls0 

= 0.217. The potential energy U0 given by Equation (25) is also equal to −4πR3/3 × Δp. Consequently, 

the Δz in Equation (25) does not depend on R at Tm. The value of U0 is deduced from the atom number 

n which depends on molar volumes Vm of solid elements extrapolated at Tm from published tables of 

thermal expansion [16,33]. The values of εnm0 are calculated as a function of R using Equation (28) 

instead of Equation (27) for n ≥ 147 because U0 is assumed equal to Eq: 
*

ls0 2ls
nm0  

R

R

ε ×ε =  (28)

The condensed-cluster energy savings εnm0 × ΔHm of 13 and 55 atoms are quantified and calculated 

from Equation (26). The thermal variation of εnm is given in Equation (16) using these quantified 

values of εnm0. 

4. Prediction of Crystallization Temperatures Tc of 38 Undercooled Liquid Samples of  

Various Diameters 

The quantified and the potential energy saving coefficients εnm0 of silver clusters have been 

calculated using Equations (27) and (28) and are represented in Figure 1 as a function of supercluster 

radius Rnm which is assumed to continuously vary. These coefficients are equal for n ≥ 147. This last 

approximation is used in all liquid elements. 
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Figure 1. The energy saving coefficient εnm0 versus the supercluster radius Rnm. The quantified 

(square points) and non-quantified (diamond points) energy saving coefficients εnm0  

are plotted versus the silver cluster radius. This coefficient is strongly weakened when  

R < 0.5 nm. Quantification is necessary for an atom number n < 147. 

 

Properties of 38 elements are classified in Table 1: 

Column 1, the liquid elements are classified as a function of their molar fusion entropy ΔSm; 

Column 2, the molar volume of solid elements at Tm in m3; 

Column 3, their fusion entropy ΔSm in J/K/mole, n; 

Column 4, their melting temperature Tm in Kelvin; 

Column 5, the atom magic number n of the supercluster inducing crystallization of the supercooled 

liquid at the closest temperature to the experimental crystallization temperature; 

Column 6, the supercluster radius Rnm in nanometers deduced from the molar volume Vm using the 

relation Equation (29): 
3
nm A

m

4 N

3

R
n

V

π=  (29)

Column 7, the energy saving coefficient εnm0 associated with the n-atom supercluster calculated 

using Equation (29) for n ≥ 147 and Equation (27) for n = 13 and 55, with Δz given in Table 2 column 3; 

Column 8, the experimental reduced crystallization temperature θc exp = (Tc − Tm)/Tm of a liquid 

droplet having a diameter Dexp; 

Column 9, the reduced crystallization temperature θc calc calculated using Equation (21); 

Column 10, the thermally-activated effective energy barrier ΔGeff/kBT given in Equations (21) and 

(20) leading to the crystallization of the corresponding liquid element; 

Column 11, the calculated diameter Dcalc in mm of the liquid droplet of volume v submitted to 

crystallization at θc calc using Equation (21) and v × tsn ≈ v = π/6×D3 assuming that tsn = 1 s; 

Column 12, the experimental diameter Dexp in millimeters of the liquid droplet crystallizing at θc exp 

Column 13, references. 
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Table 1. Reduced crystallization temperatures of 38 supercooled liquid elements induced 

by condensed superclusters containing n = 13, 55, 147, 309 or 561 atoms. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

 

Vm × 

106 
ΔSm Tm n Rnm εnm0 θc θc 

eff

B

G

k T

Δ  
Dcalc Dexp References 

m3 J/K K nm Exp. Calc. mm mm  

Fe 7.53 7.63 1809 55 0.55 0.859 −0.304 −0.298 61.7 0.1000 0.1000 [34,35] 

In 15.90 7.69 429 147 0.98 0.707 −0.260 −0.266 51.0 0.0031 0.0030 [36,37] 

Ti 11.10 7.93 1943 309 1.11 0.546 −0.180 −0.191 70.6 1.9300 1.8000 [38] 

Zr 14.60 7.95 2125 561 1.48 0.447 −0.167 −0.177 73.5 5.0700 5.0000 [39,40] 

Mn 8.88 7.98 1517 309 1.03 0.545 −0.206 −0.217 59.8 0.0500 0.0500 [30,41] 

Pb 18.80 8.00 600 147 1.03 0.698 −0.260 −0.249 57.0 0.0200 0.0200 [17] 

Co 7.11 9.16 1768 55 0.54 0.815 −0.270 −0.280 63.7 0.1900 0.2000 [36,42] 

Ag 11.00 9.16 1234 309 1.10 0.521 −0.332 −0.360 41.7 0.0001 0.0001 [43] 

Au 10.80 9.43 1336 309 1.10 0.516 −0.160 −0.174 76.6 14.2100 15.000 [30,44] 

Tc 8.60 9.47 2430 55 0.57 0.843 −0.240 −0.252 79.3 5.6400  [28] 

Cr 7.54 9.60 2176 309 0.97 0.512 −0.130 −0.180 73.5 5.0200  [28] 

Re 9.50 9.62 3453 55 0.59 0.862 −0.241 −0.255 71.9 3.0100 2.9000 [45] 

Ir 9.20 9.62 2716 309 1.04 0.512 −0.190 −0.183 72.1 3.1600 3.3000 [28,46] 

Mo 10.00 9.63 2890 309 1.07 0.512 −0.180 −0.180 73.4 4.9700 4.9000 [38,47] 

Os 8.85 9.64 3300 147 0.83 0.656 −0.200 −0.208 71.7 2.8200  [28,48] 

Pd 9.91 9.64 1825 309 1.03 0.512 −0.182 −0.209 62.0 0.1100 0.1000 [30,49] 

Pt 9.66 9.65 2042 309 1.06 0.512 −0.185 −0.184 71.6 2.6900 2.6000 [38] 

Cu 7.57 9.66 1356 55 0.55 0.781 −0.259 −0.252 71.7 5.7000 5.7000 [50–52] 

