
buildings

Article

Use of Nondestructive Testing of Ultrasound and Artificial
Neural Networks to Estimate Compressive Strength of Concrete

Fernando A. N. Silva 1, João M. P. Q. Delgado 2,* , Rosely S. Cavalcanti 1, António C. Azevedo 2 ,
Ana S. Guimarães 2 and Antonio G. B. Lima 3

����������
�������

Citation: Silva, F.A.N.; Delgado,

J.M.P.Q.; Cavalcanti, R.S.; Azevedo,

A.C.; Guimarães, A.S.; Lima, A.G.B.

Use of Nondestructive Testing of

Ultrasound and Artificial Neural

Networks to Estimate Compressive

Strength of Concrete. Buildings 2021,

11, 44. https://doi.org/10.3390/

buildings11020044

Academic Editor: Giuseppina Uva

Received: 29 December 2020

Accepted: 21 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Engenharia Civil, Universidade Católica de Pernambuco, Recife PE 50050-900, Brazil;
fernando.nogueira@unicap.br (F.A.N.S.); rosely.cavalcanti@hotmail.com (R.S.C.)

2 CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal; antonio.costaazevedo@fe.up.pt (A.C.A.); anasofia@fe.up.pt (A.S.G.)

3 Department of Mechanical Engineering, Federal University of Campina Grande,
Campina Grande 58429-900, Brazil; antonio.gilson@ufcg.edu.br

* Correspondence: jdelgado@fe.up.pt; Tel.: +351-225081404

Abstract: The work presents the results of an experimental campaign carried out on concrete elements
in order to investigate the potential of using artificial neural networks (ANNs) to estimate the
compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–
cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared
162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and
27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete
mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure
the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested
and compared to identify the best ANN model. Using this model, it was possible to assess the
contribution of each input variable to the compressive strength of the tested concretes. The results
indicate an excellent performance of the ANN model developed to predict compressive strength from
the input parameters studied, with an average error less than 5%. Together, the water–cement ratio
and the percentage of metakaolin were shown to be the most influential factors for the compressive
strength value predicted by the developed ANN model.

Keywords: artificial neural networks; compressive strength; concrete; nondestructive testing;
properties of concrete

1. Introduction

In the last few years, several factors have contributed to the emergence of faster tests
that enable the evaluation of concrete properties, namely, the compressive strength test.
Among other factors, it should be mentioned that (1) the compressive strength test increases
the use of high-strength concretes in civil engineering construction; (2) the test requires a
relatively long period of time; (3) the insecurity related to the conservation conditions of the
specimens in the laboratory do not satisfactorily represent the reality of the work, causing
significant deviations in the concrete strength results; and (4) the destructive character of
the extraction of specimens poses challenges to assessing the performance of the structure
in service [1–3].

Concrete technologists have always paid special attention to the possibility of de-
termining concrete properties through nondestructive tests. According to Rose [4], the
development of the ultrasonic wave propagation method started simultaneously in Canada
and England in the early 1970s. In particular, ultrasound is a truly nondestructive test, as
its technique involves the propagation of ultrasonic waves that do not result in any damage
to the element being tested. Traditionally, the pressure wave (p-wave) pulse velocity has
been popularly applied to concrete structures for its easy generation and measurement.
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However, in the last few years, several studies have shown that the use of ultrasonic
wave propagation tests (UPV) constitutes a promising tool for evaluating the behavior of
concrete in fire situations [5,6]. In concrete structures, as described by the authors of [5,7],
the method can be used to (1) estimate the concrete compressive strength, (2) determine
the dynamic modulus of the material, (3) evaluate the concrete homogeneity, and (4) detect
the presence of cracks.

UPV testing is one of the most popular nondestructive techniques used in the as-
sessment of concrete properties. However, a number of factors, which do not necessarily
influence the concrete compressive strength in the same way, could affect the experimental
UPV values. Therefore, it is very difficult to accurately evaluate the concrete compressive
strength with this method. It is well known that there are a significant number of vari-
ables that influence the concrete compressive strength, such as the water–cement ratio,
aggregate–cement ratio, age of testing, additions, curing time, cement types, etc. In or-
der to associate this information, the use of artificial neural networks (ANN) is crucial,
as an ANN can present a response that reflects the influence of the parameters in the
obtained result [7,8]. In recent years, ANN modelling has become increasingly popular
and has been commonly used in civil engineering tasks with some degree of success,
where the modelling of material behavior and characteristics plays a significant role in
these applications [9].

Metakaolin is a pozzolanic material that is basically composed of silica (SiO2) and
alumina (Al2O3) in the amorphous phase. Metakaolin is capable of reacting with the
calcium hydroxide—Ca(OH)2—produced by cement hydration to form hydrated products
that are similar to those derived from the direct hydration of the Portland clinker. This
material accelerates the cement hydration process, forming additional calcium silicate (C-S-
H) and aluminosilicate hydrates, which play an important role in the hardened concrete’s
properties.

Previous research has already reported trends in improving the compressive strength
and durability parameters of usual- and high-strength concretes due to the use of metakaolin
as a partial replacement for Portland cement [1,10–14].

