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Abstract: The ultrasonic phased array total focusing method (TFM) has the advantages of high
imaging resolution and high sensitivity to small defects. However, it has a long imaging time and
cannot realize near-distance defect imaging, which limits its application for industrial detection.
A sparse-TFM algorithm is adopted in this work to solve the problem regarding rapid imaging of
near- distance defects in thin plates. Green’s function is reconstructed through the cross-correlation
of the diffuse full matrix captured by the ultrasonic phased array. The reconstructed full matrix
recovers near-distance scattering information submerged by noise. A sparse array is applied to TFM
for rapid imaging. In order to improve the imaging resolution, the location of active array elements
in the sparse array can be optimized using the genetic algorithm (GA). Experiments are conducted
on three aluminium plates with near-distance defects. The experimental results confirm that the
sparse-TFM algorithm of Lamb waves can be used for near-distance defects imaging, which increases
the computational efficiency by keeping the imaging accuracy. This paper provides a theoretical
guidance for Lamb wave non-destructive testing of the near-distance defects in plate-like structures.

Keywords: Lamb waves; diffuse field; sparse-TFM algorithm; near-distance defects imaging

1. Introduction

Ultrasonic phased arrays have been widely used in industries due to its strong flexibility and
high imaging resolution. It has become a research hotspot in the field of ultrasonic non-destructive
testing [1,2]. Compared to the traditional single-chip ultrasonic testing, the ultrasonic phased array
transducer is composed of several independent elements. By changing the pulse emission time of a
single element according to a certain time sequence, the ultrasonic waves emitted by different elements
will be superimposed to form a new wave front. Such a technique can perform linear scanning,
sector scanning, and dynamic focusing without probe displacement [3]. However, the phased array
acquisition system has some physical limitations. According to the superposition theorem, the sound
pressure at any point in the sound field is equal to the superposition of radiated sound pressure
at each point on the sound source. On the one hand, there is an obvious interference effect in the
sound field near the sound source. The sound pressure amplitude in this area presents an obvious
oscillation. On the other hand, the impulse response received by the transducer includes not only
the scattering information from the transmitter to the receiver, but also the ultrasonic reverberation
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inside the transducer. This problem is complicated by the nonlinear saturation from electronic and
mechanical crosstalk due to the compact array of elements. For all of the above reasons, part of
the signal directly captured by the phased array will appear in the near-field blind region within
millimeters of the surface.

Defects buried near the surface are one of most important problems affecting the quality of plate
metals. Various near-distance defect detection techniques are widely desired and applied in industrial
scenarios [4]. The introduction of wedges between the transducer and specimen can mitigate the
near-field effects of the transducer and prevent near-distance defects information from being masked in
the near-field range. However, due to the presence of sound beam transmission at the wedge–specimen
interface, the energy loss during the sound propagation leads to the defect quantification error or
even missed detection. This will reduce the detection reliability. Meanwhile, as the ultrasonic wave
propagates in the bounded medium for some sufficiently long time, a quasi-uniform diffusion field
is obtained after multiple scattering and reflection events [5]. The generation of the diffusion field
provides a great opportunity for near-distance defect detection. The concept was originally used in the
field of room acoustics, and then in the analysis of acoustic emission signals. For a 3D diffused noise
field, the derivative of the sound field cross-correlation received by the two receivers is proportional to
the sum of the causal Green’s function and the anti-causal Green’s function between the two points in
the time domain. So far, Green’s function recovery theory has been increasingly used in the fields of
ultrasound, structural health monitoring (SHM), seismology, and so on [6–8]. Lobkis et al. measured
the thermal noise diffusion field in a closed aluminum cavity and obtained the time domain Green’s
function between the two receivers through cross-correlation processing [9]. Compillo recorded
seismic coda information between two stations and found the group velocities and the polarization
characteristics of Rayleigh and Love waves by cross-correlating the coda of seismic events [10]. The
cross-correlation of ambient noise within a diffuse field will reproduce the Green’s function between
two receivers. This method provides a way to achieve passive imaging using only ambient noise
without any external source. Chehami carried out experiments based on the reverberation of an elastic
thin plate, indicating that the defect location can be localized by using ambient noise, which provides a
theoretical basis for defect imaging [11].