Rh 8.89 9.69 2239 147 0.80 0.654 −0.204 −0.209 71.1 2.3000 2.3000 [38] 

Ta 12.40 9.74 3288 147 0.88 0.653 −0.200 −0.206 72.5 3.6900 3.7000 [38,53] 

Nb 10.80 9.82 2740 309 1.10 0.509 −0.176 −0.179 73.7 5.4200 5.0000 [38] 

Hg 14.20 9.91 232 13 0.42 0.000 −0.380 −0.549 51.6 0.0034 0.0035 [17,43] 

V 8.93 10.07 2175 309 1.03 0.504 −0.150 −0.206 63.0 0.1500 0.1400 [28] 

Ni 7.04 10.14 1726 55 0.54 0.791 −0.278 −0.276 62.7 0.1400 0.1400 [34,36] 

Ru 8.75 10.19 2523 147 0.80 0.644 −0.200 −0.202 73.7 5.3800 5.0000 [28] 

Hf 14.90 10.20 2500 309 1.22 0.502 −0.180 −0.179 73.8 4.8000 4.6000 [38] 

Gaβ 13.40 10.31 256 13 0.39 0.000 −0.500 −0.528 58.6 0.0350 0.0360 [17,54] 

Cd 9.51 10.44 594 309 1.18 0.498 −0.190 −0.228 57.1 0.0210 0.0200 [17] 

Zn 10.60 10.53 693 309 1.05 0.497 −0.190 −0.19 68.6 0.9810  [28] 

Al 10.20 11.48 932 309 1.09 0.483 −0.190 −0.236 57.0 0.0210 0.0200 [17,55] 

W 16.50 12.69 3680 309 1.08 0.467 −0.155 −0.177 73.1 4.4500 4.2000 [26,56] 

Sn 11.19 13.46 520 13 0.44 0.371 −0.370 −0.48 50.3 0.0022 0.0020 [17,37] 

Bi 21.70 20.77 544 13 0.48 0.551 −0.410 −0.405 49.9 0.0019 0.0020 [17,57] 

Sb 18.60 22.15 903 55 0.74 0.639 −0.230 −0.244 57.1 0.0210 0.0200 [17] 

Te 21.00 24.76 723 13 0.48 0.653 −0.320 −0.348 57.1 0.022 0.0200 [17] 

Se 19.50 27.13 494 13 0.47 0.507 −0.305 −0.294 72.8 3.9700 3.8000 [58] 

Si 12.20 29.79 1685 13 0.40 0.765 −0.253 −0.271 75.1 8.6900 8.4000 [59–62] 

Ge 13.90 30.50 1210 13 0.42 0.695 −0.390 −0.387 41.0 0.0001 0.0001 [36,43,52,63] 
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The experimental reduced crystallization temperatures θc exp are plotted in Figure 2 versus the 

calculated θc calc using the supercluster atom-number n leading to about the same droplet diameter  

Dcalc as the experimental one Dexp. A good agreement is obtained between these values in 32 liquid 

elements in Figure 2 and Table 1. There is no good agreement for Hg, Sn, Al, Cd, V, and Cr because 

these elements are known to contain impurities or oxides. Their undercooling rates are too low 

compared to the calculated ones. 

In Figure 3, the calculated droplet diameter logarithms are plotted as a function of those of 

experimental droplets used to study the undercooling rate. Six orders of magnitude are studied, 

corresponding to 18 orders of volume magnitude. Figure 3 shows that the model is able to describe  

the crystallization temperature dependence on the volume sample. 

Figure 2. Experimental undercooling temperatures versus calculated undercooling 

temperatures. The experimental reduced crystallization temperatures θc exp = (Tc − Tm)/Tm are 

plotted versus the calculated ones θc calc of 38 liquid elements listed in Table 1. The smaller 

the atom number n, the smaller is the undercooling temperature, as shown in Table 1. 

 

Figure 3. Calculated liquid droplet diameters versus experimental liquid droplet diameters. 

The calculated and experimental droplet diameters being crystallized are compared in  

a logarithmic scale. Smaller liquid droplets lead to lower undercooling temperatures,  

as shown in Table 1. 

 

The atom numbers n of growth nuclei in liquid elements are represented in Figure 4 as a function of 

the reduced experimental crystallization temperature θc exp of liquid droplets having various diameters. 

The undercooling rate change is two times greater when the diameter varies from 0.036 to 8.4 mm and 

from 0.0001 to 5 mm for n = 13 and n = 309, respectively. 
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The experimental undercooling reduced temperature θc of gallium is the lowest of all the liquid 

elements and is equal to −0.58 and is a little higher than −2/3, corresponding to a crystallization 

temperature Tc equal to 129 K [17] and to a melting temperature of the α phase equal to 303 K.  

The gallium β phase is crystallized after undercooling. Its melting temperature is 257 K instead of  

303 K for the α phase and its fusion entropy is 10.91 J/K/mole, as shown in Table 1, instead of  

18.4 J/K/mole [54]. Its crystallization temperature of 129 K occurs in fact at θc = −0.5. The calculated 

value is equal to the experimental one due to a previous condensation of 13-atom cluster, which 

weakens the critical energy barrier. The model works without any adjustable parameter, and is also 

able to predict the nucleation rate of 13-atom clusters and the diameter of gallium droplets obtained 

with the liquid dispersion technique. 

Figure 4. N-atom superclusters acting as growth nuclei versus the experimental reduced 

undercooling temperatures. The number n of atoms of superclusters is plotted versus the 

experimental reduced temperature of crystallization θc exp. 

