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Abstract: A new plasticity and failure model is developed herein for metallic materials subjected to
dynamic loadings on the basis of the analysis of some available material test data and previous work.
The new model consists of two parts: a strength model and a failure criterion. The strength model
takes into consideration both tension and shear stress-strain relationships, as well as the effect of Lode
angle, while the failure criterion takes into account both the effects of stress triaxiality and Lode angle.
Furthermore, the effects of strain rate and temperature are also catered for in the model. In particular,
new non-linear functions are suggested for the effects of strain rate and temperature in the strength
model in order to describe accurately the mechanical behavior of metallic materials at very high
loading rates and temperature. The new model is compared with available material test data for
2024-T351 aluminum alloy, 6061-T6 aluminum alloy, oxygen free high conductivity (OFHC) copper,
4340 steel, Ti-6Al-4V alloys, and Q235 mild steel in terms of stress–strain curves in both tension and
shear, strain rate effect, temperature effect and fracture under different loading conditions. The new
model is also compared with the JC constitutive model with the respective JC and BW fracture criteria
by conducting numerical simulations of quasi-static smooth and notched bar tensile tests and ballistic
perforation tests on 2024-T351 aluminum alloy in terms of cup and cone failure pattern, ballistic limit,
residual velocity and failure mode. It transpires that the new plasticity and failure model can be
used to predict the response and failure of metallic materials and structures under different loading
conditions. It also transpires that the new model is advantageous over the existing models.

Keywords: metal; strength model; failure criterion; strain rate effect; temperature effect; stress
triaxiality; Lode angle; failure mode; material test; ballistic test

1. Introduction

Numerical simulations have been increasingly widely used in the study of the response of metallic
structures under projectile impact or explosive loadings due to rapid advancement in both computers
and computing technologies. Hence, it is essential to develop a dynamic plasticity (constitutive) and
failure model for metallic materials. The model must satisfy the following three criteria: firstly, it must
be able to accurately describe the dynamic behaviors of materials under different loading conditions
in terms of true stress-true strain relationships at different strain rates and temperatures; secondly,
it must be capable of predicting failure patterns of samples and structures both under quasi-static
and impact loadings such as cup and cone pattern observed in smooth bar tension tests, as well as
shear plugging and petalling failure in ballistic tests; and finally, it must be predictive, rather than
postdictive, which means that the values of all the parameters in the model should be determined by
laboratory material tests before it is employed in numerical simulations.

The Johnson-Cook (JC) constitutive model [1] and failure criterion [2] have been widely used
in numerical simulations due to their relatively simple forms. The JC constitutive model [1] can
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describe the effects of strain hardening, strain rate and temperature softening. On one hand, the term
of strain rate effect in the model takes a linear function of the logarithm of strain rate which may
not be adequate to describe the strain rate sensitivity of metals as noted by Borvik et al. [3,4] and
others [5,6]. Borvik et al. [3,4] proposed a version of the JC constitutive model by modifying the term
of strain rate effects, as it approaches negative infinity when strain rate gets very small. Khan and
coworkers [5,6] also proposed a more complicated version of the JC constitutive model on the basis
of the discussion of some test data for 2024-T351 aluminum alloy and Ti-6Al-4V alloy. On the other
hand, the thermal term in the JC constitutive model is expressed by a power law function and many
other researchers tried to modify it in order to get more satisfactory results as compared to test data for
metals at elevated temperatures [7,8]. Meyers et al. [7] suggested an exponential function to replace
the thermal softening term while Guo et al. [8] modified it slightly by putting a coefficient before the
dimensionless temperature in the JC constitutive model.

The JC failure criterion [2] is a function of hydrostatic pressure (stress triaxiality), strain rate
and temperature which shows that the material ductility decreases with increasing stress triaxiality.
However, Bao and Wierzbicki [9] found in their experiments that material ductility does not always
decrease with increasing stress triaxiality. Subsequently, Wierzbicki and coworkers [10–12] assessed the
effectiveness and accuracy of seven fracture criteria for metallic materials and suggested fracture criteria
in various forms which considered the effects of Lode angle as well as stress triaxiality. Many other
authors [13–15] have also studied the problem of ductile fracture of metals. Clausen et al. [13] proposed
a plasticity and failure model by adding the third deviatoric invariant both in the JC constitutive
model and failure criterion, while Erice and Gálvez [14] furthered the investigation by proposing
a constitutive model coupled with the elastoplastic–failure law and a Lode angle-dependent failure
criterion. Zhou and Wen [15] proposed a new approach that caters for the effects of both stress triaxiality
and Lode parameter to predict the failure of metallic materials. Only two laboratory tests, the smooth
bar tension test and the pure shear test, are needed to calibrate the failure criterion. It transpires
that the failure criterion is in good agreement with the test data for various metals under different
loading conditions.

More recently, Zhou et al. [16] carried out a critical assessment on the accuracy of the JC constitutive
model and failure criterion by comparing them with the test data for various metals such as 2024-T351
aluminum alloy, 6061-T6 aluminum alloy, OFHC copper, 4340 steel, Ti-6Al-4V alloys and Q235 mild
steel. It was found that the JC constitutive model was suitable for Mises materials at quasi-static to
intermediate strain rates and low to moderate temperatures; and that the agreement between the
model predictions and the test results are poor for non-Mises materials in terms of shear stress-shear
strain curve and fracture strain. It was also found that the accuracy of the JC constitutive model
decreases with increasing strain rate, temperature and, above all, it fails to produce consistent results
at high strain rates when the experimentally obtained dynamic increase factors (DIF) are employed in
the calculations implying the form of the model’s equation (namely, quasi-static stress-strain curve
multiplied by DIF) may be inadequate at least for the scenarios where high strain rates are involved.

All the models discussed above are phenomenological in nature. Langer et al. [17–20] studied the
mechanical behavior of metals such as Aluminum, Fe-30% Ni austenitic alloy, Cu and HY-100 steel
alloy at different strain rates and temperatures by using statistical-thermodynamic dislocation theory.
It was shown that the statistical-thermodynamic dislocation model correlates well the experimentally
obtained stress-strain curves and that adiabatic shear phenomenon in HY-100 steel leads to abrupt
stress drops indicating thermal softening effects are important. Later on, Le and Piao [21–24] further
developed the thermodynamic dislocation theory for non-uniform plastic deformations. It was found
that the theoretical predictions are in good agreement with the experimental data for various dynamic
tension/compression, torsion, and simple shear tests for aluminum.