In 2005, the total focusing method (TFM) algorithm was first introduced to defect detection by
Holmes [12]. TFM for ultrasonic phased array imaging is a signal post-processing algorithm, which
excites each element independently and sequentially while reception is performed by all the elements.
It enables one to focus on every specified point within the imaging region using data acquired from
full matrix capture (FMC) mode. By taking advantage of the maximum available information for each
point, this method has better detection sensitivity and resolution compared with the standard scanning
technique. Some researchers even called TFM the “golden rule” algorithm in ultrasonic phased array
testing. However, with the increase of the array element number, this method becomes inefficient with
massive data processing during TFM imaging. It is still difficult to achieve real-time monitoring in
industries when using a large-scale array.

This problem can be solved by selecting only a few elements according to certain rules for data
volume reduction and effective imaging. Sparse array was widely used in the medical ultrasonic field
as a powerful method to improve efficiency [13]. In many applications, the sparse arrays should be
able to generate a specified beamwidth while keeping an allowable peak sidelobe level (PSL). Various
optimization algorithms have been proposed for designing a sparse array [14,15]. In order to obtain
single or multiple nulls at specific directions while maintaining a low sidelobe level, the harmony
search (HS) algorithm was applied to adjust the amplitude, phase, and position of a linear array [16].
Trucco designed the two-dimensional sparse array for underwater three-dimensional imaging with a
simulated annealing (SA) method. However, sparse arrays with arbitrary aperture and sparse rate
cannot be achieved using this method [17]. Murino used a simulated annealing algorithm to reduce the
sidelobe level by adjusting the position and amplitude of elements [18]. A two-layer medium corrected
sparse-TFM algorithm was developed by Hu et al. in 2017, which can increase the computational
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efficiency while maintaining a relatively low error for the arc-distributed hole imaging [19]. However,
considering the energy loss caused by wedge coupling, it may mislead the defect detection in serious
cases. Haupt was the pioneer in introducing the genetic algorithm (GA) into array design to get the
optimal or sub-optimal solution within the range of iteration times through continuous crossover
and mutation [20]. In the field of defect identification, GA is one of the most popular optimization
techniques used for sidelobe level reduction because it searches through the total solution space and
can find the optimal solution globally over a domain [21].

A sparse-TFM imaging method with Lamb waves is adopted in this work to achieve rapid imaging
of defects that are near the transducer array via direct contact measurements. The near distance means
that defects are located in the near field of the ultrasonic phased array and satisfies the near field
calculation formula. Due to its low sound absorption, aluminum is a suitable material for diffuse field
measurements. Experiments are carried out on aluminium plates containing near-distance holes. The
phased array probe is placed on its side to excite S0 mode Lamb waves. First of all, the FMC mode of a
phased array probe was used to obtain the diffuse full matrix after data interception. Based on the
classical theory of Green’s function, a full matrix containing the near-distance scattering information
obscured by the noise can be obtained through cross-correlation of a diffuse full matrix. Second, it
turns out that a hybrid full matrix formed by combining the reconstructed matrix with the directly
captured full matrix reduces the background noise, and allows for effective near-distance imaging.
In order to improve the spatial resolution and efficiency of imaging, GA is applied to optimize the
element layout combining the hybrid full matrix. Finally, rapid imaging of near-distance defects in
thin plates is achieved using a sparse-TFM algorithm.

2. Theory for the Sparse-TFM Imaging Using the Diffuse Field Information

2.1. Green’s Function Response Recovery

For a phased array transducer with N elements, each element is excited sequentially. The echo
signals received by all elements at each transmission are stored to obtain the full N ×N matrix data set.
Recording from time zero, the directly captured full matrix data with a long enough window length
is denoted as hi, j(t), where i and j correspond to the transmitting and receiving sensors, respectively.
Affected by the near-field blind region, the early defect information is completely submerged in the
noise with a large amplitude, which cannot be applied to the subsequent near-distance defect imaging.

