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Abstract: The cyclic oxidation of NiCoCrAlYTa-base thermal barrier coating systems was investigated
at 1100 ◦C. The influence of the NiCoCrAlYTa deposition process, the coating modification by a
Pt-overlayer, and the surface preparation steps were studied. Thermal cycling results showed that
the addition of a Pt-overlayer, a dense and oxide-free bond-coating microstructure, together with a
smooth NiCoCrAlYTa surface prior to Pt deposition and a suitable surface preparation before thermal
barrier deposition all increase the lifetime. Degradation mechanisms are proposed to explain how
coating defects develop during thermal cycling and how the fabrication process influences both
failure and lifetime.
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1. Introduction

Thermal barrier coating (TBC) systems have been developed to reduce the temperature of turbine
blades. They consist of a Ni-base superalloy (the blade), an Al-rich coating (the bond-coating, BC)
and an insulating top coat (TBC) made of yttria-stabilized zirconia (YSZ). For aeronautic applications,
the top coat is usually deposited by electron-beam physical vapor deposition (EB-PVD) to obtain a
columnar microstructure, making it capable of accommodating strain. Because YSZ is permeable
to oxygen, it cannot protect the superalloy against oxidation. To ensure protection, the Al-rich
bond-coating has to form a layer of α-Al2O3, a protective, adherent and slow-growing oxide, called
thermally grown oxide (TGO).

In service, TBC systems undergo mechanical and environmental stresses under high temperatures.
Whether it is due to foreign object damage [1,2], calcium–magnesium–aluminosilicate (CMAS)
deposition [3,4] or thermo-mechanical damage of the TBC system [5], environmental stresses lead
to damage and/or loss of the thermal barrier, which is harmful for the TBC system lifetime. A key
point of TBC system thermo-mechanical damage is TGO formation and growth. Indeed, this oxide
scale, forming between the bond-coating and the TBC, undergoes stresses resulting from: (i) the
transformation from transient alumina to α-alumina; (ii) the oxide growth, and (iii) the thermal
expansion coefficient (CTE) mismatch. While the transient alumina to α-alumina transformation
leads to tensile stresses [6,7], the other two phenomena result in compressive stresses. Due to a
great difference between the alumina volume and the volume of consumed metal, compressive
stresses reaching 200 MPa at 1100 ◦C could be generated within the oxide scale [7]. Regarding
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material CTE, it is equal to 8–9 ppm/◦C and 13–16 ppm/◦C for alumina and the bond-coating
respectively [5]. During cooling, the oxide scale is then under compressive stresses, contained between
2.5 and 4 GPa [8]. Heterogeneities in oxide composition, thickness, or flatness add stresses within
the TGO and consequently favor crack initiation and TBC damage. Studying the oxide resistance of
bond-coatings and TBC systems is therefore important to improve the lifetime of such systems.

Three main bond-coatings in use are: the Pt-modified β-NiAl, the Pt-rich γ-Ni + γ’-Ni3Al,
and the MCrAlY (where M = Ni and/or Co) coatings. With their composition rich in Cr and Al,
MCrAlY coatings have a good resistance against high temperature corrosion [9–11]. They generally
out-perform Pt-modified β-NiAl aluminides against type-I and type-II hot corrosion [12], corrosion
due to salt contaminants such as Na2SO4, NaCl, V2O5 [13]. Moreover, they contain yttrium, a reactive
element beneficial for TGO adherence [14]. However, MCrAlY coatings do not behave as well as
Pt-modified aluminide coatings under oxidizing conditions as they can form chromia and spinel
oxides in addition to the continuous Al2O3 layer. To improve their oxidation and corrosion resistance,
Pt was added [10,15–29]. Pt addition to MCrAlY coatings was also beneficial in terms of TBC system
lifetime [20,22,30,31].

First, attention was focused on the influence of Pt addition on the microstructure of NiCoCrAlYTa
bond-coatings [32], and then on the oxidation behavior of Tribomet® NiCoCrAlYTa bond-coatings [23].
With this work, the effect of Pt on the degradation mechanism of TBC systems containing a
NiCoCrAlYTa bond-coating under cyclic oxidation conditions was studied. The present study also
considers the influence of the deposition process and the surface preparation of the NiCoCrAlYTa
coating, well known parameters that affect the TBC system lifetime.

2. Materials and Methods

To study the effect of Pt addition on the degradation mechanisms of TBC systems with
a NiCoCrAlYTa bond-coating, two samples were manufactured, one with and one without Pt.
To understand the influence of the bond-coating fabrication process, NiCoCrAlYTa coatings were
made either by composite electroplating (Tribomet® process) or vacuum plasma spray (VPS).

2.1. Materials and Coatings

Three Ni-base superalloys were used for the fabrication of the TBC systems: the 1st generation
superalloy AM3, the 2nd generation superalloy CMSX-4, and the 4th generation superalloy MCNG.
CMSX-4 superalloy contains Re and some Hf, as MCNG superalloy which also contains Ru.
Their compositions are given in Table 1.

Table 1. Superalloy composition. The Hf concentration of CMSX-4 superalloy was measured by glow
discharge mass spectroscopy (GDMS) by Shiva Technology, as well as the sulfur content.