The objective of this paper is to develop a new plasticity and failure model for metallic materials
subjected to impact loadings on the basis of the analysis of some available material test data and the
previous work. The model, which is phenomenological in nature, is composed of a strength model and
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a failure criterion and the strength model takes into account the effects of strain hardening, Lode angle,
strain rate and temperature while the failure criterion caters for the effects of stress triaxiality, Lode angle,
strain rate and temperature. In particular, new non-linear functions are proposed for the effects of
strain rate and temperature in the strength model in order to describe accurately the mechanical
behavior of metallic materials at very high loading rates and temperature. Firstly, the details of the
construction of the new plasticity and failure model are presented; secondly, the newly developed
plasticity and failure model are compared with some available test data for 2024-T351 aluminum alloy,
6061-T6 aluminum alloy, OFHC copper, 4340 steel, Ti-6Al-4V alloys and Q235 mild steel. Thirdly,
the new model is further verified by a single element simulation approach and validated against the
experimental results for 2024-T351 aluminum alloy smooth and notched tension bar tests, as well as
the ballistic tests. Fourthly, comparisons are made between the newly developed plasticity and failure
model and the existing models (JC constitutive model together with JC failure criterion or BW fracture
criterion) by employing 2024-T351 aluminum alloy smooth and notched tension bar tests in terms of
failure pattern (cup and cone), as well as ballistic tests in terms of residual velocity and failure mode.

2. Development of a New Dynamic Plasticity and Failure Model

The new plasticity and failure model consists of a strength model and a failure criterion, which will
be formulated in Sections 2.1 and 2.2, respectively. The main new contributions of the present plasticity
and damage model lie in the following areas: (i) a modified version of the dynamic increase factor
(DIF) will be suggested to describe the strain rate effects for metals that cover a wide range of strain
rates; (ii) the strain rate effects for metals at different plastic strains are different, although they have
not been differentiated previously by researchers, and this problem will be tackled by introducing
a new equation that shows that the strain rate effects for metals at different plastic strains are related to
each other, namely, that the DIF describing the strain rate effect at one plastic strain can be determined
by the DIFx representing the strain rate effect at another plastic strain (ε = εx); (iii) a new term for the
temperature effect in the strength model will be proposed, which can accurately describe the thermal
softening of metals especially at relatively high temperatures; (iv) new forms of constitutive equation
and failure criterion will be suggested which can describe the constitutive behavior and rupture of
metals under different loading conditions.

2.1. Strength Model

On the basis of the analysis of some material test data and previous work, a strength model is
developed in this section which takes into consideration the effects of strain hardening, Lode angle,
strain rate and temperature. Firstly, a quasi-static constitutive relation for metallic materials under
different loading conditions at room (ambient) temperature Ta is presented which defines equivalent
stress σeq as a function of equivalent plastic strain ε and Lode parameter ξ. Secondly, a dynamic
constitutive equation is formulated through the modification of the quasi-static relation by considering
the effect of strain rate which is described by a new function of dynamic increase factor (DIF). Thus,
the equivalent stress σeq will be a function of strain rate

.
ε as well as equivalent plastic strain ε and Lode

parameter ξ Thirdly, the dynamic constitutive equation is further modified by taking into account the
effect of temperature which is represented by an exponential function of dimensionless temperature
(T∗ = (T − Ta)/(TM − Ta)) with T, TM being current temperature and reference temperature (usually
taken as melting temperature), respectively. Hence, a strength model can be constructed, and the
details of its construction are given in the following.

2.1.1. Quasi-Static True Stress-True Strain Relationship

It was observed experimentally [16] that the quasi-static true stress–true strain curves,
both in tension and shear for 2024-T351 aluminum alloy [25], 6061-T6 aluminum alloy [26,27],
OFHC copper [28–31], 4340 steel [1], Ti-6Al-4V alloys [6,32,33] and Q235 mild steel [8,34], are not
identical, implying that the mechanical behavior of these six materials does not obey the von Mises flow
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rule and its associated flow rule. In other words, the mechanical behavior of these examined metals is
sensitive to the state of stress. Based on the previous studies [13,15], a constitutive relation is suggested
for metallic materials under quasi-static loading conditions at room (ambient) temperature, viz.

σeq(ε, ξ) = [At + Btε
nt ]

[
1−

(
1− γp

)√
1− ξ2

]
, (1)

where σeq, ε and ξ are defined as equivalent stress, equivalent plastic strain and Lode parameter,
respectively. At, Bt, nt are constants to be determined from the quasi-static true stress–true strain curve
in tension. γp is the ratio of the equivalent stress in shear (σshear) to that in tension (σtensi), which is
defined as follows:

γp =
σshear
σtensi

=
As + Bsεns

At + Btεnt
, (2)

where As, Bs, ns are constants to be determined from the quasi-static true stress-true strain curve in
pure shear.

The Lode parameter ξ represents the normalized third invariant that can be expressed as [10,13,15]

ξ =
27
2

J3

σ3 =
3
√

3J3

2J23/2
, (3)

where J2, J3 are the second and third invariants of the deviatoric stress tensor that can be
defined as J2 = 1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

and J3 = (σ1 − σm)(σ2 − σm)(σ3 − σm), σm and
σ are mean and equivalent stresses that can be expressed as σm = (σ1 + σ2 + σ3)/3 and

σ =
√

1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]
, respectively with σ1, σ2 and σ3 being principal stresses.

The Lode parameter ξ is related to the Lode angle θ on the π plane through ξ = − sin(3θ) and the
range of the Lode angle is −π/6 ≤ θ ≤ π/6. Hence, ξ takes values of −1 ≤ ξ ≤ 1.

As can be seen from Equation (1), the constitutive relation can describe the mechanical behavior of
metals under different loading conditions (stress states). For uniaxial tensile test (namely, θ = −π/6 or
ξ = 1), Equation (1) reduces to σtensi = At + Btεnt and for the pure shear test (namely, θ = 0 or ξ = 0),
Equation (1) reduces to σshear = As + Bsεns .

2.1.2. Strain Rate Effect

Strain rate effects play an important role in the construction of a constitutive model, and dynamic
increase factor (DIF) can be employed to characterize the rate sensitive behavior of materials.