 

5. Homogeneous Nucleation of 13-Atom Superclusters and Undercooling Rate Predictions 

Equations (21)–(24) are now used to calculate the homogeneous formation reduced temperature  

θ13c of 13-atom clusters in a melt cooled below Tm from thermodynamic equilibrium state at Tm and the 

crystallization reduced temperature θc that they induce in liquid droplets of 10 micrometers in 

diameter. In Table 2, 38 liquid elements are considered. In 33 of them, the 13-atom cluster formation 

temperature is much larger than the crystallization temperature (θ13c >> θc). In contrast, in indium, 

mercury, gallium β, cadmium and zinc, the two reduced temperatures are equal within the uncertainty 

on the energy saving coefficient value ε13m0 given in Table 2. The crystallization temperatures of 

bismuth, selenium, tellurium, antimony, silicon and germanium with a growth around 13-atom clusters 

are predicted in good agreement with experimental values obtained with various sizes of droplets,  

as shown in Table 1. 

In Figure 5, the homogeneous condensation reduced temperatures of 13-atom superclusters are 

compared with the reduced spontaneous growth temperatures, which induce crystallization. The 

growth is organized around these 13-atom clusters, which are formed at temperatures higher than that 

of spontaneous crystallization. These homogeneous and heterogeneous crystallization temperatures 

depend on the droplet diameters. Their values given in Table 2, Column 10 are the lowest undercooling 

temperatures, which can be obtained with 10 micrometer droplets. 
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Figure 5. Condensation temperatures of 13-atom superclusters and crystallization 

temperatures in 10 micrometer droplets versus the melting entropy in J/K/mole. The 

squares are the reduced formation temperatures of 13-atom superclusters, which are  

ready to grow. These temperatures are larger than or equal to the reduced temperatures of 

spontaneous crystallization around them represented by diamond points. 

 

In Table 2, the liquid elements are still classified as a function of their fusion entropy ΔSm given in 

Table 1 (Column 3): 

Column 1, List of liquid elements; 

Column 2, Critical radius for spontaneous growth; 

Column 3, The number Δz per atom of s-electrons virtually transferred from superclusters to melt at Tm; 
Column 4, The energy saving coefficient εnm0 of 13-atom superclusters calculated with  

Equations (25)–(27); 

Column 5, The energy saving coefficient εnm0 of 55-atom superclusters calculated with  

Equations (24)–(26); 

Column 6, The energy saving coefficient εnm0 of 147-atom superclusters calculated with Equation (28) 

for n ≥ 147; 

Column 7, The energy saving coefficient εnm0 of 309-atom superclusters; 

Column 8, The energy saving coefficient εnm0 of 561-atom superclusters; 

Column 9, The condensation reduced temperature of 13-atom superclusters in 10 micrometer droplets; 

Column 10, The spontaneous growth reduced temperature around 13-atom superclusters in  

10 micrometer droplets. 

Table 2. Energy saving coefficients εnm0 of n-atom superclusters, and reduced condensation 

temperatures θ13c of 13-atom superclusters inducing spontaneous growth at θc = (Tc − Tm)/Tm 

in 10 micrometer droplets. 

1 2 3 4 5 6 7 8 9 10 

R*
2ls Δz εnm0 εnm0 εnm0 εnm0 εnm0 θ13c (10 m) θc (10 m) 

nm n = 13 n = 55 n = 147 n = 309 n = 561 n = 13 n = 13 

Fe 2.48 0.107 0.67 0.859 0.709 0.553 0.454 −0.406 −0.520 

In 3.18 0.033 0.09 0.707 0.707 0.552 0.452 −0.570 −0.560 

Ti 2.79 0.134 0.86 0.881 0.700 0.546 0.448 −0.277 −0.498 

Zr 3.05 0.161 0.99 0.900 0.699 0.546 0.447 −0.192 −0.487 

Mn 2.58 0.098 0.64 0.842 0.698 0.545 0.447 −0.408 −0.514 

Pb 3.32 0.050 0.37 0.786 0.698 0.545 0.446 −0.513 −0.534 
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Table 2. Cont. 

1 2 3 4 5 6 7 8 9 10 

R*
2ls Δz εnm0 εnm0 εnm0 εnm0 εnm0 θ13c (10 m) θc (10 m) 