In fact, near-distance information exists not only in the obscured region, but is also implicitly
contained throughout the diffuse field. The diffuse full matrix di, j(t) is from the signal of time window
T after a period of time tr. The larger the time window T of the interception signal, the better the
imaging quality of the reconstruction matrix, but at the cost of a longer computing time. The delay time
tr needs to be determined according to the actual diffusion rate and the signal-to-noise ratio. A smaller
tr cannot satisfy the characteristics of a diffusion field and a larger tr is not conducive to the recovery of
early information due to the complex information of diffusion field. In order to effectively recover the
Green’s function between two points by using the cross-correction method of the diffusion field, the
statistical average of the cross-correlation between two points in the time domain for an N elements
array can be expressed as:

Ci, j(t) =
1
N

N∑
k=1

∫ tr+T

tr

dk,i(t)dk, j(t + τ)dτ (1)

A reconstructed Green’s function matrix gi, j(t) derived from the Equation (1) is given by:

hi, j(t) ≈ gi, j(t) =
d
dt

(
Ci, j(t)

)
(2)

As a result of the limited number of phased array elements, the recovery of Green’s function
is always imperfect and has a lower accuracy than that of the signal directly obtained. Therefore,
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the reconstructed Green’s function matrix gi, j(t) is only approximately equal to the directly captured
full matrix hi, j(t). Although the reconstruction method can be used to obtain the near-distance
information more accurately, the later time information is better acquired by using the traditional direct
measurement method. By combining the two methods and adding appropriate weight coefficients, the
most favorable hybrid full matrix for imaging can be obtained as [22]:

fi, j(t) =
1

1 + e−α(t−tc)
hi, j(t) + β

(
1−

1
1 + e−α(t−tc)

)
gi, j(t) (3)

β =

N∑
i=1

∣∣∣hi, j(tb)
∣∣∣

N∑
i=1

∣∣∣gi, j(tb)
∣∣∣ (4)

where tc represents the transition time after removing the nonlinear saturation effect of the reconstruction
matrix, the parameter β is evaluated as the first scattering response information, tb is the bottom wave
time of the tested specimen, and α is the smoothness parameter during the transition.

2.2. Sparse-TFM Imaging

TFM allows the beam to be focused at every point in the imaging region, utilizing all the
information in the full matrix of the array data to achieve high-resolution imaging for accurate defect
location and quantitative analysis. Taking a conventional rectangular specimen as an example, the
coordinate system is established as shown in Figure 1. The ultrasonic array transducer is coupled to
the specimen. The x-axis is the moving direction of the probe on the surface of the specimen and the
z-axis is the depth direction of the specimen.
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Figure 1. The schematic diagram of TFM imaging.

The TFM post-processing algorithm first discretizes the imaging area into grid points, and then
sums the signals from all elements in the array to synthesize a focal point at each point in the grid.
Assuming (x, z) is a pixel in the grid, the intensity of the image I(x, z) at any point can be calculated
as follows:

I(x, z) =
N∑

t=1

N∑
r=1

ht,r


√
(x− xt)

2 + z2 +

√
(x− xr)

2 + z2

c

 (5)
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where N is the number of elements, c is the group velocity of the Lamb wave propagating in the
specimen, ht,r(·) is the receiving signal of element r while the element t transmits, and (xt, z) and (xr, z)
are the coordinates of the transmitting and receiving elements, respectively.

The TFM can be applied to post-processing in nondestructive testing while the computation time
is the only limiting factor to processing large amounts of full matrix data. Sparse-TFM is adopted in
this work to solve this problem by reducing the number of active transmitting or receiving elements,
which is mainly divided into two parts: optimization of the sparse array and TFM imaging. The
former is to obtain the optimal or approximate solution of the sparse array distribution in the whole
range, while the latter is the process of imaging based on the sparse matrix data. So far, derived from
the genetic and evolutionary laws of the biological evolution process, GA is widely used to solve
global optimal solution problems. In this paper, the fitness function of GA is constructed based on
the minimum sidelobe criterion, and the optimal sparse array distribution is determined within the
maximum evolution algebra by the selection, crossover, and mutation operations.

In order to remove image artifacts caused by a sparse transmission or receiving aperture, the
effective elements can be weighted to make the effective aperture of the sparse array consistent with that
of the full array [23]. In practice, the total effective aperture is obtained by superimposing the effective
apertures resulting from individual transmissions at different times, which is shown in Equation (6):

eTR =

NT∑
t=1

(
utwT

t
⊗ vtwR

t
)

(6)

where NT is the number of transmitting elements, and ⊗ is the convolution operator. ut and vt are
the position distribution functions of the transmitting and receiving array elements at the element t
excitation, applied with weighting functions wT

t and wR
t, respectively.