As noted by Zhou and Wen [16], there are two essential points concerning the strain rate effects
of metals which are either not seriously considered or ignored completely by researchers when they
formulate a constitutive model for metals. The first point is that the dynamic increase factor (DIF) is
a linear function of ln

.
ε for low to intermediate strain rates (usually less than 103 s−1) and for higher

strain rates (usually greater than 103 s−1) the DIF increases rapidly with increasing strain rate as
observed experimentally [16]; the second point is that the test data for the DIF (dynamic stress) have
often been taken at different plastic strains by different researchers. For example, DIF at a plastic strain
of 0.075 for 2024-T351 [25], DIF at a plastic strain corresponding to UTS for 6061-T6 [27,35], DIF at
a plastic strain of 0.05 both for 4340 steel [1] and Ti-6Al-4V alloy [6,33], DIF at a plastic strain of 0.15 for
OFHC copper [1,28–30,36] and DIF at yield stress for Q235 mild steel [8]. Generally speaking, the strain
rate effects in terms of DIF for a particular material at different plastic strains are different, as observed
experimentally by Campbell and Cooper [37] and highlighted by Jones [38] for mild steel and by Chen
et al. [39] for 45 steel. In other words, the experimentally determined dynamic increase factors (DIF)
according to different plastic strains can lead to different results. Hence, the choice of DIF at different
plastic strains may add further uncertainty to the accuracy of the constitutive models for metals such
as the JC model as pointed out by Zhou and Wen [16].
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To account for the strain rate effect, a new form of the dynamic constitutive equation is proposed
which can be written in the following form

σeq
(
ε, ξ,

.
ε
)
= [AtDIF + Btε

nt ]
[
1−

(
1− γp

)√
1− ξ2

]
, (4)

where DIF in Equation (4) is the dynamic increase factor at zero plastic strain and DIF can be derived
from that (DIFx) at a specific plastic strain (ε = εx) (for the details of its derivation and discussion,
see Appendix A), namely

DIF =
(At + Btεx

nt)DIFx − Btεx
nt

At
, (5)

in which DIFx can be estimated by the following expression which is a slightly modified version of
that given in references [40–46]

DIFx =


atan

(
log

.
ε.
ε0
−Wx

)
− atan

(
log

.
εquasi

.
ε0
−Wx

)
By

+ 1


{(

Wy − 1
)
tanh

((
log

.
ε
.
ε0
−Wx

)
S
)
+ Wy

}
, (6)

where Wx, By, Wy and S are material constants to be determined from material dynamic tests;
.
ε0 is

the reference strain rate, usually taken to be
.
ε0 = 1 s−1;

.
εquasi is the strain rate used in the quasi-static

material tensile or compressive tests which is usually less than 10−3 s−1.

2.1.3. Temperature Effect

Temperature effect is also very important in the situations where high strain rates, large plastic
strains are involved which can lead to temperature rise due to (quasi) adiabatic conditions. On the
basis of the analysis of available test data for different metals [16] and previous work [7], an exponential
function of the dimensionless temperature (T∗) is suggested to cater for the effect of temperature.
Hence, Equation (4) can be rewritten as

σeq
(
ε, ξ,

.
ε, T

)
= [AtDIF + Btε

nt ]
[
1−

(
1− γp

)√
1− ξ2

]
∗ em1T∗m2 , (7)

after the temperature effect is taken into consideration. In Equation (7), T∗ is dimensionless temperature
with T∗ = (T − Ta)/(TM − Ta); T is the current temperature, Ta is the ambient (room) temperature and
Tm is the reference temperature, usually taken as the melting temperature; m1 and m2 are two constants
to be determined from material tests at elevated temperatures.

In summary, Equation (7) is the new strength model, which takes into account the effects of strain
hardening, Lode angle, strain rate and temperature.

2.2. Failure Criterion

A new failure criterion for metallic materials that caters for the effects of stress triaxiality and
Lode parameter has been proposed recently by the authors [15] and, due to the limitation of space,
its derivation will not be repeated here and interested readers are referred to reference [15] for more
details. The new failure criterion can be expressed as [15]

ε f (η, ξ) =
[
C1 − (C1 −C2)(1− ξ2)

1/2
]
× 3−1.5η, (8)

where ε f is failure strain, η is stress triaxiality which can be defined as η = σm
σ = I1

3
√

3J21/2 , ξ is Lode

parameter, C1, C2 are constants to be determined from laboratory material tests such as smooth bar
tension test and pure shear test. For the smooth bar tension test, the Lode parameter ξ = 1 and the
experimentally obtained true fracture strain is ε f = e∗f and its corresponding stress triaxiality is η = η∗.
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Substituting these values into Equation (8) and rearranging gives C1 = 31.5η∗e∗f . Similarly, for pure
shear test, the Lode parameter ξ = 0 and the experimentally obtained critical shear strain is ε f = γ∗f ,
and its corresponding stress triaxiality can be approximated as η = 0. Substituting these values into
Equation (8) and rearranging gives C2 = γ∗f .

The effects of strain rate and temperature also play a very important part in the fracture of metallic
materials and they must be taken into consideration [2,3,13]. Combining Equation (8) and the terms
for the effects of strain rate and temperature by Johnson and Cook [2], one obtains

ε f
(
η, ξ,

.
ε, T

)
=

[
C1 − (C1 −C2)(1− ξ2)

1/2
]
× 3−1.5η

×

1 + C3 ln

 .
ε

.
εquasi

[1 + C4T∗], (9)

where C3, C4 are constants to be determined from material tests. It can be seen from Equation (9) that
the failure strain of a metallic material is an explicit function of stress triaxiality, Lode angle, strain rate
and temperature.

2.3. Determination of the Values of Various Parameters

Values of various parameters of the present new dynamic plasticity and failure model for metals
developed in Sections 2.1 and 2.2 can be determined through the following various material tests.

(1) Quasi-static smooth bar tension tests at ambient (room) temperature are conducted to determine
the values of the parameters At, Bt, nt in the strength model (Equation (1) and Equation (7));
pure (tubular torsion) shear tests at ambient (room) temperature are performed to determine
the values of the parameters As, Bs, ns in Equation (2), and hence the value of the parameter γp

in the strength model (Equation (7)); the values of the parameters C1, C2 in the failure criterion
(Equation (9)) can also be determined from the quasi-static tension and shear tests.

(2) Quasi-static (smooth bar) tension/compression, SHTB/SHPB and plate impact tests are performed
to determine the values of the parameters Wx, By, Wy and S in Equation (6) for the strain rate
effects in the strength model (Equation (7)) and the value of the parameter C3 in the failure
criterion (Equation (9)).

(3) Quasi-static (smooth bar) tension/compression tests at different temperatures are carried out to
determine the values of the parameters m1 and m2 in the strength model (Equation (7)) and the
value of the parameter C4 in the failure criterion (Equation (9)).

3. Verification of the New Dynamic Plasticity and Failure Model

The usefulness and accuracy of the new plasticity and failure model developed in Section 2 will
be demonstrated in the following ways: first, by comparing the present model predictions with some
available test data; second, by employing it in the numerical simulations of the material behavior
in terms of stress-strain relationship and fracture pattern (i.e., cup and cone), as well as ballistic
perforation in terms of residual velocity and perforation mode (namely, shear plugging and petalling).

3.1. Comparison with Some Available Material Test Data

To verify the present model comparisons are made between the model predictions and the test data
for 2024–T351 aluminum alloy [10,25], 6061–T6 aluminum alloy [26,27,35,47], OFHC copper [1,28–31,36],
4340 steel [1,2,48], Ti-6Al-4V alloys [6,32,33,49] and Q235 mild steel [8,34,50] in terms of true stress–true
strain relationships, strain rate effects, temperature effects and failure. The reasons for selecting these
six materials are two-fold: their material test results are more complete, and they are widely used in
various industries. The values of various parameters in the new model are listed in Table 1.
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Table 1. Values of constants in the new constitutive model and new fracture criterion.

