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Abstract: The paper reports the three-point bending test results of welded joints. The joints were made
of chromium-molybdenum cast steel designed for the use at elevated temperatures. TIG (tungsten
inert gas) welding technique was used. The fracture energy for particular joint zones and the stretch
zone width (SZW) under the notch bottom were determined in a qualitative fracture toughness
assessment. Fracture surface morphology was analyzed. The stretch zone measurement indicated
a qualitative relationship between its width and the values of fracture energy. The results confirmed
the influence of the modification on the character of fracture and the portions of brittle and ductile
fracture in particular areas of welded joints.
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1. Introduction

G15CrMo5-5 cast steel is designed for use at elevated temperatures (up to 500 ◦C) and under high
pressure in steam turbine valve chambers, valve bodies, or sealing rings of high-pressure vessels often
exposed to abrasive wear [1,2]. Steel castings are typically welded to build up larger parts. Considering
the operating conditions of cast steel products, adequate welding technologies for joint fabrication and
repair—especially in power plants—need to be used [3]. The properties of the joints must match those
of the parent material (cast steel).

Growing severity of the conditions under which cast steels operate has entailed considerable
developments in joining and welding [3–6], including the invention of new technologies, e.g., friction
stir welding [7–10] and the design of improved, modified welding materials [11]. One such
modification that has proved very successful is adding rare earth metals (REMs) to steel/cast steel
for lowering oxygen and sulphur contents [12,13] and changing the microstructure and morphology
of non-metallic inclusions [13–17]. Adding rare earth metals to steel improves its properties [18–27].
Most commonly, Ce is used alone or in combination with other elements. The production of steel and
cast steel containing REMs is difficult and successful modification depends on a number of factors,
including adequate deoxidation of the molten metal, the REMs’ amount, type and the time the addition
is made. Nevertheless, rare earth metals bring a number of benefits in steelmaking by influencing
the steel microstructure (grain refinement, non-metallic inclusion modification) and by increasing the
strength and corrosion properties and hardness of the steel [25–33].

2. Materials and Methods

The welded joints were made of G17CrMo5-5 cast steel (Table 1). Cast steel melting was done
under industrial conditions in an induction furnace with a capacity of 2000 kg. Two types of cast steel
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heats were made—non-modified and modified—with REMs in the form of mischmetal added into the
molten metal (1.02 kg mischmetal/t). The mischmetal chemical composition was as follows: 49.8% Ce,
21.8% La, 17.1% Nd, 5.5% Pr, and 5.35% of the other REMs.

Table 1. Chemical composition (% mass) of G17CrMo5-5 cast steel according to PN-EN-10213-2.

C Si Mn Cr Mo Ni Al S P

0.18 0.4 0.9 1.2 0.53 0.07 0.041 0.015 0.022

The samples (200 × 30 × 25 mm3) were taken from the test ingots subjected to a full heat treatment,
i.e., normalizing (940 ◦C/1 h/air) and tempering (710 ◦C/2 h/air), which provided the ferrite + bainite
microstructure (Figure 1) [31]. Evaluated qualitatively, after the heat treatment these changes involved
a significant reduction in the ferritic matrix grain size and the reduction of precipitation processes
in the modified cast steel during tempering. The transmission electron microscopy showed changes
in dislocation density in the steel with the addition of REMs [32]. The samples were etched with the
HNO3 solution in C2H5OH and examined in a light microscope (LM). The introduction of mischmetal
to cast steel increased cast steel Charpy impact toughness (with a V notch), keeping plastic properties
unchanged (Table 2) [31]. The favorable effect of the modifications on the material under lower
service temperatures was already confirmed and the cast steel was subjected to lower temperature
toughness tests to ASTM E 1820-17 [34] on the three-point bend specimens at temperatures ranging
from +20 ◦C to −60 ◦C for unmodified cast steel and to −80 ◦C for the cast steel with the rare
earth metal addition. The KJC fracture toughness values (Figure 2) and the brittle fracture transition
temperature TQ, which was −51.2 ◦C for the modified and 1.1 ◦C for the non-modified cast steel [35],
were determined. The region of the ingot from which the test samples were taken, as well as the nature
of the cast material, might be responsible for the scatter in the results.