At % Ni Al Cr Co Ta Ti Mo W Re Ru Others

AM3 Bal. 12.9 8.9 5.9 1.3 2.4 1.2 1.6 - - S: Batch 2: <0.5 ppmw,
Batch 3: 0.28 ppmw, Hf free

CMSX-4 Bal. 12.6 7.6 9.9 2.2 1.3 0.4 2.2 1.0 - 0.67 ppmw Hf, 1.4 ppmw S
MCNG Bal. 13.6 4.7 - 1.7 0.6 0.6 1.7 1.3 2.4 0.03 at % Hf, 0.16 ppmw S

Three batches of NiCoCrAlYTa-base TBC systems were manufactured. The NiCoCrAlYTa coating
was made using either the Tribomet® process (Praxair ST, Oldmixon, UK) or vacuum plasma spraying
(Surface Engineering Research Laboratory, LERMPS, Montbéliard, France), while Pt was deposited
either by electroplating (Praxair ST, Indianapolis, IN, USA) or by sputtering (Cranfield University,
Bedfordshire, England, UK). The thermal barrier was always deposited by EB-PVD but by various
manufacturers: Praxair ST (Indianapolis, IN, USA), Ceramic Coating Center (Châtellerault, France),
and Surface Engineering and Nanotechnology Institute (Cranfield University, England). All the details
regarding the specimen geometry, the deposition techniques, the thicknesses, the surface preparations,
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and the manufacturers are given in Table 2. The first batch was provided by Praxair ST and was
composed of AM3-base TBC systems both with and without Pt. To coat the entire surface of the
rectangular AM3 specimens with NiCoCrAlYTa coating, two passes were required, generating a locally
thicker coating. In addition, a hole was drilled at one end of the AM3 substrate to coat the entire
sample surface with the thermal barrier. The fabrication of the second batch, on AM3 and MCNG
superalloys, involved Praxair ST for the bond-coating and Ceramic Coating Center for the thermal
barrier. A stem made of Hastelloy W was welded to one edge of the rectangular substrate in order
to hold the sample during the coating process. This allowed the deposition of a uniform coating.
For batch 3, only one face of the substrate was coated. The manufacturing of the VPS NiCoCrAlYTa
coating was performed at LERMPS using AMDRY 997 powder (wt %: Ni-23Co-20Cr-8.5Al-4Ta-0.6Y;
at %: Ni-20.9Co-20.9Cr-16.9Al-1.2Ta-0.4Y). The Pt layer and the thermal barrier were deposited at the
Surface Engineering and Nanotechnology Institute, Cranfield University.

Table 2. Details on the geometry and manufacturing process of the three batches of thermal barrier
coating (TBC) systems. ‘t’ represents the thickness, ‘r’ the curvature radius of the edges.

Manufacturing Process Batch 1 Batch 2 Batch 3

Sample geometry
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Between batches 1 and 2, the grit blasting before EB-PVD and the thermal barrier coating
deposition were not made by the same companies. However, the main difference was the addition of
a smoothing step on the NiCoCrAlYTa surface before Pt deposition for batch 2. To reduce the high
coating roughness resulting from the VPS process, the NiCoCrAlYTa coating from batch 3 was slightly
ground using P1200 SiC abrasive discs. Grinding was stopped when the proportion of ground surface,
estimated by image analysis on optical microscopy images, was close to that of a partially machined
surface (≈24–34% of the entire surface) [33].

In what follows, the TBC systems are named: AM3-Trib, AM3-Trib-Pt/1, AM3-Trib-Pt/2,
MCNG-Trib-Pt/2, AM3-VPS-Pt, and CMSX-4-VPS-Pt (Table 2). One sample per system was tested for
batches 1 and 2 (AM3-Trib, AM3-Trib-Pt/1, AM3-Trib-Pt/2, MCNG-Trib-Pt/2) while thermal cycling
was performed on two samples for each system of batch 3 (AM3-VPS-Pt and CMSX-4-VPS-Pt).

2.2. Oxidation Test

Thermal cycling tests under laboratory air were carried out on the TBC systems using a vertical
cyclic oxidation rig (CIRIMAT, Toulouse, France). A cycle was composed of a 1 h dwell at 1100 ◦C
(including fast heating) and a cooling of 15 min to ambient temperature. The fast cooling rate was
obtained with a high flow of air, cleaned from oil and pollution, directed towards the samples from the
four sides of the sample holder. Drilled plates, maintained on a ceramic rod, were used to position the
specimens. Thanks to their holes, AM3-Trib and AM3-Trib-Pt/1 TBC systems were hung to the plates
using Pt wires. Samples from batches 2 and 3 were placed on a sample-holder made of a porous ceramic
brick, itself placed on a plate (AM3-Trib-Pt/2, MCNG-Trib-Pt/2, AM3-VPS-Pt, and CMSX-4-VPS-Pt
TBC systems). The geometry of the sample-holder was such that the thermal barrier coated surfaces
were well exposed to the air flow for cooling. Samples were removed from the furnace either when
spallation spread across at least 25% of the thermal barrier coated surface (AM3-Trib, AM3-Trib-Pt/1,
AM3-VPS-Pt, and CMSX-4-VPS-Pt TBC systems) or at a given number of cycles (AM3-Trib-Pt/2 and
MCNG-Trib-Pt/2 TBC systems). The estimate of the percentage of spalled area was done visually.

In the discussion section, thermal cycling results are compared to isothermal oxidations performed
on AM3-Trib-Pt/2 and MCNG-Trib-Pt/2 TBC systems. Details on these oxidation tests can be found
in [23].

2.3. Characterization

Observations by scanning electron microscopy (SEM) of sample surfaces and polished
cross-sections, using the secondary electron imaging mode (SE) or the backscattered imaging mode
(BSE), were done using an LEO 435VP microscope (ZEISS, Cambridge, UK). Energy-dispersive X-ray
spectroscopy (EDS) analysis was performed using a PGT IMIX-PC system (Princeton Gama Tech,
Princeton, USA), with real standards for quantification. Some observations of the bond-coating surface
were also made using a JEOL JSM 6700F (JEOL, Japan), using the SE mode. X-ray diffraction (XRD)
analyses were done using a Seifert 3000TT apparatus (Rich Seifert and Co, Ahrensburg, Germany) with
a copper anti-cathode (λ = 1.54056 Å) and a grazing incidence of 4◦ (steps: 0.04◦, time per step: 6 s).