Materials
Parameters

2024-T351
Al 6061-T6 Al OFHC

Copper 4340 Steel Ti-6Al-4V
Alloy

Q235 Mild
Steel

At (MPa) 340 265 50 792 938 293
Bt (MPa) 510 170 340 846 947 543

nt 0.5100 0.3140 0.4250 0.5820 0.6360 0.4890
As (MPa) 280 255 40 760 850 223
Bs (MPa) 510 98 274 417 509 440

ns 0.5060 0.2830 0.4230 0.3120 0.3235 0.4226
Wx 4.1550 5.2006 4.4020 5 4.2470 3.4300
By 100 2 1.1000 2.6000 12 1.2500
Wy 1.3481 0.9757 0.8120 1.0200 1.3100 0.9833
S 2.0922 0.2286 0.3000 0.6000 0.1400 0.4584

.
εquasi 9.0 × 10−5 1.0 × 10−3 1.0 × 10−5 2.0 × 10−3 1.0 × 10−5 2.1 × 10−3

εx 0.075 0.1000 0.1500 0.0500 0.0500 0.0020
m1 −2.5240 −8.2350 −5.0690 −0.7248 −1.4230 −5.1330
m2 3.1500 3.0800 2 0.7354 0.8594 1.8920
C1 1.0055 0.8600 4.8220 3.2864 1.6934 2.4893
C2 0.2107 0.5250 8.7000 0.2536 0.4651 1.5000

3.1.1. Quasi-Static True Stress-True Strain Curves

Figure 1 shows the quasi-static true stress–true strain curves both in tension and shear for
2024-T351 aluminum alloy [25], 6061-T6 aluminum alloy [26,27], OFHC copper [28–31], 4340 steel [1],
Ti-6Al-4V alloys [6,32,33] and Q235 mild steel [8,34]. The values of At, Bt, nt, As, Bs and ns are listed in
Table 1. It is clear from Figure 1 that the theoretically predicted true stress-true strain curves both in
tension and shear for these six materials are in good agreement with the experimental results. It is
also clear from Figure 1 that the true stress-true strain curves both in tension and shear for these six
materials are not identical implying that they are non-Mises materials. It should be mentioned here
that JC constitutive model has failed to capture this phenomenon as it does not take into consideration
the effects of Lode angle as noted in references [13,16].

3.1.2. Strain Rate Effects

Figures 2–7 show comparisons of the present model predictions (Equations (6) and (7)) with the test
data for 2024–T351 aluminum alloy [25], 6061-T6 aluminum alloy [27,35], OFHC copper [1,28–30,36],
4340 steel [1,48], Ti-6Al-4V alloys [6,33] and Q235 mild steel [8]. The values of Wx, By, Wy, S,

.
εquasi and

εx are given in Table 1. It is evident from Figures 2a, 3a, 4a, 5a, 6a and 7a that the theoretically predicted
relationships between the dynamic increase factor (DIF) and the strain rate

.
ε for these six materials are

in good agreement with the experimental results; that the DIF curve in the present model consists of
three stages, namely, the first slowly increasing stage for quasi-static to intermediate strain rates, the
second rapidly ascending stage and the final slowly increasing stage for very high strain rates. It is also
evident from Figures 2a, 3a, 4a, 5a, 6a and 7a that the dynamic increase factor (DIF) is a nearly linear
function of strain when strain rate is less than approximately 103 s−1, which forms the basis of the strain
rate term in most of the existing constitutive models for metals, such as the JC constitutive model.

It is also evident from Figure 2b,c and Figures 3b, 4b, 5b, 6b and 7b that the theoretically predicted
true stress-true strain relationships correlate well with the experimental observations for these six
materials at different strain rates. It should be mentioned here that the JC constitutive model cannot
predict correctly the true stress–true strain curves for metals at very high strain rates, as it is incapable
of describing the rapid ascending stage as discussed above and noted by Zhou et al. in reference [16].
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3.1.3. Temperature Effects

Figures 8–13 show comparisons of the present model predictions (Equation (7)) with the test data
for 2024-T351 aluminum alloy [25], 6061-T6 aluminum alloy [27], OFHC copper [28,30], 4340 steel [1],
Ti-6Al-4V alloys [6] and Q235 mild steel [8]. The values of m1 and m2 are given in Table 1. In this
paper, ratio of (yield) stress at elevated temperature to that at ambient (room) temperature (σT

0 /σTa
0 )

is normally employed to characterize the effect of temperature on the behavior of metallic materials.
It can be seen from Figures 8a, 9a, 10a, 11a, 12a and 13a that the theoretically predicted relationship
between the value of σT

0 /σTa
0 and the dimensionless temperature T∗ for these six materials are in

good agreement with the experimental results. It can also be seen from Figures 8b, 9b, 10b, 11b, 12b
and 13b that the theoretically predicted true stress-true strain relationships for these six materials at
different temperatures are in good agreement with the experimental results. It is noteworthy that the
JC constitutive model describes well the true stress-true strain curves for these six materials at low and
intermediate temperatures (i.e., T∗ less than 0.5 approximately) and fails to do so for these materials
(namely, 2024-T351 aluminum alloy, 6061-T6 aluminum alloy, OFHC copper and Q235 steel) at higher
temperatures [16].
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3.1.4. Failure Criterion

Figure 14 shows comparisons of the present model predictions (Equation (9)) with the test data
for the rupture of 2024-T351 aluminum alloy [10], 6061-T6 aluminum alloy [47], OFHC copper [2],
4340 steel [2], Ti-6Al-4V alloys [49] and Q235 mild steel [50]. The values of C1 and C2 are given in
Table 1. The solid and broken lines represent Lode parameters of ξ = 1 (axisymmetric stress state)
and ξ = 0 (plane strain state) respectively, the chain–dotted lines indicate the fracture loci for the
plane stress state describing by the expression ξ = − 27

2 η
(
η2
−

1
3

)
[10–12]. It is apparent from Figure 14
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that the present model predictions are in good agreement with the experimental results. It is also
apparent from Figure 14 the fracture strain generally does not decrease monotonically with increasing
stress triaxiality for various metals as it is a function of both stress triaxiality and Lode parameter.
Furthermore, as can be seen from Figure 14 that the shear fracture strain is lower than the tension
fracture strain for 2024-T351 aluminum alloy, 6061-T6 aluminum alloy, 4340 steel, Ti-6Al-4V alloys
and Q235 mild steel while the shear fracture strain is larger than the tension fracture strain for OFHC
copper. In other words, metallic materials can be divided into two categories [15], namely, metals with
e f > e f and metals with e f ≤ e f , here e f and e f are the two parameters defined as the true strains at
stress triaxiality of η = 1/3 for Lode parameters of ξ = 1 (axisymmetric stress state) and ξ = 0 (plane
strain state), respectively.
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mild steel.
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3.2. Numerical Results

To further verify the new plasticity and failure model developed in Section 2, the new model was
implemented in the commercial hydrocode LS-DYNA, and numerical simulations/tests were carried
out using a single element simulation approach (uniaxial tension and pure shear) and the finite element
method (smooth and notched tension bar tests, as well as ballistic tests) by comparing the numerical
results with the experimental observations for 2024-T351 aluminum alloy in terms of true stress-true
strain relationship, failure pattern (cup and cone), residual velocity and perforation mode. Moreover,
comparisons are also made between the newly developed plasticity and failure model and the existing
models (JC constitutive model together with JC failure criterion or BW fracture criterion) with regard to
failure pattern (cup and cone), residual velocity and perforation mode (shear plugging and petalling).