The critical values of fracture toughness, KJC, were determined on single edge notched bend
(SENB) specimens, precracked (initial crack length (a0)) by fatigue. The dimensions of the specimens
were B = 12 mm and W = 24 mm (Figure 3). The support span was S = 4W with a notch relative length
of a/W ≈ 0.5 (a/W—normalized crack size; a—crack length). The MTS 250 kN testing system allowed
the automatic recording of crack opening displacement measurement (δM), applied load (P) and the
displacement at the load application point (∆U). The crack extension was measured with a crack tip
opening displacement (CTOD) extensometer and the displacement at the point of force application
was also measured.
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Table 2. Mechanical properties of G17CrMo5-5 cast steel.

G17CrMo5-5 Yield Strength,
MPa

Tensile Strength,
MPa

Elongation,
%

Necking,
%

Impact Strength,
J/cm2

Without REM addition 507.4 661 20.08 63.6 30
With REM addition 551.4 685.2 19.92 62.4 99Metals 2018, 8, x FOR PEER REVIEW  3 of 16 
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The authors used the potential change method to record signal potential, load values, and specimen
deflection. This enabled calculating the J integral, the crack opening length, and then JIC ratio used for
calculation of the KJC stress intensity factor. The amount of energy released from the specimen was
used to calculate the J integral from:

J =
ηA

b0BN
(1)

where:

η—for a three-point bend specimen η = 2,
b0—the initial length of un-cracked segment at the crack opening front (b0 = W − a0),
BN—specimen thickness,
A—area under the load-plastic displacement curve.

The critical value of JIC integral was determined according to the J-integral vs. crack extension
graph in Figure 4 [31]. The critical value of J integral is the intersection point of the J − ∆a dependence
curve (denoted by the black line in Figure 4) and the straight line (denoted by the blue line in Figure 4)
led from point 0.2 on the axis inclined to the ∆a axis at the angle whose tangent is (yield strength (σy) +
tensile strength (σUT)).
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Figure 4. Example graph of JIC critical value.

The specimens were tested in the temperature range from −80 ◦C to 20 ◦C on a MTS-250 testing
machine equipped with an automated control and data recording system. Low temperatures were
obtained in a thermal chamber in the environment of liquid nitrogen vapours. In that temperature
range, brittle, ductile, and mixed fracture mechanisms were observed. Fracture toughness was
determined using the critical value of the J integral, JIC, in accordance with ASTM standards [34,36].

The JIC critical values were converted to the stress intensity factor (SIF) units, KJC, by the formula:

KJC =
√

JICE/(1 − ν2) (2)

where JIC is the J-integral critical value, E is Young’s modulus, and ν is Poisson’s ratio.
Both the reference temperature in the brittle-to-ductile transition region, TQ, and the master

curves were determined in accordance with the recommendations by Wallin, Gao, Dodds,
and Ruggeri et al. [37–41], and the procedures set forth in ASTM E1921-10 [42] and in
FITNET [43]. The reference temperature, TQ, corresponds to the value of fracture toughness equal
to KJC = 100 MPa·m1/2. This procedure is applied to ferritic steels with yield strength in the range
285 ≤ σy ≤ 825 MPa. Experimentally measured fracture toughness is obtained either at one or at
several temperatures. According to the procedure, fracture toughness is determined on specimens
with B = 25 mm. In the case where the specimen thickness is less than 25 mm or exceeds this value,
the fracture toughness should be corrected using the formula [43]:

Kmat = Kmin + (KJC − Kmin)

(
B
25

)0.25
(3)

where Kmin is a minimum value of fracture toughness, which is assumed to be Kmin = 20 MPa·m1/2 [42,43].
In the case when the fracture toughness is measured at several different temperatures, the brittle-to-
ductile transition temperature, TQ, can be calculated from the equation:

n

∑
i=1

δi exp(0.091(Ti − TQ))

(11+ 77 exp(0.091(Ti − TQ)))
=

n

∑
i=1

(KJCi − 20)4 exp(0.091(Ti − TQ))

(11+ 77 exp(0.019(Ti − TQ)))
5 (4)

where KJCi is the i-th value of fracture toughness determined at the temperature Ti; n is a number of
tested specimens; δi equals 1, then KJCi < Kcenz, or 0, when the inequality is in the opposite direction.