The lifetimes of AM3-Trib, AM3-Trib-Pt/1, AM3-VPS-Pt, and CMSX-4-VPS-Pt TBC systems have
already been published [31]. The present study details the microstructural characterization of the
systems after thermal cycling and proposes degradation mechanisms.

3. Results

3.1. As-Processed Bond-Coatings and TBC Systems

An important characterization work on the effect of Pt on the microstructure of NiCoCrAlYTa
coatings was made and discussed in a previous article [32], based on AM3-Trib-Pt/2 and AM3-VPS-Pt
systems, as well as the AM3-Trib system from a batch different to the one of the present study.
This previous work, combining XRD analyses, SEM observations, EDS analyses, and transmission
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electron microscopy, highlighted martensite formation and Al uphill diffusion with Pt addition. Indeed,
while the Trib coating, on AM3 superalloy, contained nearly 19 at % in its upper part, the AM3-Trib-Pt/2
system exhibited more than 20 at % of Al below the surface, with a peak at 24 at %. Concerning the
AM3-VPS-Pt system, an Al concentration between 31 and 34 at % was measured below the surface.
This section summarizes the main results of this characterization work.

At ambient temperature, the Trib coating was mainly composed of a β-NiAl phase within a γ-Ni
matrix [32,34,35]. In addition, the coating exhibited a few oxide precipitates and numerous Ta carbide
(TaC) precipitates [32]. Close to the superalloy, TaC carbides also contained Ti, as this element diffused
fast from the superalloy towards the bond-coating surface during high temperature exposures.

At ambient temperature, the Trib-Pt/2 bond-coating consisted of an outer part, rich in Pt,
composed of L10-NiAl martensite, γ’-Ni3Al, and γ-Ni, and an inner part made of γ-Ni, containing
little Pt [32]. TaC precipitates were also present close to the interface with the superalloy and many
oxide particles were dispersed in the inner zone of the coating. Small oxides were also located at the
position of the original Pt/NiCoCrAlYTa interface. The oxide quantity was higher for AM3-Trib-Pt/2
and MCNG-Trib-Pt/2 TBC systems compared to AM3-Trib-Pt/1 TBC system, manufactured earlier.
Pores were also observed on the as-processed surface of the bond-coating of AM3-Trib-Pt/2 and
MCNG-Trib-Pt/2 TBC systems, after heat treatment under vacuum (Figure 1a,b). These open pores are
referred to as wells in the following.

At ambient temperature, a VPS NiCoCrAlYTa coating is composed of the β-NiAl, γ’-Ni3Al, γ-Ni
phases, and TaC uniformly dispersed throughout the coating thickness [36–38]. The addition of Pt
disrupted the homogeneous microstructure [32]. The outer part of the coating was composed of a
Pt-rich martensite (L10) layer over a γ’-Ni3Al layer (a few γ’-Ni3Al grains were also observed within
the martensite layer). The inner part of the coating was Pt-rich γ-Ni/γ’-Ni3Al, with the γ-Ni phase
being the matrix. As for the Trib-Pt/2 coating, small oxides were located at the initial position of the
Pt/NiCoCrAlYTa interface and open pores were visible on the bond-coating surface after the heat
treatment under vacuum. However, no oxides were dispersed in the inner zone.
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Figure 1. (a,b) As-processed surface of the Trib-Pt/2 coating on AM3 after heat treatment under vacuum.
Cross-sections of as-processed; (c) Trib-Pt/2 coating; and (d) corresponding thermal barrier coating
(TBC) system on AM3; (e) Cross-sections of as-processed Trib-Pt/1 coating on AM3; (f) Cross-section
of AM3-VPS-Pt TBC system. SEM images in BSE mode.

The decrease in roughness resulting from the smoothing step added in the fabrication process of
the Trib-Pt/2 coating is presented in Figure 1c,e. The influence of the NiCoCrAlYTa deposition process
(Tribomet® or VPS) is illustrated in Figure 1d,f. The surface of the Trib-Pt/2 coating was smooth while
the surface of the VPS-Pt coating exhibited many convex and concave areas. In concave areas, the YSZ
columns were tilted in relation to the general column orientation.

3.2. Influence of Pt on the Cyclic Oxidation Resistance of TBC Systems

Figure 2a gives the lifetimes at 1100 ◦C of the AM3-Trib and AM3-Trib-Pt/1 TBC systems. Because
each cycle lasted 75 min and the cyclic oxidation tests were performed 24 h a day and 7 days a week,
it was not possible to check the samples after each cycle. The hatched area in Figure 2a represents the
lifetime uncertainty.

Cross-sections of failed AM3-Trib and AM3-Trib-Pt/1 TBC systems were observed by SEM
(Figure 3). While cracking occurred at the TGO/TBC interface with the Trib bond-coating, the thermal
barrier was still adherent to the TGO when Pt was added, except in concave areas where debonding
occurred in the YSZ (Figure 3a–c). The surface of the Trib-Pt/1 coating was undulated and numerous
conical defects were visible in the TBC, in concave areas, Figure 3a,c. Such defects, called ‘corn kernel’
by Birks et al. [39] or ‘pinch-off’ by Mumm et al. [40], were also observed in a previous study [41] after
thermal cycling of TBC systems composed of a VPS NiCoCrAlYTa bond-coating. According to EDS
analyses, the TGO formed on the Trib coating was mainly composed of Al2O3 but also contained other
oxides (including Y-Al-rich oxides), Figure 3d. On the contrary, only Al2O3 could be detected in the
oxide layer that developed on the Trib-Pt/1 coating, Figure 3e.