3.2.1. Single Element Approach

To demonstrate the quasi-static behavior of the present constitutive model and failure criterion,
numerical tests were conducted to evaluate the true stress-true strain relationships for metals under
different loading conditions. The numerical tests were carried out using a single element simulation
approach. These loading conditions include uniaxial tensile and pure shear. Numerical results using
the present plasticity and failure model for metals were compared with the test data for 2024-T351
aluminum alloy [25]. Figure 15 shows the comparison of the present model predictions with the
experimentally obtained true stress–true strain curves for 2024-T351 aluminum alloy in tension and
pure shear tests. As can be seen from Figure 15, good agreement was found between the present model
predictions and the test results.
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test data for 2024-T351 aluminum alloy in tension and pure shear at room temperature.

3.2.2. Smooth and Notched Bar Tension Tests

To further verify the accuracy of the new plasticity and failure model, numerical simulations were
performed for 2024-T351 aluminum alloy smooth and R12 notched round bar quasi-static tensile tests
at room temperature, with an emphasis being placed upon failure pattern (cup and cone). Comparisons
were made between the present model predictions, the numerical results from some existing models
(namely, JC constitutive model together with JC failure criterion or BW fracture criterion), and the
experimental observations [51,52]. The diameter and length of the gauge section in the smooth round
specimens were 9 mm and 25.4 mm, respectively. The diameter of the minimum cross section in the
notched specimens was 8 mm and the radius of the notch was 12 mm. Figure 16 shows the finite
element model, and the element mesh sizes of the smooth and R12 notched round bar specimens were
0.12 mm × 0.12 mm × 0.2 mm and 0.16 mm × 0.16 mm × 0.24 mm, respectively. Due to symmetry
boundary conditions in the X–Z plane and Y–Z plane, only a quarter of the bar specimen is modeled,
to save computing time. The values of various parameters employed in the JC constitutive model
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and the JC failure criterion and BW fracture model were obtained by Rodriguez-Millan et al. [53] for
2024-T351 aluminum. The values of various parameters used in the present plasticity and failure
model for 2024-T351 aluminum are listed in Table 1.
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Figure 16. The finite element models for 2024-T351 aluminum alloy tension specimens. (a) Smooth
round bar; and (b) R12 notched round bar.

Figure 17 shows comparisons of the numerically predicted true stress-true strain curves with
the experimentally obtained curve for the 2024-T351 aluminum alloy smooth round bar tensile test
at room temperature [52]. It is clear from Figure 17 that the present model and the JC constitutive
model, together with either the JC failure criterion or the BW fracture criterion, produce similar results,
which are found to be in good agreement with the experimental data.
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Figure 17. Comparison between the model predictions and the test data for true stress-true strain curve
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Figure 18 shows comparisons between the numerically predicted failure patterns and the
experimental observation for the 2024–T351 aluminum alloy smooth round bar tensile test at room
temperature [52]. It is evident from Figure 18a that the present model predictions are in good agreement
with the experimentally observed cup and cone failure pattern as shown in Figure 18b [52]. It is also
evident from Figure 18c that the JC constitutive model together with the JC failure criterion fails to
capture the experimentally observed cup and cone failure pattern, and its fracture surface is almost
flat, while the JC constitutive model together with the BW fracture criterion gives reasonably good
predictions, as can be seen from Figure 18d.
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Figure 18. Comparisons of the model predictions with the experimentally observed failure pattern (cup and cone) 
of the 2024-T351 aluminum alloy smooth round bar specimen in tension at room temperature. (a) The present 
model, (b) the experimental observation [52],  (c) the JC constitutive model with the JC failure criterion and (d) 
the JC constitutive model with the BW fracture criterion. 

  
(a) (b) 

  

(c) (d) 

 

Figure 18. Comparisons of the model predictions with the experimentally observed failure pattern (cup
and cone) of the 2024-T351 aluminum alloy smooth round bar specimen in tension at room temperature.
(a) The present model; (b) the experimental observation adapted from [52] with permission from
Elsevier, 2008; (c) the JC constitutive model with the JC failure criterion; and (d) the JC constitutive
model with the BW fracture criterion.

Figure 19 shows comparisons between the numerically predicted load-displacement curves and
the experimental data for the 2024-T351 aluminum alloy R12 notched round bar tensile test at room
temperature as the test results for true stress–true strain curve are not available [52]. It is evident from
Figure 19 that the present model and the JC constitutive model together with either the JC failure
criterion or the BW fracture criterion also produce similar results. It is also evident from Figure 19
that the model predictions are little bit greater than the test results for displacement less than 0.6 mm
and for displacement larger than 0.6 mm the model predictions are in good agreement with the
experimental data.
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Figure 20 shows comparisons of the model predictions with the experimental observation for the
2024-T351 aluminum alloy R12 notched round bar tensile test at room temperature [52]. It is clear
from Figure 20a that the failure patterns predicted by the present model are in good agreement with
the experimentally observed cup and cone failure, as shown in Figure 20b [52]. It is also clear from
Figure 20c that the JC constitutive model with the JC failure criterion again fails to predict the cup and
cone failure pattern (its fracture surface is nearly flat), whereas the predictions from the JC constitutive
model with the BW fracture criterion are in reasonable agreement with the experimentally observed
failure pattern as can be seen from Figure 20d.
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Figure 18. Comparisons of the model predictions with the experimentally observed failure pattern (cup and cone) 
of the 2024-T351 aluminum alloy smooth round bar specimen in tension at room temperature. (a) The present 
model, (b) the experimental observation [52],  (c) the JC constitutive model with the JC failure criterion and (d) 
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 Figure 20. Comparisons of the model predictions with the experimentally observed failure pattern
(cup and cone) of the 2024-T351 aluminum alloy R12 notched round bar specimen in tension at
room temperature. (a) The present model; (b) the experimental observation adapted from [52] with
permission from Elsevier, 2008; (c) the JC constitutive model with the JC failure criterion; and (d) the JC
constitutive model with the BW fracture criterion.