The censored value Kcenz is calculated from the formula:

Kcenz = (Eb0σy/30)1/2 (5)

where b0 is the un-cracked ligament width of the specimen.
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If the value of the brittle-to-ductile transition temperature, TQ, is known, the data set by the
relationship Kmat = f (T), called a “master curve”, is obtained [42,43]:

Kmat = 30+ 70 exp(0.019(T − TQ)) (6)

Test Joints Welding

Samples made of G17CrMo5-5 cast steel were used to make flat test butt joints measuring
200 × 84 × 12 mm3. TIG welding technique was used. Welding consumables included LNT/LNM-19
solid welding wire [44] and argon as shielding gas [45]. The chemical composition of the welding wire
was as follows: 0.10% C, 0.5% Si, 1.0% Mn, 1.2% Cr, 0.5% Mo. Double-sided multilayer TIG welding
was performed. Table 3 summarizes the basic technological parameters of welded joints fabrication.
Test joints were welded in the flat position (PA). The heat treatment procedures accompanying the
welding are shown in Figure 5.

Table 3. Technological parameters of test joints fabrication.

Run No. Welding
Method [46]

Filler Wire
Diameter, mm

Current,
A

Arc Voltage,
V

Welding Speed,
cm/min

Shielding Gas
Flow, L/min

1, 3 141 φ = 2.0 100 11.3 25–30 8.0–10.0
2, 4 141 φ = 2.4 120 11.9 20–25 12.0

5–10 141 φ = 2.4 130 13.2 20–25 12.0

Pre-heating temperature: 100 ◦C, inter-pass temperature: 200–230 ◦C, annealing: 710 ◦C.
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3. Results

Three-Point Bending Test

The test samples were taken from the joints to determine fracture toughness. The samples from
the non-modified cast steel were designated as a series and those taken from the REMs modified cast
steel as B series. Three samples were provided for each series. The test was performed on three-point
bend flat samples according to ASTM E1820-09 [36] in an MTS 250 kN test machine with automatic
measurement of the gap (δM), force (P), and the displacement at the load application point (∆U).
The crack extension was measured with a crack tip opening displacement (CTOD) extensometer.
Pre-cracked and notched samples were used. The initial crack length (a0) was derived by subjecting
the samples to fatigue bending at constant amplitude. The specimens prepared in this way were
subjected to bending using a monotonically increasing load. The procedure was carried out in the
same way as that for the brittle transition temperature TQ (Section 2). The fracture toughness KJC of
the fabricated welded joints could not be explicitly determined due to irregular gap front. Thus, not all
normative requirements were met. The energy of cracking was determined according to the diagram
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in Figure 6. The fracture energy was calculated by separating the energy from the area under the graph
(total energy) by the product b0 and B (where b0—the unprocessed part of the sample, B—the effective
thickness of the sample). The thicknesses were measured as displacement Uext using an extensometer.
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The welded joints (series A and B) were fabricated as double-sided multilayer joints with the
edge in the shape of the letter “X”. The fatigue crack was initiated in the weld (A1, B1) and in the
heat-affected zone (HAZ) (A2, A3, B2, B3). The fracture energy was determined for each joint zone
(Table 4, Figures 7 and 8) at the moment of fracture initiation.

Table 4. Fracture energy of each joint zone.

Joint No. Area Fracture Energy, kJ/mm2

A1 weld 87
A2 weld + HAZ 135
A3 HAZ 275
B1 weld 67
B2 weld + HAZ + parent material 212
B3 HAZ 433

Metals 2018, 8, x FOR PEER REVIEW  6 of 16 

 

the effective thickness of the sample). The thicknesses were measured as displacement Uext using an 
extensometer.  

 
Figure 6. Scheme of fracture energy determination. 