Because of Al consumption by oxidation, the β-NiAl phase of the Trib coating vanished, leading
to a single-phased γ-Ni layer of at least 20 µm after only 36 cycles, Figure 3b. Also, the number of Ta
carbides (white precipitates on BSE SEM pictures) dropped compared to the as-received coating and
were mainly localized close to the superalloy (in the β-NiAl-rich zone). Ta-rich particles were also
visible close to and within the TGO, Figure 3b,d. Wherever they were within the coating, the Ta-rich
particles contained Ti after 36 cycles. After 290 cycles, the Trib-Pt/1 coating had evolved towards
a nearly completely single-phased γ-Ni microstructure, Figure 3, with a composition in at % equal
to 43.6Ni-18.1Co-20.8Cr-10.0Al-3.3Pt-0.9Ta-0.9Ti-0.8W-0.9Mo-0.7Y close to the surface based on EDS
analyses. The γ’-Ni3Al phase remained in small proportions in a few regions below the surface and
at the BC/superalloy interface due to interdiffusion. Wherever it was, the γ’-Ni3Al phase contained
Ti (2.4 at % below the bond-coating surface, 2.7 at % at the interface with the superalloy, based on
EDS analyses). Like the Trib, only a few carbides remained along the BC/superalloy interface of the
AM3-Trib-Pt/1 TBC system, Figure 3c.
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to the TGO, except at corn kernel areas; (d) TGO not only composed of alumina; (e) Only alumina 
detected in the TGO. SEM images in BSE mode. 
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kernels but rather like the broken base of YSZ columns. Oxidized wells were also visible on the bond-
coating surface of the MCNG-Trib-Pt/2 TBC system, Figure 4b,c. However, cross-section observations 
indicated that the TGO layer was still adherent to the thermal barrier after spallation, Figure 5a,b. 
After 300 cycles of 1 h at 1100 °C, the bond-coating microstructure of the AM3-Trib-Pt/2 TBC system 
was mainly composed of the γ-Ni phase, with γ’-Ni3Al phase regions present below the surface and 
at the BC/superalloy interface, Figure 5c,d. The composition, in at %, of the γ-Ni and γ’-Ni3Al phases 
close to the surface were 44.4Ni-18.8Co-20.6Cr-9.2Al-4.2Pt-0.2Ta-1.0Ti-0.8W-0.9Mo and 52.4Ni-
10.3Co-5.9Cr-16.2Al-7.4Pt-2.2Ta-3.2Ti-0.9W-0.7Mo-0.8Y respectively, based on EDS analyses. A few 
γ’-Ni3Al regions were also observed within the internal coating zone with no TaC carbides, which 
was not the case for the AM3-Trib-Pt/1 TBC system after 290 cycles. For the MCNG-Trib-Pt/2 TBC 
system, the bond-coating was single-phased γ-Ni, with a composition in at % equal to 49.7Ni-17.3Co-
16.5Cr-9.9Al-3.4Pt-0.8Ta-0.4Ti-0.9W-0.4Mo-0.3Hf-0.3Y close to the surface, based on EDS analyses. 
γ’-Ni3Al regions were only visible at the BC/superalloy interface. Most carbides had disappeared and 
the remaining ones were localized along the interface with the superalloy. 

Figure 3. Cross-sections of (a,c,e) AM3-Trib-Pt/1 TBC system after 290 cycles; and (b,d) AM3-Trib TBC
system after 36 cycles. Thermal cycles of 1 h at 1100 ◦C, with a high flow air cooling. (a) Presence
of many corn kernel defects due to a rough bond-coating surface before thermal barrier deposition;
(b) Cracking at thermally grown oxide (TGO)/thermal barrier interface; (c) Thermal barrier still
adherent to the TGO, except at corn kernel areas; (d) TGO not only composed of alumina; (e) Only
alumina detected in the TGO. SEM images in BSE mode.

3.3. Degradation of TBC Systems Containing a Trib-Pt/2 Coating

During the thermal cycling of TBC systems containing a Trib-Pt/2 coating, an unusual degradation
was observed at one end of the AM3-base system. Therefore, this section is divided into two parts to
distinguish the regular behavior of the TBC systems from the catastrophic one.

3.3.1. Healthy Area

After 300 cycles at 1100 ◦C, AM3-Trib-Pt/2 and MCNG-Trib-Pt/2 TBC systems exhibited
spallation, Figure 2. The spalled area proportion was much larger when AM3 was the superalloy.
For both systems, SEM observations on spalled areas revealed oxidized bond-coating surface with
TGO flakes, Figure 4. These TGO flakes exhibited thermal barrier remains that did not look like
corn kernels but rather like the broken base of YSZ columns. Oxidized wells were also visible on
the bond-coating surface of the MCNG-Trib-Pt/2 TBC system, Figure 4b,c. However, cross-section
observations indicated that the TGO layer was still adherent to the thermal barrier after spallation,
Figure 5a,b. After 300 cycles of 1 h at 1100 ◦C, the bond-coating microstructure of the AM3-Trib-Pt/2
TBC system was mainly composed of the γ-Ni phase, with γ’-Ni3Al phase regions present below the
surface and at the BC/superalloy interface, Figure 5c,d. The composition, in at %, of the γ-Ni and
γ’-Ni3Al phases close to the surface were 44.4Ni-18.8Co-20.6Cr-9.2Al-4.2Pt-0.2Ta-1.0Ti-0.8W-0.9Mo and
52.4Ni-10.3Co-5.9Cr-16.2Al-7.4Pt-2.2Ta-3.2Ti-0.9W-0.7Mo-0.8Y respectively, based on EDS analyses.
A few γ’-Ni3Al regions were also observed within the internal coating zone with no TaC carbides,
which was not the case for the AM3-Trib-Pt/1 TBC system after 290 cycles. For the MCNG-Trib-Pt/2
TBC system, the bond-coating was single-phased γ-Ni, with a composition in at % equal to
49.7Ni-17.3Co-16.5Cr-9.9Al-3.4Pt-0.8Ta-0.4Ti-0.9W-0.4Mo-0.3Hf-0.3Y close to the surface, based on
EDS analyses. γ’-Ni3Al regions were only visible at the BC/superalloy interface. Most carbides had
disappeared and the remaining ones were localized along the interface with the superalloy.
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after 300 cycles. Thermal cycles of 1 h at 1100 °C, with a high-flow air cooling. SEM images in BSE 
mode. 