In summary, the present plasticity and failure model and the JC constitutive model with either
the JC failure criterion or the BW fracture criterion produce similar results and the model predictions
are in good agreement with the test data for the 2024-T351 aluminum alloy smooth or notched round
bar tensile specimens under quasi-static loading at room temperature. However, the present model
successfully reproduced the cup and cone failure pattern as observed experimentally in 2024-T351
aluminum alloy round bar tensile specimens under quasi-static loading at room temperature, while the
JC constitutive model with the JC failure criterion failed to do so, and the JC constitutive model with
the BW fracture criterion partly reproduced the experimental results. The reason for this is simply
the fact that the present plasticity (constitutive) model considers the effect of Lode angle, while the
JC constitutive model does not cater for it; that both the present failure criterion and the BW fracture
criterion have taken into account the effects of stress triaxiality, as well as Lode angle, whereas the JC
failure criterion takes into consideration the effect of stress triaxiality only. It should be mentioned here
that both the present failure criterion (Equation (8)) and the BW fracture model [11] produce more
or less similar results for stress triaxiality greater than zero approximately while for stress triaxiality
less than zero the difference between these two model predictions increases with decreasing stress
triaxiality. Furthermore, there are only two parameters which are needed to be determined in the
present failure criterion as compared to six (asymmetric) and four (symmetric) parameters which are
required to be estimated in the BW fracture criterion.
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3.2.3. Ballistic Perforation Tests

The usefulness and the accuracy of the present new plasticity and failure model are also verified
against the test data for the perforation of 2024-T351 aluminum alloy plates struck transversely by
flat-ended and spherical projectiles, as examined by Rodriguez-Millan et al. [53]. For the sake of
comparison, the numerical results with the JC constitutive model together with the JC failure criterion
or the BW fracture criterion as reported by Rodriguez-Millan et al. [53] are also presented and discussed.

Due to symmetry boundary conditions, only a 1/2 finite element model was built, to save
computing time. To further improve computational efficiency, the region around the impact point
(about 1.8 times the projectile radius) was finely meshed (i.e., 0.1 mm × 0.1 mm × 0.1mm), and outside
the region, the mesh coarsens radially towards the edge of the plate. In the numerical simulations,
no friction is considered, and the projectile is assumed to remain rigid. The plate and the steel
projectile are modeled with Lagrangian mesh and ERODING_SURFACE_TO_SURFACE is applied
between them.

(1) Flat-ended projectile
The diameter of the flat-ended cylindrical projectile was 5.5 mm and its length 7 mm. The maraging

steel projectile had a mass of 1.1 g and the 4 mm thick 2024-T351 aluminum alloy plates were fully
clamped with a square window of 100 mm × 100 mm. Figure 21 shows the finite element model used
in the numerical simulations.

Metals 2019, 9, x FOR PEER REVIEW 19 of 29 

 

Due to symmetry boundary conditions, only a 1/2 finite element model was built, to save 
computing time. To further improve computational efficiency, the region around the impact point 
(about 1.8 times the projectile radius) was finely meshed (i.e., 0.1 mm × 0.1 mm × 0.1mm), and 
outside the region, the mesh coarsens radially towards the edge of the plate. In the numerical 
simulations, no friction is considered, and the projectile is assumed to remain rigid. The plate and 
the steel projectile are modeled with Lagrangian mesh and ERODING_SURFACE_TO_SURFACE is 
applied between them. 

(1) Flat-ended projectile 
The diameter of the flat-ended cylindrical projectile was 5.5 mm and its length 7 mm. The 

maraging steel projectile had a mass of 1.1 g and the 4 mm thick 2024-T351 aluminum alloy plates 
were fully clamped with a square window of 100 mm × 100 mm. Figure 21 shows the finite element 
model used in the numerical simulations. 

 
Figure 21. Finite element model used in the numerical simulations. 

Figure 22 shows the comparison of the numerically predicted residual velocities with the 
experimental data for the perforation of the 2024-T351 aluminum alloys plates struck by the 
flat-faced projectile at normal incidence [53]. It is clear from Figure 22 that that residual velocities 
predicted by the present model are generally in good agreement with the test data. It is also clear 
from Figure 22 that the predictions from the JC constitutive model together with the JC failure 
criterion or the BW fracture criterion are not consistent with the experimental results. When the 
impact velocity was lower than 433 m/s, the residual velocities predicted by these two models were 
higher than the experimental values, and when the impact velocities were greater than 433 m/s, the 
residual velocities predicted by these two models were lower than the test values. Moreover, the 
ballistic limit velocity predicted by the present model is in good agreement with the experimental 
observation (300 m/s) while the ballistic limit velocities predicted from the JC constitutive model 
together with the JC failure criterion or the BW fracture criterion are much lower than the 
experimental value as can be seen from Figure 22. 

 
Figure 22. Comparison of the numerically predicted residual velocities with the test results for the 
perforation of the 4-mm-thick 2024-T351 aluminum alloy plates struck normally by the 
5.5-mm-diameter flat-ended projectile. 

Figure 21. Finite element model used in the numerical simulations.

Figure 22 shows the comparison of the numerically predicted residual velocities with the
experimental data for the perforation of the 2024-T351 aluminum alloys plates struck by the flat-faced
projectile at normal incidence [53]. It is clear from Figure 22 that that residual velocities predicted by
the present model are generally in good agreement with the test data. It is also clear from Figure 22
that the predictions from the JC constitutive model together with the JC failure criterion or the BW
fracture criterion are not consistent with the experimental results. When the impact velocity was lower
than 433 m/s, the residual velocities predicted by these two models were higher than the experimental
values, and when the impact velocities were greater than 433 m/s, the residual velocities predicted by
these two models were lower than the test values. Moreover, the ballistic limit velocity predicted by
the present model is in good agreement with the experimental observation (300 m/s) while the ballistic
limit velocities predicted from the JC constitutive model together with the JC failure criterion or the
BW fracture criterion are much lower than the experimental value as can be seen from Figure 22.

Figure 23 shows the comparison of the numerically predicted perforation mode with the
experimental observation for the 4 mm thick 2024-T351 aluminum plate struck by the flat-ended
projectile. It is clear from Figure 23a that the final perforation pattern predicted by the present model is
in good agreement with the experimentally observed shear plug failure as shown in Figure 23b [53].
The radius of the plug sheared out from the plate is virtually the same as that of the projectile. It is
also clear from Figure 23c,d that the predictions by the JC constitutive model with the JC failure
criterion or the BW fracture criterion are also in reasonable agreement with the experimentally observed
plugging mode.
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Figure 23. Comparisons of the numerically predicted perforation modes with the experimental
observation for the perforation of the 4 mm thick 2024–T351 aluminum alloy plate struck transversely by
the 5.5-mm-diameter flat-ended projectile. (a) The present model; (b) the experimental observation [53];
(c) the JC constitutive model with the JC failure criterion [53]; and (d) the JC constitutive model with
the BW fracture criterion [53]. Adapted from [53] with permission from MDPI, 2018.