nm n = 13 n = 55 n = 147 n = 309 n = 561 n = 13 n = 13 

Co 2.29 0.116 0.66 0.815 0.667 0.521 0.427 −0.370 −0.490 

Ag 2.65 0.094 0.62 0.808 0.667 0.521 0.427 −0.348 −0.492 

Au 2.61 0.103 0.67 0.808 0.660 0.516 0.423 −0.337 −0.485 

Tc 2.41 0.174 0.89 0.843 0.659 0.515 0.422 −0.195 −0.466 

Cr 2.30 0.150 0.80 0.826 0.656 0.512 0.420 −0.248 −0.470 

Re 2.48 0.258 1.05 0.862 0.656 0.512 0.420 −0.160 −0.450 

Ir 2.46 0.201 0.95 0.849 0.656 0.512 0.420 −0.094 −0.458 

Mo 2.53 0.220 1.00 0.855 0.656 0.512 0.420 −0.123 −0.455 

Os 2.42 0.250 0.76 0.819 0.656 0.512 0.420 −0.269 −0.450 

Pd 2.52 0.133 1.04 0.861 0.656 0.512 0.420 −0.098 −0.472 

Pt 2.49 0.154 0.85 0.832 0.655 0.512 0.419 −0.217 −0.467 

Cu 2.30 0.094 0.54 0.781 0.655 0.511 0.419 −0.397 −0.490 

Rh 2.42 0.164 0.86 0.834 0.654 0.511 0.419 −0.204 −0.465 

Ta 2.70 0.266 1.09 0.864 0.653 0.510 0.418 −0.071 −0.445 

Nb 2.57 0.216 1.00 0.850 0.652 0.509 0.417 −0.119 −0.451 

Hg 2.81 0.020 0.00 0.525 0.650 0.507 0.416 −0.551 −0.526 

V 2.40 0.164 0.85 0.823 0.646 0.504 0.413 −0.200 −0.459 

Ni 2.21 0.121 0.66 0.791 0.645 0.503 0.413 −0.318 −0.472 

Ru 2.37 0.190 0.91 0.829 0.644 0.502 0.412 −0.160 −0.453 

Hf 2.83 0.225 1.04 0.846 0.643 0.502 0.412 −0.087 −0.442 

Gaβ 2.71 0.021 0.00 0.509 0.641 0.500 0.410 −0.546 −0.520 

Cd 2.41 0.052 0.30 0.710 0.638 0.498 0.409 −0.479 −0.496 

Zn 2.43 0.055 0.26 0.698 0.637 0.497 0.407 −0.489 −0.497 

Al 2.32 0.081 0.49 0.733 0.619 0.483 0.396 −0.379 −0.467 

W 2.67 0.338 1.04 0.797 0.598 0.467 0.383 −0.030 −0.412 

Sn 2.56 0.058 0.37 0.675 0.587 0.458 0.375 −0.406 −0.452 

Bi 2.53 0.089 0.55 0.628 0.508 0.396 0.325 −0.218 −0.382 

Sb 2.35 0.147 0.70 0.639 0.497 0.388 0.318 −0.109 −0.366 

Te 2.36 0.132 0.65 0.613 0.479 0.374 0.306 −0.118 −0.356 

Se 2.23 0.094 0.51 0.575 0.464 0.362 0.297 −0.197 −0.353 

Si 1.85 0.290 0.77 0.597 0.450 0.351 0.288 −0.018 −0.331 

Ge 1.92 0.208 0.695 0.584 0.447 0.349 0.286 −0.056 −0.332 

6. Maximum Superheating Temperatures of Superclusters at Constant Molar Volume 

6.1. Superheating and Melting of n-atom Superclusters by Liquid Homogeneous Nucleation 

N-atom superclusters survive above the melting temperature Tm up to an superheating temperature 

which is time-dependent. They can be melted by liquid homogeneous nucleation in their core instead 

of surface melting. The Gibbs free energy change associated with their melting at a temperature T > Tm 

is given by Equation (30): 
1/3

2/3
nm nm m nm m 2ls

A A

(4 )
( , , ) ( ) (3 )

N N

n
G n H H n

πΔ θ ε = Δ −θ − ε + Δ α  (30)
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where the energy saving coefficient εnm is given in Equation (16) even for θ > 0. The fusion enthalpy 

has changed sign as compared to Equation (15) and the equalization of Fermi energies always still 

leads to an energy saving. An n-atom supercluster melts when Equation (31) is respected: 

nm
sl sn

B

ln( . . )
kn

G
K v t

T

Δ=  (31)

where vn is the n-atom supercluster volume deduced from its radius given in Table 1, ΔGnm deduced 

from Equation (29) and tsn is the superheating time at its own melting temperature because the 

supercluster radius is much smaller than its critical radius. The time tsn is chosen equal to 600 s and 

lnKsl to 90. 

6.2. Overheating and Melting of n-Atom Superclusters by Liquid Heterogeneous Nucleation 

Melting temperatures of superclusters are reduced by previous melting of a 13-atom droplet in their 

core. These entities melt when Equation (32) is respected for n = 13: 

13mnm
sl sn

B B

ln( )
k kn

GG
K v t

T T

ΔΔ× × = −  (32)

where the critical energy barrier ΔG*nm/kBT no longer exists and is replaced by ΔGnm/kBT, εnm in 

Equation (16), εnm0 in Table 2, tsn = 600 s and lnKls = 90. The critical barrier is not involved in 

Equation (32) because the n-atom supercluster radius is much smaller than the critical radius for liquid 

growth and ΔG*nm >> ΔGnm. 

6.3. Prediction of Melting Temperatures of Superclusters in 38 Liquid Elements by Melt Superheating 

above Tm 

The reduced melting temperatures θ = (T − Tm)/Tm of superclusters depending on their atom number 

n are given in several columns of Table 3 and in Figure 6. They are calculated assuming  

that the molar volume is constant, tsn = 600 s. and lnKsl = 90. The liquid elements having fusion 

entropy ΔSm larger than 20 J/K/mole have a melting temperature which is determined by liquid 

homogeneous nucleation because the 13-atom clusters melt at higher temperatures while those with 

ΔSm < 20 J/K/mole are submitted to chain-melting. 

Figure 6. The melting temperatures of superclusters containing 13, 55, 147, 309 and 561 atoms. 

These melting temperatures are given in columns 10, 11, 12 and 13 of Table 3 versus ΔSm. 
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Table 3. The melting temperatures of superclusters. The final melting temperatures are 

given in Columns 2, 11, 12, 13 and 14. The temperatures in Columns 3, 4, 5 and 6 are 

calculated assuming that the melting starts from 13-atom droplets acting as heterogeneous 

nuclei in the core of superclusters. Those in Columns 7, 8, 9 and 10 correspond to a liquid 

homogeneous nucleation. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 θf 
θf  

(n-13) 

θf  

(n-13) 

θf  

(n-13) 

θf  

(n-13) 

θf (n) 

Hom. 

θf (n)  

Hom. 

θf (n)  

Hom. 

θf (n)  

Hom. 
θf(n) θf(n) θf (n) θf (n) 

 n = 13 n = 55 n = 147 n = 309 n = 561 n = 55 n = 147 n = 309 n = 561 n = 55 n = 147 n = 309 n = 561 