  

Figure 4. Bond-coating surface of (a) AM3-Trib-Pt/2 TBC system; (b,c) MCNG-Trib-Pt/2 TBC system
after 300 cycles. The white arrows without a label identify the oxidized wells. Thermal cycles of 1 h at
1100 ◦C, with a high-flow air cooling. SEM images in BSE mode.
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Figure 5. Cross-sections of (a,c) AM3-Trib-Pt/2 TBC system; and (b,d) MCNG-Trib-Pt/2 TBC system
after 300 cycles. Thermal cycles of 1 h at 1100 ◦C, with a high-flow air cooling. SEM images in
BSE mode.
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3.3.2. Area of Catastrophic Degradation

After only 300 cycles, an unusual degradation was observed on the bond-coating surface of the
AM3-Trib-Pt/2 TBC system, as pointed out by the arrows on Figure 2b,c. Next, SEM observations of
the bond-coating surface and cross-section were done on this specific area, Figure 6. On the surface,
particles, either Pt-rich or Ta-rich (containing also some Ti for the latter), were dispersed in (Ni, Co, Cr,
Al)-rich oxides. An XRD analysis done on this specific area confirmed the presence of other oxides than
alumina (like NiO, NiCr2O4, and TiTaO4) and revealed that the Pt-rich particles were pure Pt, Figure 7.
Cross-section observations showed that this unusual degradation concerned the entire circumference
of one sample end, Figure 6c. (Ni, Co, Cr, Al)-rich oxides containing Pt and Ta-rich particles did not
spread over the entire surface, Figure 6d, while an Al2O3 layer dividing the bond-coating into two
zones, an outer zone and an inner one, was present along the entire sample circumference, Figure 6c.
No Al was detected by EDS in the region situated between the external oxide scale and the inner Al2O3

layer. Such catastrophic degradation was not observed for the MCNG-Trib-Pt/2 TBC system despite
oxide penetrating within the bond-coating in a few areas, Figure 8.
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Figure 6. Area of catastrophic degradation of AM3-Trib-Pt/2 TBC system, after 300 cycles; (a,b) 
Surface morphology of the bond-coating, (b) is an enlargement of the rectangle area of (a) showing 
Ta-rich particles (containing some Ti) and Pt-particles; (c,d) Cross-sections (c) showing the extent of 
the catastrophic degradation and (d) giving details on the degraded area exhibiting external (Ni, Co, 
Cr, Al)-rich oxides and internal alumina. Thermal cycles of 1 h at 1100 °C, with a high-flow air cooling. 
SEM images in BSE mode. 

Figure 6. Area of catastrophic degradation of AM3-Trib-Pt/2 TBC system, after 300 cycles; (a,b) Surface
morphology of the bond-coating, (b) is an enlargement of the rectangle area of (a) showing Ta-rich
particles (containing some Ti) and Pt-particles; (c,d) Cross-sections (c) showing the extent of the
catastrophic degradation and (d) giving details on the degraded area exhibiting external (Ni, Co, Cr,
Al)-rich oxides and internal alumina. Thermal cycles of 1 h at 1100 ◦C, with a high-flow air cooling.
SEM images in BSE mode.
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after spallation, Figure 9a,b,d. Second, the oxide scale was an almost exclusive Al2O3 layer but 
contained Ti, according to EDS analyses, and it exhibited cavities, Figure 9b. The bond-coating surface 
was deformed, Figure 9b–d, and some oxide penetrations within the bond-coating were visible, as 
for the CMSX-4-VPS-Pt TBC system that lasted 199 cycles, Figure 9d. The bond-coating was no longer 
composed of the martensitic phase, Figure 9c,d. A thick discontinuous γ’-Ni3Al layer, Ti-and Ta-rich, 
was present close to the surface and in the interdiffusion zone. The composition of this γ’-Ni3Al layer 
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Figure 8. Cross-sections of the MCNG-Trib-Pt/2 TBC system after 300 cycles. The arrows identify
zones of oxide penetration within the bond-coating, (a) on one sample face, (b) on one sample corner.
Thermal cycles of 1 h at 1100 ◦C, with a high-flow air cooling. SEM images in BSE mode.

3.4. Degradation of TBC Systems with a VPS-Pt Bond-Coating

The lifetimes of AM3-VPS-Pt and CMSX-4-VPS-Pt TBC systems are presented in Figure 2.
The average lifetime of the AM3-base systems was shorter than the average lifetime of the
CMSX-4-base systems.