(2) Spherical projectile
The diameter of the spherical projectile is 7.5 mm, and the thicknesses of the plates are 1 mm and

4 mm, respectively. The maraging steel projectile had a mass of 1.7 g and the 2024-T351 aluminum
alloy plates were fully clamped with a square window of 100 mm × 100 mm. Figure 24 shows the
finite element model used in the numerical simulations.
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Figure 25a,b shows the comparison of the numerically predicted residual velocities with the test
results for the perforation of the 1 mm and 4 mm thick 2024-T351 aluminum alloys plates struck by
the spherical projectile, respectively. It is evident from Figure 25a that the present model slightly
over-predicts the residual velocity test data for the 1-mm-thick plates, while the JC constitutive model
with the JC failure criterion under-predicts slightly, and the JC constitutive model with the BW fracture
criterion under-predicts considerably, when compared to the test results. It is also evident from
Figure 25b that both the present model and the JC constitutive model with the JC fracture criterion
produce similar results while the numerical results from the JC constitutive model with the BW fracture
criterion are considerably lower as compared to the experimental data. It should be mentioned here
that the ballistic limit velocity predicted by the present model for the 1-mm plate is slightly lower
than the test result while that from the present model for the 4-mm plate is a little bit greater than the
experimental value, and the opposite is true for the JC constitutive model with the JC failure criterion
or the BW fracture criterion, as can be seen from Figure 25b.
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Figure 26 shows a comparison of the numerically predicted perforation mode with the experimental
observation for the 1-mm-thick 2024-T351 aluminum plates struck by the spherical projectile. It is clear
from Figure 26a that the final perforation pattern predicted by the present model is in good agreement
with the experimentally observed petalling failure as shown in Figure 26b [53]. It is also clear from
Figure 26c,d that the predictions by the JC constitutive model with the JC failure criterion or the BW
fracture criterion have failed to reproduce the petalling perforation pattern observed experimentally.

Figure 26. Comparisons of the model predictions with experimental observation for the perforation
of 4-mm-thick 2024-T351 aluminum alloy-plated struck transversely by a 7.5-mm-diameter spherical
projectile. (a) The present model; (b) the experimental observation [53]; (c) the JC constitutive model
with the JC failure criterion [53]; and (d) the JC constitutive model with the BW fracture criterion [53].
Adapted from [53], with permission from MDPI, 2018.

3.3. Discussion

The new model developed in Section 2 was validated both by the material test data for six different
metals under different loading conditions and the ballistic test results with flat-nosed and spherical
projectiles. It has to be mentioned here that apart from the material tests specified in Section 2.3, no extra
material tests are required to calibrate the new model even though there are additional constants.

As a matter of fact, many fewer material tests are required to determine the constants of various
parameters in the new model than those in the existing models such as the JC constitutive model with
the respective JC and BW fracture criteria, as no notched tensile tests are needed in the new model as
outlined in Section 2.3 of the paper. It is noteworthy that only 4 constants of the failure criterion in the
new model need to be determined from material tests as compared to 5 of the JC facture criterion and
6–8 of the BW fracture criterion including effects of strain rate and temperature.

It has been proven that the new model is advantageous over the existing models, such as the JC
constitutive model with the respective JC and BW fracture criteria by producing much more consistent
and much more accurate results than them as compared to materials test data and ballistic test results
in terms of stress–strain curves, facture pattern (cup and cone), ballistic limit, residual velocity and
perforation modes (shear plugging and petalling).
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4. Conclusions

A new dynamic plasticity and failure model for metals has been developed in the present paper
on the basis of the analysis of some available material test data and the previous work. The main
conclusions are as follows:

(1) A new dynamic plasticity and failure model for metals, which includes a strength model and
a failure criterion, has been developed. The new model takes into account the effects of stress
triaxiality, Lode angle, strain rate and temperature.

(2) A new non-linear relationship between the dynamic increase factor (DIF) and the strain rate has
been suggested and, in particular, the DIF at zero plastic strain, which can be determined from
that at a specific plastic strain, has been used in the formulation of the new strength model.

(3) The new model has been verified against the available test data for 2024-T351 aluminum alloy,
6061-T6 aluminum alloy, OFHC copper, 4340 steel, Ti-6Al-4V alloys and Q235 mild steel under
different loading conditions in terms of stress–strain curve, strain rate effect, temperature effect
and fracture.

(4) The new model has been further verified against the corresponding experimental results for
2024-T351 aluminum alloy by employing it in the numerical simulations of the material behavior
in terms of stress-strain relationship and fracture pattern (i.e., cup and cone), as well as ballistic
perforation in terms of residual velocity and perforation mode (namely, shear plugging and
petalling).

(5) The new model has been proven to be advantageous over the existing models such as the JC
constitutive model with the JC failure criterion or the BW fracture criterion. This section may be
divided by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation as well as the experimental conclusions that can be drawn.
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Appendix A

Based on the experimental observations, it is assumed that the dynamic stress increments at
different plastic strains at the same strain rate are the same. Thus, one obtains(

At + Btεy
nt
)
DIFy −

(
At + Btεy

nt
)
= (At + Btεx

nt)DIFx − (At + Btεx
nt), (A1)

where DIFx, DIFy are the dynamic increase factors corresponding to different plastic strains (εx, εy),
respectively. Rearranging Equation (A1) yields the following expression

DIFy =
(At + Btεx

nt)DIFx − Btεx
nt + Btεy

nt(
At + Btεynt

) , (A2)

Equation (A2) means that the dynamic increase factor (DIFy) at one plastic strain (εy) can be
determined from that (DIFx) at another plastic strain (εx). Let εy = 0, then one obtains the dynamic
increase factor at zero plastic strain (DIF), namely

DIF =
(At + Btεx

nt)DIFx − Btεx
nt

At
, (A3)
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In which DIFx can be estimated by the following expression which is a slightly modified version
of that given in references [40–46]

DIFx =


atan

(
log

.
ε.
ε0
−Wx

)
− atan

(
log

.
εquasi

.
ε0
−Wx

)
By

+ 1


{(

Wy − 1
)
tanh

((
log

.
ε
.
ε0
−Wx

)
S
)
+ Wy

}
, (A4)

where Wx, By, Wy and S are materials constants to be determined from material dynamic tests;
.
ε0 is

the reference strain rate, usually taken to be
.
ε0 = 1 s−1;

.
εquasi is the strain rate used in the quasi-static

material tensile or compressive tests which is usually less than 10−3 s−1.
As noted previously, the test data for the DIF (or dynamic stress) were usually taken at different

plastic strains by different researchers and the values of DIF at the different plastic strains are different
for a metal, which can lead to further uncertainty to the accuracy of constitutive models for metals.
To solve this problem, Equation (A2) is proposed and its accuracy is supported by the experimentally
determined dynamic increase factors (DIF) at different plastic strains for some metals as reported in
the literature.