The welded joints (series A and B) were fabricated as double-sided multilayer joints with the 
edge in the shape of the letter “X”. The fatigue crack was initiated in the weld (A1, B1) and in the 
heat-affected zone (HAZ) (A2, A3, B2, B3). The fracture energy was determined for each joint zone 
(Table 4, Figures 7 and 8) at the moment of fracture initiation. 

The specimens on the cross-section were etched in 4% HNO3 solution in C2H5OH. Macroscopic 
cross sectional observations of the resulting cracks allowed determining the joint zones where the 
crack propagated. 

Macroscopic observations of the resulting fracture surfaces (Figure 9) were analyzed for fracture 
energy values. In samples A1 and B1, a crack developed in the joint and in both cases a high 
proportion of brittle fracture was observed. In sample A2, the crack developed in the joint and 
propagated across the HAZ causing an increase in fracture energy. Similarly, the crack in sample B2 
ran across the joint and HAZ and, additionally, in the parent material. In both cases (A2 and B2) the 
increase in the fracture energy value was significantly higher in the modified cast steel joint. In 
samples A3 and B3, cracking developed across the HAZ. The highest proportion of ductile fracture 
was observed for A3 and B3. In both samples, there was an increase in fracture energy, mostly in the 
modified cast steel. 

 
Figure 7. Force-displacement diagram for welded joint tests for unmodified cast steel (A series). Figure 7. Force-displacement diagram for welded joint tests for unmodified cast steel (A series).



Metals 2018, 8, 115 7 of 16

Metals 2018, 8, x FOR PEER REVIEW  7 of 16 

 

 
Figure 8. Force-displacement diagram for welded joint tests for unmodified cast steel (B series). 

 
Figure 9. Overview of three-point bend fracture surfaces. 

Table 4. Fracture energy of each joint zone. 

Joint No. Area Fracture Energy, kJ/mm2 
A1 weld  87 
A2 weld + HAZ 135 
A3 HAZ 275 
B1 weld  67 
B2 weld + HAZ + parent material 212 
B3 HAZ 433 

4. Discussion 

The average value of fracture energy for each A and B series was not determined. Each sample 
was analyzed individually due to different crack propagation through the various areas of the 
welded joint (weld, HAZ, and parent material). 

All fracture surfaces were subjected to fractographic analysis in the scanning electron 
microscope. The stretch zone width (SZW; areas included by the 2 solid lines in Figure 10), a criterion 
for the qualitative assessment of fracture toughness, was measured under the bottom of the notch 
(Figure 10) between the fatigue pre crack zone and the crack extension zone. The stretch zone 
(“threshold”) is formed at the moment of rapid failure of the material between the fatigue zone of the 
fracture and the residual fracture. A wider stretch zone indicates higher fracture toughness, as 
confirmed in this study. Many researchers have reported a correlation between the width of the 
stretch zone and the fracture toughness. The J integral at the moment of crack initiation, Ji, based on 
the measurement of the stretch zone width can be calculated according to several procedures 
described in the literature [47–54]. 
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The specimens on the cross-section were etched in 4% HNO3 solution in C2H5OH. Macroscopic
cross sectional observations of the resulting cracks allowed determining the joint zones where the
crack propagated.

Macroscopic observations of the resulting fracture surfaces (Figure 9) were analyzed for fracture
energy values. In samples A1 and B1, a crack developed in the joint and in both cases a high proportion
of brittle fracture was observed. In sample A2, the crack developed in the joint and propagated across
the HAZ causing an increase in fracture energy. Similarly, the crack in sample B2 ran across the joint
and HAZ and, additionally, in the parent material. In both cases (A2 and B2) the increase in the fracture
energy value was significantly higher in the modified cast steel joint. In samples A3 and B3, cracking
developed across the HAZ. The highest proportion of ductile fracture was observed for A3 and B3.
In both samples, there was an increase in fracture energy, mostly in the modified cast steel.
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4. Discussion

The average value of fracture energy for each A and B series was not determined. Each sample
was analyzed individually due to different crack propagation through the various areas of the welded
joint (weld, HAZ, and parent material).