Fe 0 0.077 0.274 0.284 0.246 0.395 0.450 0.392 0.311 0.077 0.274 0.284 0.246 

In 0 0.130 0.306 0.302 0.257 0.375 0.443 0.387 0.307 0.130 0.306 0.302 0.257 

Ti 0.025 0.050 0.256 0.271 0.237 0.396 0.446 0.385 0.304 0.050 0.256 0.271 0.237 

Zr 0.054 0.029 0.243 0.264 0.232 0.396 0.443 0.384 0.302 0.054 0.243 0.264 0.232 

Mn 0 0.084 0.274 0.280 0.241 0.398 0.448 0.386 0.304 0.084 0.274 0.280 0.241 

Pb 0 0.106 0.286 0.287 0.245 0.384 0.440 0.381 0.301 0.106 0.286 0.287 0.245 

Co 0.045 0.099 0.270 0.267 0.227 0.420 0.446 0.370 0.286 0.099 0.270 0.267 0.227 

Ag 0.027 0.098 0.268 0.266 0.226 0.412 0.442 0.367 0.285 0.098 0.268 0.266 0.226 

Au 0.049 0.095 0.264 0.262 0.222 0.416 0.441 0.364 0.281 0.095 0.264 0.262 0.222 

Tc 0.107 0.069 0.251 0.254 0.217 0.421 0.442 0.364 0.281 0.069 0.107 0.254 0.217 

Cr 0.094 0.085 0.258 0.257 0.218 0.424 0.444 0.363 0.279 0.094 0.258 0.257 0.218 

Re 0.145 0.047 0.238 0.246 0.212 0.422 0.442 0.362 0.278 0.145 0.238 0.246 0.212 

Ir 0.126 0.061 0.246 0.250 0.215 0.422 0.442 0.362 0.279 0.126 0.246 0.250 0.215 

Mo 0.133 0.054 0.242 0.248 0.213 0.422 0.440 0.361 0.278 0.133 0.242 0.248 0.213 

Os 0.085 0.087 0.259 0.257 0.219 0.422 0.442 0.362 0.278 0.087 0.259 0.257 0.219 

Pd 0.145 0.048 0.238 0.246 0.213 0.422 0.440 0.361 0.278 0.145 0.238 0.246 0.213 

Pt 0.102 0.075 0.253 0.253 0.217 0.422 0.440 0.361 0.278 0.102 0.253 0.253 0.217 

Cu 0.033 0.118 0.275 0.265 0.223 0.422 0.443 0.362 0.278 0.118 0.275 0.265 0.223 

Rh 0.108 0.074 0.252 0.253 0.216 0.423 0.442 0.361 0.278 0.108 0.252 0.253 0.216 

Ta 0.152 0.040 0.233 0.243 0.210 0.422 0.438 0.359 0.276 0.152 0.233 0.243 0.210 

Nb 0.140 0.055 0.241 0.246 0.211 0.423 0.439 0.358 0.276 0.140 0.241 0.246 0.211 

Hg 0 0.167 0.302 0.279 0.230 0.407 0.436 0.356 0.274 0.167 0.302 0.279 0.230 

V 0.120 0.08 0.251 0.249 0.212 0.427 0.439 0.356 0.273 0.120 0.251 0.249 0.212 

Ni 0.082 0.109 0.265 0.256 0.216 0.430 0.440 0.356 0.273 0.109 0.265 0.256 0.216 

Ru 0.137 0.073 0.247 0.246 0.210 0.429 0.438 0.354 0.270 0.137 0.247 0.246 0.210 

Hf 0.153 0.049 0.234 0.239 0.206 0.423 0.434 0.352 0.270 0.153 0.234 0.239 0.206 

Gaβ 0 0.175 0.302 0.275 0.226 0.415 0.436 0.352 0.269 0.175 0.302 0.275 0.226 

Cd 0 0.148 0.281 0.263 0.218 0.423 0.433 0.349 0.267 0.148 0.281 0.263 0.218 

Zn 0 0.158 0.286 0.265 0.219 0.427 0.436 0.349 0.267 0.158 0.286 0.265 0.219 

Al 0.082 0.136 0.266 0.247 0.205 0.435 0.428 0.337 0.256 0.136 0.266 0.247 0.205 

W 0.230 0.072 0.227 0.220 0.186 0.445 0.420 0.323 0.243 0.230 0.227 0.22 0.186 

Sn 0.105 0.158 0.259 0.233 0.191 0.443 0.411 0.314 0.205 0.158 0.259 0.233 0.191 

Bi 0.275 0.151 0.214 0.185 0.151 0.455 0.358 0.256 0.190 0.275 0.275 0.256 0.190 

Sb 0.315 0.136 0.203 0.177 0.145 0.454 0.350 0.248 0.184 0.315 0.315 0.248 0.184 

Te 0.333 0.143 0.196 0.168 0.137 0.449 0.334 0.235 0.174 0.333 0.334 0.235 0.174 

Se 0.339 0.160 0.193 0.163 0.133 0.448 0.321 0.225 0.166 0.339 0.321 0.225 0.166 

Si 0.389 0.136 0.180 0.154 0.125 0.442 0.310 0.215 0.159 0.389 0.31 0.215 0.159 

Ge 0.385 0.142 0.180 0.152 0.124 0.440 0.306 0.212 0.156 0.385 0.306 0.212 0.156 
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In Table 3, 

Column 1, The liquid elements are classified as a function of the fusion entropy ΔSm; 

Column 2, The melting temperature of 13-atom superclusters is high for large fusion entropies of 

Bi, Sb, Te, Se, Si and Ge. The highest value θ = 0.389 is obtained for Si; the lowest θ = 0 is obtained in 

8 liquid elements. Homogeneous liquids do not contain any condensed cluster. They are crystallizing 

during undercooling because 13-atom clusters are condensed as shown in Figure 5. Their previous 

presence at Tm does not have any influence on the undercooling rate; 

Column 3, The calculated melting temperatures of 55-atom clusters induced by previous formation 

in their core of a droplet of 13 atoms are often lower than those of the 13-atom clusters. Then, they 

melt at the same temperature as the 13-atom clusters; 

Column 4, The calculated melting temperatures of 147-atom clusters induced by previous formation 

in their core of a droplet of 13 atoms are larger than those of the 13-atom clusters from Fe to Al. They 

are nearly equal for W and smaller from Sn to Ge; 

Column 5, The calculated melting temperatures of 309-atom clusters induced by previous formation 

in their core of a droplet of 13 atoms are larger those of the 13-atom clusters from Fe to Sn. They are 

smaller from Bi to Ge; 

Column 6, The calculated melting temperatures of 561-atom clusters induced by previous formation 

in their core of a droplet of 13 atoms are larger than those of the13-atom clusters from Fe to Sn except W. 