In this paper, for convenience, only the weighting function of the receiving elements wR
t is

considered by setting wt
T = 1 for all transmitting elements. Finally, with the aim of imaging the

near-distance defects in the target area, the hybrid matrix is substituted for the directly captured matrix.
The expression for the sparse-TFM algorithm is shown in Equation (7) [24]:

Ic(x, z) =
NT∑
t=1

NR∑
r=1

wT
twR

r ft,r


√
(x− xt)

2 + z2 +

√
(x− xr)

2 + z2

c

 (7)

where NT and NR are the total number of transmitting and receiving elements of the sparse
array, respectively.

3. Experiments

As shown in Figure 2a, the experimental system was composed of a commercial phased array
controller (Multi2000, M2M Inc., France), a computer with a Core E5 CPU and 128 GB RAM, a 1L16-2.0
× 20 phased array transducer, and three aluminum plates. The aluminum plate was 300 mm × 150 mm
× 1 mm in size with four circular holes. In this paper, three experiments for specimens with different
defect were carried out. The relative position of transducers and defects is shown in Figure 2b–d.
Specimen 1, including defects parallel to the top edge of aluminum plate, is shown in Figure 2b.
Specimen 2, including defects inclined along the top edge of the aluminum plate, is shown in Figure 2c.
In specimens 1 and 2, each defect had a diameter of 2 mm and was 10 mm away from the top edge of
the aluminum plate. Specimen 3, including defects with different diameters, is shown in Figure 2d.
The diameter of each defect in specimen 3 was 1, 3, 5, and 7 mm, respectively, and the distance between
the center of each defect and the top edge of the aluminum plate was 40 mm.
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Figure 2. Schematic of the experimental setup and diagram of defects and transducer position:
(a) experimental setup of specimen 1, (b) the relative position of transducers and defects in specimen
1, (c) the relative position of transducers and defects in specimen 2, and (d) the relative position of
transducers and defects in specimen 3.

According to the literature [25], the expression of the near-field length for ultrasonic phased array
is Nd = D2/4λ, where D is the transducer aperture and λ is wavelength. A five-cycle sinusoidal tone
burst signal from a Hanning window was used as the excitation signal in this paper, and the other
experimental parameters are listed in Table 1. The phased array transducer was placed above the
aluminum plate as shown in Figure 2, which was suitable to excite the S0 mode Lamb waves with a
frequency–thickness product of 1 MHz·mm [26,27]. In our test, the group velocity of the S0 mode was
about 5300 m/s, and the wavelength of the S0 mode was 5.3 mm. After calculation, Nd = 43.02 mm
and Nd > λ. Therefore, the defects in the aluminum plate were located in the near field, and therefore
belong to near-distance defects.

Table 1. Experimental parameters.

Parameter Value

Number of elements 16
Element width 1.8 mm
Element pitch 2.0 mm

Center frequency 1.0 MHz
Sampling frequency 50 MHz

Under the configuration of the above parameters, the full 16 × 16 matrix of data was obtained
by setting the probe to full matrix acquisition mode. An example of typical signals, for i = j = 8,
of each full matrix is shown in Figure 3 for specimen 2. The time window T of each set of signals
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was 120 µs, and all signals were normalized. The directly captured signal response hi, j(t) with a
time length of 0 ∼ 120 µs is shown in Figure 3a. It can be seen that the early signals were almost
completely submerged by the noise. The diffuse full matrix di, j(t) intercepted by initiating recording
some sufficiently long time, tr = 300 µs, after transmission, is shown in Figure 3b. The reconstructed
Green’s function is shown in Figure 3c, which recovers the near-distance information, and lays the
foundation for imaging. A hybrid full matrix fi, j(t) that better reflects global information is shown
in Figure 3d.
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response hi, j(t), (b) diffuse full matrix di, j(t), (c) reconstructed Green’s function, and (d) hybrid full
matrix fi, j(t).

4. Experimental Results

4.1. Near-Distance TFM Imaging

Images of the aluminium plates were generated using the TFM, as shown in Figure 4. The directly
captured images (Figure 4a,c,e) show a strong area of noise that extends to about 43 mm from the
array. The defects of ≈5–40 mm away from the array are submerged by this area. The images produced
from the hybrid full matrix are shown in Figure 4b,d,f, which allowed for effective near-distance
imaging from a single directly coupled experimental realization. It can be seen that the characteristics
of the detected defects were almost identical to their real situation, while the background noise was
significantly reduced. Even if the defect had a diameter of only 1 mm, it could be clearly detected.