Figure A1a shows the comparison of Equation (A2) with the test data for the DIF at different
plastic strains for Q235 mild steel [8]. The blue circle represents the DIF at yield strength (plastic
strain of 0.002) and the red square indicates the DIF at plastic strain of 0.05. In the present case,
the values of various parameters for the DIF at yield strength (Equation (A4)) are first determined
to be Wx = 3.430, By = 1.250, Wy = 0.983, S = 0.458 by curve-fitting technique as designated by blue
solid line and then Equation (A2) is used to predict the DIF at plastic strain of 0.05 as indicated by red
broken line. It can be seen from Figure A1a that the DIF at plastic strain of 0.05 predicted by Equation
(A2) is in good agreement with the experimental results. Also, Figure A1b shows comparison of the
new model predictions with experimentally observed true stress–true strain curves at different strain
rates [8], and good agreement is obtained.
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Figure A1. Comparison of the present model with the test data for Q235 mild steel. (a) DIF at
different plastic strains versus strain rate at room temperature; and (b) true tress-true strain curves
in compression.

Figure A2a shows comparison of Equation (A2) with the test results for the DIF at different
plastic strains for 45 steel [39]. The material parameters At, Bt, nt of 45 steel need to be determined
by the quasi-static true stress–true strain curve at room temperature, and they are estimated at
At = 400 MPa, Bt = 711 MPa, nt = 0.3620. The blue circle and red square represent the DIF at
plastic strains of 0.05 and the DIF at yield strength (plastic strain of 0.002), respectively. The values
of various parameters for the DIF at plastic strain of 0.05 (Equation (A4)) are first determined to be
Wx = 3.683, By = 2.600, Wy = 1.097, S = 6.676 by curve-fitting technique as indicated by blue solid
line and then Equation (A2) is employed to predict the DIF at yield strength (plastic strain of 0.002) as
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indicated by red broken line. It is clear from Figure A2a that the DIF at yield strength (plastic strain of
0.002) predicted by Equation (A2) is in good agreement with the experimental data. Also, Figure A2b
shows comparison of the new model predictions with experimentally obtained true stress–true strain
curves at different strain rates [39], and good agreement is obtained.
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Figure A2. Comparison of the present model with the test data for 45 steel. (a) DIF at different plastic
strain versus strain rates at room temperature; and (b) true stress–true strain curves in compression.

Figure A3a shows comparison of Equation (A2) with the test results for the DIF at different plastic
strains for 35 Ni Cr Mo V 109 high-strength steel [54]. The material parameters At, Bt, nt of 35 Ni Cr Mo
V 109 high-strength steel are needed to be estimated by the quasi-static true stress–true strain curve at
room temperature and they are determined to be At = 660 MPa,Bt= 829.4 MPa, nt = 0.5523. The red
circle, blue cross and black triangle indicate the DIFs corresponding to the different plastic strains in
dynamic tensile test (0.002), Taylor cylinder impact test (0.0035) and plate impact test (0.0085) [54].
The values of various parameters for the DIF at yield strength (plastic strain of 0.002) (Equation (A4))
are first determined to be Wx = 5.910, By = 3.500, Wy = 1.454, S = 0.150 by curve–fitting technique
as designated by blue solid line, and then Equation (A2) is employed to predict the DIFs at plastic
strains of 0.0035 and 0.0085 as indicated by red and black broken lines, respectively. It can be seen
from Figure A3a that the DIFs at plastic strains of 0.0035 and 0.0085 predicted by Equation (A2) are in
good agreement with the limited test data. Also, Figure A3b shows comparison of the new model
predictions with experimentally obtained true stress–true strain curves at different strain rates [54] and
good agreement is obtained.
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Figure A4a shows comparison of Equation (A2) with the test data for the DIF at different plastic
strains for Q235B mild steel [55]. The material parameters At, Bt, nt of Q235B mild steel are needed
to be estimated by the quasi-static true stress–true strain curve at room temperature and they are
determined to be At = 195 MPa, Bt= 638 MPa, nt = 0.2866. The blue circle indicates the DIF at
yield strength (plastic strain of 0.002) and the red square designates the DIF at plastic strain of 0.05.
The values of various parameters for the DIF at yield strength (Equation (A4)) are first determined
to be Wx = 2.112, By = 3.200, Wy = 1.137, S = 2.589 by curve-fitting technique as represented by the
blue solid line and then Equation (A2) is used to predict the DIF at plastic strain of 0.05 as indicated
by the red broken line. It is evident from Figure A4a that the DIF at a plastic strain of 0.05 predicted
by Equation (A2) is in good agreement with the experimental data. Also, Figure A4b shows the
comparison of the new model predictions with the experimentally observed true stress–true strain
curves at different strain rates [55], and good agreement is obtained.
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It should be pointed out here that Equation (A4) levels out at very high strain rate. The reason to
choose the six different materials (2024-T351 aluminum alloy, 6061-T6 aluminum alloy, OFHC copper,
4340 steel, Ti-6Al-4V alloys and Q235 mild steel) examined in the main text of the present paper
is simply because the material test data for these six materials are more complete in terms of true
stress-true strain relationships, strain rate effects, temperature effects and failure. It happens to be
the case that there are no material test data available for these materials at very high strain rates.
However, this does not mean that the mathematical form of the dynamic increase factor (DIF) or the
strain rate dependence of plasticity are not right. Indeed, additional material test data presented
above lends further support to the accuracy of the new model. Moreover, it has been shown that
the slightly different form of the DIF (from which the present form (Equation (A4)) was derived)
has been successfully applied to other material systems such as concrete-like materials [40–44] and
fiber-reinforced plastic laminates [45,46], which also shows that it levels out at very high strain rates.
Indeed, it has been experimentally demonstrated that the form of DIF for concrete does level out at
very high strain rates (for more details, see reference [44]).

As a matter of fact, the DIF for other metals such as tungsten alloy does show the same trend.
Figure A5 shows comparison of the new model (Equation (A4)) with the material test data for 93W
tungsten alloy [56,57]. The values of various parameters for the DIF at yield strength (Equation (A4))
are determined to be Wx = 0.609, By = 10.00, Wy = 1.396, S = 0.4206 by curve-fitting technique. It is
clear from Figure A5 that the present model predictions are in good agreement with the experimental
data. It is also clear from the figure that the form of the dynamic increase factor (DIF) describing the
strain rate dependence of plasticity does level out at very high strain rates.
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