They are smaller from Bi to Ge; 

Columns 7, 8, 9 and 10, The melting temperatures of 55-, 147-, 309- and 561-atom superclusters are 

obtained considering homogeneous liquid nucleation without introducing heterogeneous nucleation 

from 13-atom droplets; 

Columns 11, 12, 13 and 14, The expected melting temperatures of 55-, 147-, 309- and 561-atom 

superclusters are selected in order to be coherent between them. The homogeneous nucleation 

temperature of some superclusters having a large fusion entropy are sometimes smaller than those of 

the 13-atom superclusters, as shown in Figure 6. 

All these results have been obtained assuming that the superheating time at their own melting 

temperature is 600 s. The time effects on copper supercluster melting are examined in part 9 in relation 

with detailed experimental studies [51]. 

7. Electronic Properties of Cu, Ag and Au Superclusters 

Electronic properties of superclusters can be calculated from the enthalpy saving associated with 

their formation temperature in noble metallic liquids because this energy is due to Fermi energy 

equalization of liquid and superclusters [23]. The Fermi energy difference ΔEF between condensed 

superclusters of radius Rnm containing n atoms and liquid state at Tm can be directly evaluated  

for noble metals using Equation (33) and assuming that Δz is small, as shown in Table 2: 

ls mF

A2 N

n HE
n z

m

ε ΔΔ Δ =  (33)

where m is the ratio of electron masses m*/m0, m0 being the electron rest mass and m* the effective 

electron mass which is assumed to be the same in superclusters and liquid states, and Δz being 
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calculated at variable temperature using the known quantified energy saving εls in  

Equations (18), (26) and (27). The Fermi energy difference ΔEF is plotted in Figure 7 as a function of 

1/R*2ls, where R*2ls is given in Equation (6) for Cu, Ag and Au assuming that the molar volume does 

not depend on temperature and a continuous variation of R*2ls. The quantified value εls is given in 

Equation (18) and the U0 and Δz values are calculated with Equation (26). For R* > 1 nm, EF is 

proportional to the Laplace pressure, while for R << 1 nm there is a gap opening in the conduction electron 

band accompanying the quantification of the energy saving. This analysis is able to detect well-known 

properties of clusters out of the melt, which become much less conducting at very low radii [10]. 

Figure 7. Fermi energy difference ΔEF between liquid and superclusters. The ΔEF in 

eV/mole is plotted as a function of the reverse of the critical radius R*2ls in nm−1. 

 

A strong variation of ΔEF at constant molar volume Vm is observed in Figure 7. In principle,  

the ΔEF has to obey Equation (34) in the liquid state because the Fermi energy EF depends on (Vm)−2/3: 

F m

F m

2

3

E V

E V

Δ Δ−=  (34)

where EF is the Fermi energy of the liquid, Vm the molar volume of a supercluster of infinite radius, 

ΔVm is the variation of the molar volume with the radius decrease. The supercluster molar volume Vm 

has to depend on the particle radius instead of being constant. Equation (34) is respected when the 

formation temperature T of superclusters corresponding to the critical atom number nc in Equation (19) 

and to a molar volume Vm depending on R*2ls is introduced. The formation temperatures of 

superclusters with magic atom numbers are indicated in Figure 8 using a special molar volume thermal 

variation Vm(T) given in Figure 9 for each liquid element. 

Figure 8. The formation temperatures of superclusters containing n atoms. The formation 

temperatures of Ag critical superclusters are plotted versus the critical number nc of atoms 

that they contain. The superclusters with magic atom numbers are represented by squares. 
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Figure 9. The supercluster molar volume change of Cu, Ag and Au. The supercluster 

molar volume change with the critical radius R*2ls (being a hidden variable) is plotted as  

a function of their formation temperature in Kelvin up to Tm. Each point corresponds to  

a supercluster of radius R*2ls and to an n-atom number. 

 

The following laws are used in Figures 8 and 9: 

3 6 6
m (m ) 7.37 10 11.8 10V − −= × × θ + ×  (35)

for Cu, 

3 6 6
m (m ) 12.35 10 17 10V − −= × × θ + ×  (36)

for Ag and Au, where θ is equal to (T − Tm)/Tm. All superclusters containing magic atom numbers have 

their molar volume obeying these laws at their critical formation temperature. The molar volumes Vm 

for θ = 0.198 are maximum and equal to 13.4 × 10−6, 19.68 × 10−6, and 19.68 × 10−6 m3/mole,  

for Cu, Ag and Au respectively. They correspond to an infinite radius for superclusters in the absence 

of crystallization [15]. The molar volume Vm of bulk superclusters would be attained when θ − εnm 

becomes equal to zero using the critical radius as a hidden variable becoming infinite instead of  

the temperature. 

The Fermi energy change ΔEF depends on Δz in Equation (33); Δz is calculated with  

Equations (25)–(27) for each radius R = R*2ls(T) in Equation (6), determining n from Equation (29). 

Equation (34) is now respected for Cu, Ag and Au, as shown in Figure 10. The Fermi energy EF is 

defined in Equation (37), assuming that there is one conduction electron per atom in Cu, Ag and Au: 

2 2
2/3

F
0 m

3
( )

2
E

m V

π= 
 (37)

where Vm is the liquid molar volume at Tm which is equal to 7.95 × 10−6, 11.5 × 10−6, and  

11.3 × 10−6 m3/mole for Cu, Ag and Au respectively [64]. 
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Figure 10. Relative Fermi energy change between superclusters and liquid. The ΔEF/EF is 

plotted as a function of the relative volume change ΔVm/Vm of superclusters, where Vm is 

the molar volume of the supercluster having an infinite radius. 