4.2. Sparse Arrays Designed by Using GA

In Figure 4, the near-distance imaging capability of TFM imaging using a hybrid full matrix is
demonstrated. However, the entire TFM imaging process is time-consuming, especially when the number
of array elements is large. To overcome the above problem, sparse processing was performed on the
hybrid full matrix. Considering the influence of active elements on the imaging results, sparse array
experiments were carried out with 7, 10, 13, and 16 receiving elements. The sparse receive elements
location was optimized using the GA, and the key steps of this algorithm are summarized below [28]:

Step 1. Initialization: Each element in the array is a gene in the chromosome. The values of genes
in the active elements are set as 1; otherwise, the values are set as 0. In order to maximize the lateral
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resolution, the first and the last receiver elements are active. After several experiments, the number of
initial groups M and iterations T in this work were set to 30 and 100, respectively.

Step 2. Objective function: To minimize the peak sidelobe level of the sparse array, the fitness
function of GA was constructed as follows:

Fitness = max

∣∣∣∣∣∣∣∣∣∣∣∣
M∑

i=1
δie jkuxi

FFmax

∣∣∣∣∣∣∣∣∣∣∣∣ (8)

where u = cos θ− cos θ0, θ is the angle of the incidence of a plane wave, and θ0 is the beam steering
direction. k = 2π/λ, where λ denotes the wavelength of the Lamb wave. δi is the binary coefficient, δi
is 1 when the element i is active, and δi is 0 when it is inactive. FFmax is the peak value of the beam
main lobe, and the objective function is defined as: obj = min{Fitness}.

Step 3. Selection, crossover, and mutation: The selection, crossover, and mutation algorithm
expands the search space of the GA, such that the GA is more likely to get the global optimal value.

Step 4. Stop criteria: The iteration process is terminated if the maximum number of generations
is reached.

The optimal location of the active received elements were determined using GA, and three
sequences are listed in Table 2.
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matrix fi, j(t) of specimen 2, (e) directly captured full matrix hi, j(t) of specimen 3, and (f) hybrid full
matrix fi, j(t) of specimen 3.
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Table 2. Sparse arrays designed by GA.

Sparse Type Element Layout

13 elements 1011111111111001
10 elements 1101011100011011
7 elements 1010010100010011

GA, SA, and particle swarm optimization (PSO) are the most mature and widely used in sparse
array design. Shi et al. proved that the SA algorithm is better than PSO algorithm in 2013 [29].
Therefore, the effects of the application of GA and SA algorithms are considered and compared. Taking
a sparse array with seven active elements as an example, sparse-TFM imaging was performed on the
non-optimized array, optimized array of GA, and SA. The comparison results are shown in Figure 5.
Comparing Figures 5a and 5b, it appears that the image quality of the second one was better than that
of the first. Indeed, it presents fewer artifacts and side noise, especially around the defects. Comparing
Figures 5b and 5c, the optimized array using GA presented a better image quality at the same number
of iterations. The optimal element layout had the lowest side lobe peak, which could optimize the
energy distribution of the sound field, and to weaken the influence of noise on imaging. This illustrates
that the optimization of the sparse array using the GA was necessary for sparse-TFM imaging.
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4.3. Near-Distance Sparse-TFM Imaging

GA is used to select the element layout of the best effective receiving array elements, and then the
corresponding weight functions are performed to obtain the sparse-TFM imaging results, as shown
in Figure 6. Figure 6a–c are the imaging results of specimen 1 in different sparse arrays. Figure 6d–f
are the imaging results of specimen 2 in different sparse arrays. Figure 6g–i are the imaging results
of specimen 3 in different sparse arrays. As the number of receiving elements increased, the image
quality was further improved while the artifacts were obviously reduced. This was because the image
contrast could be reduced in the case of a high sparse rate due to the influence of the sidelobes. The
experimental results detailed above show that clearer defect images with fewer artifacts could be
obtained via sparse-TFM using a diffuse field in aluminum plates.