All fracture surfaces were subjected to fractographic analysis in the scanning electron microscope.
The stretch zone width (SZW; areas included by the 2 solid lines in Figure 10), a criterion for the
qualitative assessment of fracture toughness, was measured under the bottom of the notch (Figure 10)
between the fatigue pre crack zone and the crack extension zone. The stretch zone (“threshold”) is
formed at the moment of rapid failure of the material between the fatigue zone of the fracture and the
residual fracture. A wider stretch zone indicates higher fracture toughness, as confirmed in this study.
Many researchers have reported a correlation between the width of the stretch zone and the fracture
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toughness. The J integral at the moment of crack initiation, Ji, based on the measurement of the stretch
zone width can be calculated according to several procedures described in the literature [47–54].Metals 2018, 8, x FOR PEER REVIEW  8 of 16 
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Figure 10. Images of fracture surfaces under the notch bottom with visible stretch zones.

For specimens A1, A2, and A3, the width was 40, 49, and 66 µm, respectively whereas for
specimens B1, B2, and B3, it was 30, 64, and 120 µm. In the welded joints made of modified cast steel,
the stretch zone was wider than that of unmodified cast steel. This applies to cracks in the HAZ and
parent material. The differences between samples A1 and B1 result from the crack propagation area,
i.e., the weld.

Observations of A1, A2, and A3 fracture surfaces and B1, B2, and B3 specimens indicate brittle
fracture character (Figures 8–10), with areas of ductile fracture (Figures 11–13, lower section of the
photographs). Depending on the areas in which the crack propagated, a different proportion of ductile
fracture to brittle fracture is observed. Large transcrystalline cracks are seen mostly in the B1 weld,
which explains lower fracture energy in this sample. Ductile fracture areas are visible in both variants.
Microscopic images of the A2 and B2 samples show brittle nature of the fracture with numerous steps
forming “river basins” and “river patterns”. In the case of sample B2, the fracture surface is much more
developed, which indicates fine grained structure. More ductile fracture strips with smaller dimples
around precipitates are visible in the brittle fracture area. Grain refinement and the change in inclusions
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morphology result also from the presence of mischmetal in the cast steel. Few transcrystalline cracks
can be seen in A3 and B3 brittle fracture areas (Figure 13). In the B3 modified steel sample, as in B2,
the morphology of the fracture is more developed and the ductile cracking bands are much more
common than in the cast steel samples without the REMs addition. Compared with A3, the proportion
of ductile fracture is much higher, reaching 50%.
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The inclusions in the modified cast steel are characterized by a much larger dispersion (Figure 14)
and morphology and size changes (Figures 15 and 16). The inclusions formed during the modification
process and were mostly oxysulphides (Figure 17) [32,33]. The REMs addition in the liquid steel caused
the inclusions to take on a globular shape and be more evenly distributed in the matrix. No clusters of
oxides and sulphides were observed as was the case with unmodified cast steel.
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Figure 17. X-ray spectrum of inclusions on fracture surfaces.

5. Conclusions

1. Modification of G17CrMo5-5 cast steel with mischmetal seems to have an advantageous effect on
the fracture energy of the weld joints.

2. The stretch zone measurement indicates a qualitative relationship between its width and the
values of fracture energy. The widths in the B-series samples were noticeably larger than those in
the A-series samples.

3. The fractographic analysis of the fractures from the weld and HAZ confirmed the influence of
modification on their character, in particular in the case of HAZ where a significant development
of the fracture surface was observed. For specimens A1, A2, and A3, the stretch zone lengths are
40, 49, and 66 µm, respectively whereas for specimens B1, B2, and B3, they are 30, 64, and 120 µm.
The introduction of Ce mixture into the cast steel refined the grain, changed the morphology of
non-metallic inclusions, and increased the dispersion of the inclusions.

4. In order to determine the fracture energy for particular areas of the welded joint, it is suggested
to prepare half Y-shaped welding edges. Such preparation for research purposes can ensure that
the crack propagates only through the homogeneous joint area, i.e., HAZ or weld, and this will
allow determining the KJC.

5. The results should be considered as a qualitative relationship between particular areas of the A
and B series joints.
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