 

The molar electronic specific heat Cel = γel × T of Cu, Ag and Au superclusters can be obtained 

from the knowledge of their electronic density of states D(EF) at the Fermi level, calculated with 

Equations (38) and (39) [64]: 

F
F A( ) N

E
mD E z

m

Δ = Δ  (38)

2
2

F B( )k
3el D E
πγ =  (39)

The Δz values have been previously determined from Equations (25)–(27). Each n-atom supercluster 

has its own molar volume Vm and its own Δz at Tm is determined with Equation (25) = (26) with  

R = R*2ls (Tm) depending on Vm and εnm0 = 0.217. The electronic specific heat coefficient γel is plotted 

in Figure 11 as a function of the supercluster molar volume. 

The electronic specific heat coefficient γel of superclusters falls when their molar volume Vm and 

their radius decrease below Tm. The coefficients γel of Cu, Ag and Au crystals at 4 K are a little larger, 

being equal to 0.695, 0.646 and 0.729 instead of 0.48, 0.547 and 0.599 mJ/K2/mole at Tm respectively [64]. 

Small crystals are known to become insulating for radii smaller than 5 nm when they are studied out of 

their melt [10]. This electronic transformation is also present in superclusters and is very abrupt below 

their critical growth volume at Tm as shown in Figure 11. The γel at Tm is also calculated as a function 

of the supercluster radius R and represented in Figure 12. The coefficient Δz is obtained at Tm with  

Equation (25) = (26) and εnm = εls0 = 0.217. Then, the potential energy U0 depending on R is known for 

each value of R and the quantified coefficient εnm0 of an n-atom supercluster of radius R is deduced 

from Equations (26) and (27). In Figure 12, the highest points are calculated at Tm while the lowest are 

already shown in Figure 11. The smallest superclusters are still metallic at Tm, while they become 

insulating when the temperature is close to Tm/3. All these predictions are in good agreement  

with many properties of divided metals. They are only based on an enthalpy saving equal to  

0.217 × (1 − 2.25 × θ2) × ΔHm for the supercluster formation in all liquid elements. 
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Figure 11. Electronic specific heat of superclusters. The supercluster electronic specific 

heat coefficient in mJ/K2/mole is plotted versus their molar volume in m3 when the critical 

radius is smaller and smaller below Tm. 

 

Figure 12. Electronic specific heat coefficient of Cu, Ag, and Au superclusters as  

a function of supercluster radius R at T = Tm (colored points) and for T < Tm when R is  

the critical radius (black points). 

 

8. Silver Supercluster Formation into and Out of Undercooled Liquid 

The formation of icosahedral silver clusters with magic numbers n of atoms equal to 13, 55, 147, 

309, 561, 923, 1415 and 2057 has been already studied out of liquid by molecular dynamics in the 

temperature range 0–1300 K. Icosahedral clusters of 13, 55 and 147 are formed below room 

temperature and larger clusters with n = 309, 561, 923, 1415 are formed from 300 to 1000 K. The radii 

of these Ag stable superclusters have been found to be equal to 2.74, 5.51, 8.32, 11.14 and 14.94 Å for 

n = 13, 55, 147, 309, 561 respectively [5]. The Ag radii have also been calculated in the liquid  

using the molar volume shown in Figure 9 and their formation temperature as deduced from the critical 

radius. Their values for n = 13, 55, 147, 309, 561 are nearly equal to those predicted by molecular 

dynamics, as shown in Table 4 and Figure 13. 
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Table 4. The Ag supercluster radii with magic atom numbers. The radius R is  

deduced from molar volume Vm and equal to critical radius R*2ls(T) given in Equation (6). 

For T > Tm/3 = 411.33 K, the energy saving coefficient εls in Equation (18) is used with  

εls0 = 0.217 and (θ0m)−2 = 2.25. For T < 411.33 K, εls is equal to zero. The radii RMD result 

from molecular dynamics simulations [5]. 

n 13 55 147 309 561 923 1415 2057 

R (Å) 3.387 5.485 8.541 11.630 14.670 17.680 20.670 23.660
RMD (Å) 2.74 5.51 8.32 11.14 14.94    

T (K) 0 291 604 817 952 1044 1108 1234 

Figure 13. The critical atom number in blue versus the critical radius and RMD the radius 

calculated by molecular dynamics simulations in red square [5]. 

 

9. Melting of Cu, Ag and Au Superclusters Varying the Superheating 

9.1. Overheating of Cu, Ag and Au Superclusters 

The melting temperatures are now calculated using the molar volume associated with the 

supercluster radius as shown in Figure 9. The superheating time continues to be equal to 600 s.  

The supercluster radius variation is continuous while the radius of magic number clusters is indicated 

in Figures 14–16. In these three figures, the Cu, Ag, and Au supercluster radius is plotted versus the 

reduced temperature θ = (T − Tm)/Tm. The points labeled “homogeneous” are calculated assuming that 

supercluster melting is produced by liquid homogeneous nucleation using Equations (30) and (31).  

The triangles labeled (n-13) are calculated assuming that the supercluster melting is induced by 

previous formation of liquid droplets of 13 atoms into superclusters using Equation (32). The 

homogeneous nucleation temperatures are much too high compared to the (n-13) temperatures. The 

undercooling temperatures depend on the volume sample v. The square points are determined for 

ln(Kls·v·tsn) = 71.8 corresponding to v·tsn = 12 × 10−9 m3·s and a heterogeneous nucleation induced by 

superclusters of radius R when the applied superheating temperature is smaller than those indicated by 

triangles. Another supercooling temperature represented by triangle points is added in Figures 15 and 16. 

In Figure 15, v·tsn is equal to 7.08 × 10−22 m3·s while, in Figure 16, v·tsn = 15 × 10−7 m3·s. These  

three figures show that an undercooling rate of about 20% is generally obtained when the sample 

volume is of the order of a few mm3 and the applied superheating rate is less than about 25%.  
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The undercooling temperature is very stable when the superheating is less than 25%. Larger 

undercooling rates are obtained using much smaller volume samples [17]. 

Figure 14. Supercooling temperatures of liquid copper controlled by unmelted superclusters 

having melting temperatures depending on overheating rate applied during 600 s. 