After thermal cycling, bond-coating surfaces and cross-sections were observed by SEM, Figure 9.
The features are shown for the AM3-VPS-Pt TBC system that lasted 92 cycles but they were identical
whatever the superalloy. First, many corn kernels were visible on the bond-coating surface after
spallation, Figure 9a,b,d. Second, the oxide scale was an almost exclusive Al2O3 layer but contained
Ti, according to EDS analyses, and it exhibited cavities, Figure 9b. The bond-coating surface was
deformed, Figure 9b–d, and some oxide penetrations within the bond-coating were visible, as for the
CMSX-4-VPS-Pt TBC system that lasted 199 cycles, Figure 9d. The bond-coating was no longer
composed of the martensitic phase, Figure 9c,d. A thick discontinuous γ’-Ni3Al layer, Ti-and
Ta-rich, was present close to the surface and in the interdiffusion zone. The composition of this
γ’-Ni3Al layer was, in at %, equal to 49.2Ni-11.3Co-6.1Cr-17.9Al-8.1Pt-3.5Ta-1.8Ti-0.9W-0.5Mo-0.7Y
and 49.7Ni-11.7Co-5.4Cr-16.4Al-8.4Pt-4.2Ta-1.2Ti-1.2W-0.1Mo-0.2Re-0.3Hf-1.2Y for AM3-base and
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CMSX-4-base systems respectively, based on EDS analyses. The inner part of the coating was composed
of γ-Ni. A few isolated γ’-Ni3Al grains were also visible within the inner part, below the discontinuous
γ’-Ni3Al layer, as few isolated γ-Ni grains were present above the thick γ’-Ni3Al layer.
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4. Discussion

4.1. Pt Effect on the Cyclic Oxidation Resistance of TBC Systems with a Trib Bond-Coating

AM3-Trib and AM3-Trib-Pt/1 TBC systems were thermally cycled at 1100 ◦C (batch 1). A large
increase in lifetime was obtained with Pt addition (from 36 to 290 cycles). Even though only one
sample per system was tested, this confirms the beneficial effect of Pt on the oxidation resistance of
TBC systems. However, 290 cycles is a short lifetime for turbine blade applications, even for a system
based on a 1st generation superalloy. Therefore, it is necessary to understand the reasons for these
short lifetimes.

For the AM3-Trib TBC system, crack propagation occurred at the TGO/TBC interface and the
TGO layer was mainly composed of Al2O3, but contained other oxides. The presence of oxides other
than Al2O3 on top of the TGO was responsible for the weak adherence of the thermal barrier to the
TGO layer and explains the very short lifetime of the system. Y-Al-rich oxides and Ta-Ti-rich particles
were also present on the TGO layer. During bond-coating oxidation, oxides of reactive elements,
such as Hf or Y, can form and lead to peg formation. Pegs act as mechanical anchorage points and favor
the TGO adherence to the bond-coating [42–46]. However, peg formation leads to local deformations
of the BC/TGO interface, an increase in TGO thickness, and heterogeneities in TGO composition that
result in stress concentrations during thermal cycling. Therefore, a high peg density causes a shorter
lifetime [17,47–50]. The presence of Y-Al-rich oxides within the TGO after only 36 cycles suggests that
the Y content of the bond-coating is too high. Concerning Ti, most authors agree that it is harmful with
regard to oxidation [34,35,51–56]. One way to reduce its detrimental effect on oxidation consists in
adding Ta to the NiCoCrAlY because Ta traps Ti and C diffusing from the superalloy towards the oxide
scale by forming (Ta, Ti) C carbides [9,18,57,58]. Therefore, Ta decreases the superalloy effect on the
oxidation behavior [34] since Ti can no longer diffuse towards the TGO. Regarding the AM3-Trib-Pt/1
system, the TBC was still adherent to the TGO after 290 cycles and only Al2O3 could be detected in the
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oxide scale. This last observation confirms that Pt favors Al selective oxidation, as demonstrated in
one of our previous studies [23] and as already observed by others [19,20]. This is explained by the
decrease in Al activity due to the presence of Pt, as shown by others [59,60], which led to an Al-uphill
diffusion during the vacuum heat treatment. The AM3-Trib-Pt/1 TBC system failure was not due to
heterogeneity of the TGO in terms of composition and thickness. Rather it was due to the presence
of numerous corn kernel defects, characteristic of a surface exhibiting concave areas before thermal
barrier deposition by EB-PVD. When the TGO/TBC interface is strong, the thermal barrier prevents
the development of bond-coating surface undulations [20,61–63]. Because corn kernel defects are
lightly bonded to the thermal barrier coating, the bond-coating surface deformation is easier in these
specific areas. Furthermore, TGO undulations in the corn kernel areas lead to stress concentration and
to fracture, according to Evans et al. [5]. In the present study, the presence of many corn kernels shows
that the Pt electroplating process did not smooth the rough NiCoCrAlYTa bond-coating surface.

By forming an exclusive Al2O3 layer, the Trib-Pt coating was closer to Pt-modified nickel aluminide
coating whose degradation is mainly due to rumpling. Various explanations have been given for
rumpling development, among them the martensite transformation of β-NiAl [64] coupled with
coating creep [65]. With an outer zone rich in martensite, the Trib-Pt coating is more affected by
rumpling than the NiCoCrAlYTa. This could constitute a drawback for such a coating, but this needs to
be confirmed for longer lifetimes. Indeed, this may depend on the duration of the martensite presence
below the oxide scale.

4.2. Failure Mechanism of AM3-Trib-Pt/2 and MCNG-Trib-Pt/2 TBC Systems

SEM observations of the Trib-Pt/2 bond-coatings after 300 cycles revealed that spalled areas
were oxidized (Figure 4) while the TGO layer was still adherent to the thermal barrier (Figure 5a,b).
As spallation occurred before 300 cycles, cracking probably happened along the BC/TGO interface and
cycling continuation led to the bond-coating surface oxidation under the detached TGO. For these TBC
systems, an additional surface preparation step was added to smooth the Trib coating surface before Pt
deposition. For both systems, no corn kernel defect was visible after spallation. This highlights the
relevance of smoothing the bond-coating surface before EB-PVD in order to minimize thermal barrier
defects. However, despite this additional surface preparation step, the AM3-Trib-Pt/2 TBC system
lifetime was not improved when compared to the one of AM3-Trib-Pt/1 TBC system. This is likely
due to the catastrophic degradation observed on the AM3-Trib-Pt/2 TBC system.