When the number of elements was 13, it was almost the same as the TMF imaging effect. Compared
to the 10-element sparse-TFM imaging, one can see that the side lobes and the artifacts near the defect
holes in the 7 elements sparse-TFM imaging were greatly increased, but its resolution was acceptable in
practical testing. After many experiments, it was shown that when the number of receiving arrays was
reduced to 6, some defects could not be imaged due to the sharp decline of energy. Accordingly, it was
observed that the fewer combined transmit-receive elements used in sparse-TFM imaging algorithm,
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the more the resultant sidelobe amplitude was. This is why sidelobes were generated with the TFM
imaging, but they can be seen in images generated with the sparse-TFM algorithm.
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5. Comparison and Discussion

In order to further analyze the sparse-TFM imaging effect through the cross-correlation of the
diffuse field, the array performance indicator (API) and signal-to-noise ratio (SNR) are defined to aid
this quantification. API is a dimensionless measurement of the image resolution. The smaller the API
value, the narrower the sound beam width and the better the imaging quality [30]. Conversely, the
larger the API value is, the wider the ultrasonic beam width will be, which will easily cause aliasing of
adjacent defect images and worsen the imaging quality. The expression of API is shown in Equation (9).
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It is defined as the area, A−6dB, within which the point spread function is greater than −6 dB down
from its maximum value, normalized to the square of the wavelength.

API =
A−6dB

λ2 (9)

SNR can reflect the overall image quality of the ultrasonic detection image, indicating the
relationship between the defect signal and the noise signal [31]. Correspondingly, the expression of
SNR is shown in Equation (10):

SNR = 20 · log
Imax

Iaverage
(10)

where Imax denotes the maximum value of the defect signal, and Iaverage is the average amplitude of
the background noise level.

To facilitate the analysis of the imaging results, API, SNR, and computation time of the three
experiments for each array were statistically analyzed, as shown in Table 3. The noise suppression was
achieved by summing the contributions of different transmitters and receivers. Therefore, the noise
level reduced when more receiver elements were used. As the number of array elements increased, the
API value decreased, and the SNR value increased continuously. Taking imaging results with specimen
1 as an example, the API value of 7 elements was increased by 26% compared to that of 16 elements.
The SNR value was decreased by 5 dB, but the imaging speed was improved by about 2-fold. From
these experimental results, it is noted that sparse-TFM imaging could shorten the computation time
significantly at the cost of low SNR. Moreover, the image quality of arrays did not have a greater loss
under the condition of a certain sparse rates while the imaging efficiency could be greatly improved.

Table 3. Performance comparison of three specimens for different array.

Number of Elements API SNR (dB) Computation Time (s)

Specimen 1

16 0.9129 14.48 25.78
13 1.0978 13.82 20.21
10 1.1080 12.74 15.98
7 1.1575 9.47 11.85

Specimen 2

16 1.1417 14.93 25.67
13 1.4247 12.77 20.76
10 1.6434 10.98 16.39
7 1.7477 7.02 11.61

Specimen 3

16 1.7408 15.06 25.75
13 1.7531 14.13 20.32
10 1.8180 12.32 16.12
7 2.0959 8.97 11.73

6. Conclusions

A sparse-TFM algorithm for the near-distance imaging of aluminum plates was presented in
this paper, and the influence of sparse receiving elements on computational efficiency and defect
quantification accuracy was discussed. The following conclusions can be obtained:

1. The feasibility of using the cross-correlation of diffusion field signals from Lamb waves to recover
the Green’s function was verified, which is the key process of detecting near-distance defects
with an ultrasonic phased array.

2. Combining the TFM imaging, a hybrid full matrix formed through an appropriate temporal
weighting sum of the reconstruction and conventional full matrix contained the near-distance
information and later time information for the imaging of near-distance defects. The defect
information presented using this method was almost consistent with the reality, but the calculation
was time consuming.
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3. To maximize the reduction of the data processing times, the sparse-TFM proposed in this paper
was similar to the TFM algorithm, but not all elements were used. This work considered the
case of a sparse receiver array and a full transmission array, and the sparse-TFM image quality
depended on the correct location of active elements in the sparse array to avoid the artifacts and
sidelobe noise. GA is an effective optimization method to design sparse receive arrays, which
have better performance compared to non-optimized sparse arrays.

Hence, the proposed method allowed for the near-distance defect imaging in thin plates from
a single directly coupled experimental realization. It greatly reduced the calculation while keeping
a relatively favorable accuracy by reducing the receiving elements. To show the great potential
of Green’s function retrieval and sparse-TFM imaging of near-distance defects to inspect plate-like
structures, the results presented in this paper have been preliminarily limited to isotropic materials.
Since the presented method is based on information processing and optimization algorithm, there is
no theoretical obstacle in applying the method to anisotropic materials like the detection of carbon
composites, fatigue cracks in flying bodies, etc. These new investigations are now in process.
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