 

Figure 15. Supercooling temperatures of liquid silver depending on sample volume  

and controlled by unmelted superclusters having melting temperatures depending on 

overheating rate applied during 600 s. 

 

Figure 16. Supercooling temperatures of liquid gold depending on sample volume and 

controlled by unmelted superclusters having melting temperatures depending on 

overheating rate applied during 600 s. 
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9.2. Analysis of the Influence of Cu Superheating Time on the Undercooling Rate 

The superheating time has a strong influence on supercluster melting, as shown by studies of  

Cu undercooling [51]. It has been found that a minimum superheating temperature of 40 K is required  

in order to achieve any undercooling prior to crystallization nucleation. This phenomenon is also 

observed in many magnetic texturing experiments [65]. In Table 3, the first Cu supercluster to be 

melted at θ = 0.033 in 600 s, corresponding to a superheating of 44.7 K, contains 13 atoms in perfect 

agreement with the observation. There is no other supercluster melting. A temperature below which no 

small supercluster melts is predicted in this model. The lowest value of the undercooling temperature 

is obtained when 6 thermal cycles are applied prior to nucleation after 6 steps of 2400 s at 1473 K.  

The total time evolved at 1473 K is 14,400 s. In Figure 17, the time necessary to melt all superclusters 

surviving in copper melt is calculated. With lnKls = 89.26 instead of 90, the time to melt all the  

13-atom clusters is 141 s, while that to melt 55-atom clusters is 14,541 s, which is in very good 

agreement with the measurements [51]. The other superclusters are melted in very short times after  

the melting of the 55-atom clusters. The reduced undercooling temperature becomes equal to  

θ = −0.259 after these thermal treatments of a sample of 5.7 mm in diameter. A homogeneous 

nucleation of 13- and 55-atom clusters leads to θ = −0.252. These results show that superclusters can 

be chain melted with a weaker superheating if the time evolved at the overheating temperature is 

increased substantially beyond 600 s. Our model can be used to evaluate the approximate superheating 

time leading to a thermodynamic equilibrium of a melt without condensed superclusters at any 

temperature above Tm. 

Figure 17. Chain melting of superclusters versus superheating time. The first cluster to be 

melted at θ = 0.086 contains 13 atoms, the next ones 55, 147, 309 and 561 because the 

liquid droplet grows in the core of the largest particles. 

 

10. Conclusions 

The undercooling temperatures of 32 of the 38 liquid elements are predicted for the first time in 

good agreement with experimental values depending on the sample volume, without using any 

adjustable barrier energy, and only assuming the existence of growth nuclei containing stable magic 

atom numbers n equal to 13, 55, 147, 309 and 561 that are generally devoted to icosahedral structures. 
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The model is based on a volume enthalpy saving εv previously determined to be equal to  

0.217 × ΔHm/Vm at Tm and added to the classical Gibbs free energy change for a critical nucleus 

formation in a melt. This enthalpy is due to the Laplace pressure change Δp acting on the growth 

nuclei and equalizing the Fermi energies of liquid and nuclei in metallic liquids. The Gibbs free energy 

change has to contain a contribution −Vm × Δp which has been neglected up to now because its 

magnitude was unknown. This missing enthalpy has serious consequences because the critical  

radius for crystal growth is considered, in the classical view, as being infinite at the melting 

temperature and all solid traces being eliminated in melts. This is in contradiction with many 

experiments on the superheating influence on undercooling rates and on magnetic texturing  

efficiency [27,51,65–68]. Nuclei having radii smaller than the critical radius at Tm are melted at  

higher temperatures depending on the superheating time and on their atom number. 

Some growth nuclei survive above Tm because they are superclusters that are not melted by surface 

melting. This new property of superclusters is a consequence of the thermal variation of εv, which is  

a unique function of θ2 = [(T − Tm)/Tm]2 being maximum at Tm, and a fusion heat equal to that of bulk 

crystals. The surface atom fusion heat is not weakened and there is no premelting of these entities 

depending on their radius. This thermal variation was established, for the first time, from our study of 

the maximum undercooling rate of the same liquid elements. In addition, it is the only law validating 

the existence of non-melted intrinsic entities. 

The energy saving is proportional to the supercluster reverse radius R−1 when n ≥ 147 and is 

quantified for n < 147. The quantified energy at Tm is calculated by creating a virtual s-electron 

transfer from the nucleus of radius R to the melt and an electrostatic spherical potential induced by  

the surface charges and also varying with R−1. The Schrödinger equation solutions are known and  

used to predict the condensation temperatures of 13-atom superclusters in undercooled melts, which 

govern the crystallization temperatures of liquids having fusion entropy larger than 20 J/K/mole. 

The superclusters are melted by homogeneous or heterogeneous liquid nucleation in their core.  

The liquid homogeneous nucleation is effective in all superclusters when ΔSm ≥ 20 J/K/mole while  

a chain melting is produced, starting with a 13-atom droplet induced in the core of the supercluster  

and being magnified with the time increase at the superheating temperature. The model is able to 

predict an approximate value of the minimum time necessary to melt superclusters and to attain the 

true thermodynamic equilibrium of the melt at any superheating temperature. 

The electronic specific heat of superclusters submitted to Laplace pressure in metals is determined 

for the first time from the enthalpy saving deduced from undercooling experiments. It strongly declines 

with radius as compared to that of a bulk metal, in agreement with the conductance properties of tiny 

clusters having radii smaller than 5 Å. The electronic s-state density of superclusters is greatly 

weakened compared to that of bulk crystals when their radius decreases. The supercluster critical radii 

deduced from the nucleation model are in quantitative agreement with recent molecular dynamics 

simulations devoted to Ag cluster radii. 

The transformation of superclusters in crystals occurs for a radius between the critical radius for 

crystal growth and that for supercluster growth because the superclusters have a much lower density 

than crystals. The Gibbs free energy change from the liquid state to crystal becomes smaller than that 

of the supercluster just above its maximum at the crystal critical radius. 
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