After heat treatment under vacuum, the surface of Trib-Pt/2 bond-coatings exhibited a deep open
porosity, for both superalloys (AM3 and MCNG). In addition, these bond-coatings contained numerous
oxides in the inner zone [23]. This may mean that oxygen was trapped during coating fabrication
because of CrAlYTa particle oxidation. Thus, during heat treatment under vacuum, oxides could limit
interdiffusion between the CrAlYTa particles and the (Ni, Co) matrix, leading to oxidized and not very
dense areas (at the former CrAlYTa/(Ni, Co) interfaces) and therefore creating a porosity network.
This porosity network and the wells play a major role in the proposed failure mechanism, Figure 10.
During the thermal cycling test under laboratory air, the bond-coating surface (including the planar
areas and the wells) oxidized to form an Al2O3 layer. The volume expansion (due to the formation
of intergranular Al2O3) added to the large thermal stresses generated during the rapid coolings and
heatings of the thermal cycling test (due to coefficient of thermal expansion mismatch [5]), favored
bond-coating micro-cracking at the well points. Because of micro-cracking, the oxide progressively
penetrated within the bond-coating during cycling. When the oxide layer developed in these wells
reached the former CrAlYTa/(Ni, Co) interfaces, its propagation parallel to the coating surface was
favored by the oxides already there. Its propagation was also mainly favored by the lack of coating
cohesion at these particular zones. Finally, intergranular oxidation progressed along this porosity
network within the bond-coating. As Al was consumed at the surface but also at the wells and
at the CrAlYTa/(Ni, Co) interfaces, it was no longer available to ensure the growth of an external
protective Al2O3 scale. This was made even worse by the Al2O3 that developed internally, parallel to
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the bond-coating surface, blocking the Al up-hill diffusion towards the external surface. When the
Al content and the Al flux below the TGO became inferior to the critical values required for Al2O3

formation, other oxides formed. These oxides, rich in Ni, Co, Cr, and Al, developed during this
breakaway oxidation stage and led to the system failure. This proposed degradation mechanism is
therefore a mix between the Intrinsic Chemical Failure and the Mechanically Induced Failure [66].
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NiCoCrAlYTa bond-coating.

Although the MCNG-Trib-Pt/2 and the AM3-Trib-Pt/2 TBC systems were fabricated at the same
time and tested for the same number of cycles, the MCNG-base TBC system did not exhibit catastrophic
degradation. Sulfur, contained in the superalloys, is well-known for its detrimental effect on TGO
adherence [67–72]. In the present study, the difference in lifetime is unlikely to be due to the sulfur
content of the superalloy as both superalloys contained less than 0.5 ppmw (concentrations determined
by glow discharge mass spectroscopy, GDMS). The only known differences are the Pt quantity [32] and
the oxidation rate constant [23] of the coating as well as the superalloy Ti content, all higher for the
AM3-base system, and the Hf doping of MCNG superalloy. A greater Pt content is generally thought
to be beneficial. Nevertheless, a higher Pt quantity led to a larger martensite quantity in the external
layer, as observed on cross-sections. As mentioned previously, the martensitic transformation is known
to favor rumpling apparition in nickel aluminide coatings. The presence of martensite may well favor
propagation within the bond-coating and therefore catastrophic degradation. Also, a higher oxidation
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rate and the absence of Hf in the AM3-Trib-Pt/2 TBC system could have led to larger stresses within
the wells and easier metal/Al2O3 interfacial crack propagation.

Even if no catastrophic degradation was observed for the MCNG-Trib-Pt/2 TBC system, oxidation
penetration was encountered locally. This appeared similar to the onset of the catastrophic degradation
that started on the edge for the AM3-Trib-Pt/2 TBC system. The higher surface/volume ratio at
edges and corners explains the faster consumption of the Al reservoir contained within the material.
Thermo-mechanical stresses are also higher and the quality of surface preparation is lower in these
regions. All these reasons explain why degradation is greater at the sample edges. An increase in
degradation in areas with a low curvature radius has previously been observed [73–75].

Catastrophic degradation occurred for the AM3-Trib-Pt/2 TBC system after 300 cycles at 1100 ◦C
while this was not encountered for the AM3-Trib-Pt/1 TBC system that lasted 290 cycles at the
same temperature. As explained previously, these TBC systems were not fabricated at the same time.
The AM3-Trib-Pt/1 TBC system had a hole and a bond-coating over-thickness, while the AM3-Trib-Pt/2
TBC system had a welded stem. The thermal barrier thickness also differed between these batches.
Due to these differences, the TBC system lifetimes must be compared with caution. Although the
inner part of the Trib-Pt/1 bond-coating contained oxides, the oxide quantity was much lower than
the one of the Trib-Pt/2 bond-coating. This prevented catastrophic degradation for the AM3-Trib-Pt/1
TBC system. Such an issue has already been mentioned by Subanovic et al. [76]. In their study, they
showed that when the oxygen partial pressure within the VPS chamber was high enough, oxides rich
in reactive elements were present through VPS NiCoCrAl(Y/Hf) coatings that exhibited poor oxidation
behavior. Two other differences between these systems have to be mentioned: the surface preparation
before Pt electroplating and before thermal barrier deposition. While for the AM3-Trib-Pt/1 TBC
systems the bond-coating surface preparation was made at Praxair ST (the Tribomet® NiCoCrAlYTa
coating manufacturer, Oldmixon, UK), the bond-coating surface of the AM3-Trib-Pt/2 TBC system
was grit-blasted at Safran Aircraft Engines (Châtellerault, France), according to parameters optimized
for Pt-modified nickel aluminide coatings. It is then possible that the grit blasting carried out at Safran
Aircraft Engines was insufficient to close the wells present at the Trib-Pt/2 surface. On the contrary,
a surface preparation suitable for Trib coatings closed this open porosity and therefore prevented
catastrophic degradation, Figure 10.

Finally, when the AM3-Trib-Pt/2 TBC system was oxidized isothermally [23], no thermal stress
developed. Therefore, no micro-crack formed, oxide did not penetrate through the bond-coating depth,
and no catastrophic degradation was observed.

4.3. Failure Mechanism of TBC Systems with a VPS-Pt Bond-Coating

Despite a significant difference in lifetime between AM3-VPS-Pt and CMSX-4-VPS-Pt TBC systems,
the uncertainty domains had to be taken into account. The lifetimes of both TBC systems tend to be
different, but additional data would be necessary to confirm. Nevertheless, from the present data, it is
reasonable to say that the superalloy may influence the cyclic oxidation behavior of TBC systems with
a VPS-Pt coating.

The S content of AM3 and CMSX-4 superalloys was measured by GDMS; 0.28 ppmw in AM3
against 1.4 ppmw in CMSX-4. The higher S content should have accelerated the degradation of
the CMSX-4-VPS-Pt TBC systems but thermal barrier spallation occurred more rapidly with AM3
superalloy. Hf, contained in CMSX-4, is a reactive element known to mitigate the detrimental effect
of S [67,77–79]. Therefore, the presence of Hf compensated the higher S content of CMSX-4 and the
difference in TBC system lifetime could not be explained by the difference of S concentration. In a
previous study, a Trib-Pt/2 coating deposited on MCNG, Hf-rich, exhibited a slightly lower oxidation
rate than the same coating on AM3, which is Hf-free [23]. Thus, the presence of Hf in CMSX-4 and its
possible effects on the oxidation rate and oxide scale adherence could have been beneficial for the TBC
system lifetime. However, further analyses are necessary to understand why the CMSX-4-based TBC
system had a better behavior.
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In both systems, only Al2O3 could be detected in the oxide scale that also contained some Ti,
as shown in [31]. This confirms the beneficial effect of Pt on Al-selective oxidation and the rapid
Ti diffusion from the superalloy toward the oxide scale. Cavities were also observed within the
TGO, which was not the case for the TBC systems with a Trib-Pt coating. Parameters used during
Pt deposition by sputtering influence the microstructure and the degradation of Pt-modified nickel
aluminide coatings. Non optimized sputtering parameters could lead to cavities within the TGO [80].

Numerous corn kernel defects were visible at the bond-coating surface after spallation, proof that
the bond-coating surface was too rough before EB-PVD. It can be concluded that the light grinding
made after VPS did not lead to a surface finish suitable for EB-PVD. However, a complete grinding
of the VPS NiCoCrAlYTa was not recommended before sputtering a 7 µm Pt layer since thick layers
may come off from a smooth substrate during deposition or may generate cavities during diffusion
heat treatment.

After vacuum heat treatment, deep concave zones were visible at the surface of VPS-Pt coatings.
After thermal cycling, their surface was greatly deformed and at some regions oxide penetrated within
the bond-coating and could even reach the original Pt/NiCoCrAlYTa interface. Like for the cavities
present within the TGO, the large bond-coating deformation could be due to the sputtering process.
It could also be due to the martensitic transformation of β-NiAl. Complementary tests would be
necessary to better understand this.

Despite deep oxide penetration, up to the former Pt/NiCoCrAlYTa interface, oxidation did not
propagate parallel to the bond-coating surface. This can be explained by a lower number of cycles but
it may also be due to the absence of oxide and porosity in the inner zone of VPS bond-coatings after
fabrication. Even if the oxidized wells penetrated deep inside the bond-coating during thermal cycling,
they could not follow any porosity network and therefore did not propagate parallel to the surface,
Figure 10.

It is interesting to point out that Jackson et al. [22] noticed deep oxide protrusions in NiCoCrAlY
coatings deposited by argon-shrouded plasma spraying after 2067 cycles at 1100 ◦C (cycles with a
45 min hot dwell). This was observed only in the case of high Y-content coatings (0.5 wt % versus
0.1 wt %) with a rough surface. They proposed that the protrusions were initiated by preferential
oxidation of Y in concave regions of the coating surface. They did not claim any mechanism relative to
the protrusion propagation due to a lack of data, but mentioned the possibility of cracking.

5. Conclusions

In this study, many TBC systems that differ by fabrication process (Pt addition, deposition
techniques, surface preparation steps) were oxidized. The results confirm that Pt is beneficial in terms
of TBC system lifetime under thermal cycling conditions as it favors Al selective oxidation on a Trib
coating, by martensitic (Ni, Pt) Al formation. On the other hand, Pt seems to destabilize TaC carbides
that trap Ti. The beneficial effect of Pt on the cyclic oxidation resistance of Trib-base TBC systems is
then mitigated when used in systems based on Ti-rich superalloys. Moreover, martensite formation
led to stress development in the coating.

While the short lifetime of AM3-Trib-Pt/1 TBC systems was attributed to numerous corn kernel
defects because of a rough bond-coating surface before EB-PVD, AM3-Trib-Pt/2 and MCNG-Trib-Pt/2,
TBC systems failed because the Trib coating contained numerous oxide precipitates and was not dense
enough. Concerning AM3-VPS-Pt and CMSX-VPS-Pt TBC systems their short lifetime was due to
non-optimized sputtering parameters and a great density of corn kernel defects. This highlights the
relevance of smoothing the NiCoCrAlYTa surface before Pt deposition to obtain, after heat treatment
under vacuum, a bond-coating roughness suitable for EB-PVD.

Finally, the present work shows that the TBC system lifetime is increased when: (i) the
NiCoCrAlYTa coating is dense, well-interdiffused and oxide-free; (ii) the NiCoCrAlYTa surface is
smoothed before Pt deposition; and (iii) defects on the bond-coating surface are removed by a suitable
surface preparation before EB-PVD.
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