The main results from the use of metakaolin in concrete mixtures reported can be
summarized as follows: (1) metakaolin was shown to increase in compressive strength as
the incorporation ratio of metakaolin increased at all the curing ages; (2) stabilization of the
air-void structure was observed due to the high pozzolanic activity of metakaolin; (3) for
improvements in compressive strength, an optimal replacement level for metakaolin close to
15% is needed by mass, which significantly enhances the resistance to chloride penetration.

2. Research Significance

In concrete design and quality control, compressive strength is often the most spec-
ified property. This is because, when compared to other tests used to obtain material
properties, the test to determine the compressive strength is relatively easy to perform and
presents a low cost. Beyond these aspects, there is a consensus in the technical–scientific
community that several other concrete properties, such as the Young’s modulus, tensile
strength, watertightness properties, and resistance to weathering, are strongly related to the
compressive strength of the material. This way, estimative values of these parameters can
be obtained with enough precision for design and execution purposes from the concrete
compressive strength.

The compressive strength of concrete is usually assessed by means of a standardized
short-term test, which is performed at the age of 28 days to obtain the characteristic
strength of the material. This value of compressive strength is the most used reference for
all decision-making in the design and execution of concrete work.

Usually, the quality control tests for the concrete are performed posteriori through
tests on specimens performed with the same concrete that will be used to cast a specific
concrete structural element. It is, therefore, a test for the acceptability of the concrete
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received on site and not a test to assess the characteristics of the concrete already applied
in a structural element.

On the other hand, some codes for the execution of concrete structures demand that
the removal of molds and shoring of a structural element can only be performed when
the concrete is sufficiently hardened to resist the loading applied on it and not undergo
unacceptable deformations. To meet this rule, one should ensure that the mechanical
properties indicated in the design drawings for a specific structural element—compressive
strength, for instance—are found in that element and not in control test specimens. This is
necessary because the compressive strengths in control test specimens are different than
the concrete strengths in a real structural element. One possible solution for overcoming
this situation is to have the concrete specimens to be tested molded in the element that
was casted in order for one to have the same execution and curing conditions. This can
be done, but certainly, the costs involved with the adaptation of the usual steel or timber
molds used in concrete elements will be greater; this is an important issue for the concrete
building industry that needs to be considered, and other strategies for meeting codes should
be investigated.

Taking into account the scenario described, the research developed aimed to propose
a practical approach to obtaining the concrete compressive strength of a given structural
element to verify if the concrete in this element met the design demands, as a function of
the main parameters used in the concrete and the ultrasonic pulse velocity, measured in
the field in the element under investigation. With the aid of an ANN model, a prediction
of the actual concrete compressive strength can be obtained, and the decision to remove
shoring at a given age can be made.

3. Materials and Methods

The experimental program performed included the fabrication of a wide range of pris-
matic concrete specimens with dimensions of 25 × 25 × 50 cm3 as well as the preparation
of standard cylindrical specimens—with a height of 20 cm and diameter of 10 cm—made
with nine different concrete mixtures.

The tests were performed at different ages, and the concrete ones were made with
some previously defined parameters: the maximum size of the coarse aggregate, the
amount of cement replaced by metakaolin and the water/cement ratio. To meet RILEM
(Réunion Internationale des Laboratoires et Experts des Matériaux, systèmes de construc-
tion et ouvrages) recommendations, the ultrasonic transducer frequency was limited to
54 kHz, and for this reason, it was necessary to prepare concrete prisms with the cross-
section size described above to ensure that the dimension perpendicular to the ultrasonic
wavelength was not less than the respective wavelength—200 mm. For each concrete mix-
ture, eighteen cylindrical concrete specimens were prepared for the compressive strength
tests, six specimens for each age investigated—7, 28 and 60 days.

Ultrasonic pulse velocity (UPV) tests were performed in twenty-seven concrete
prisms—three prisms for each concrete mixture studied—at the same ages for each concrete
mixture. For the preparation of the concrete samples studied—the prisms and cylindrical
ones—the following materials were used (see Table 1 and Figure 1):

− Portland Cement CPII-F 32 with filler (90–94% clinker and 10–6% lime filler), with a
compressive strength class of 32 MPa and a bulk density of 3110 kg/m3.

− Coarse aggregates (CA) with maximum sizes of 12.5, 16.0 and 19.0 mm and a bulk
density of 2684 kg/m3 (Table 2 shows the granulometric results).

− Fine aggregates (FA) with a bulk density of 2620 kg/m3 (Table 2 shows the granu-
lometric results). The sand used was acquired in the Metropolitan Region of Recife,
and all the tests were carried out in the Laboratory of Construction Materials of the
Catholic University of Pernambuco—TECOMAT, Recife, Brazil.

− Additive: poly-functional super-plasticizer (TEC-PAST-100P) with a bulk density of
1135 kg/m3.
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− Metakaolin: metakaolin is a highly reactive pozzolan, consisting basically of silica
(SiO2)- and alumina (Al2O3)-based compounds in the amorphous phase, which com-
bine with the calcium hydroxide—Ca(OH)2—which significantly improves many
features of most cement-based products.

− Water.

Table 1. Mixture proportions of the specimens tested.

Mix
Cement
(kg/m3)

Sand
(kg/m3)

Coarse Aggregate (kg/m3)
Additive
(kg/m3)

Metakaolin
(kg/m3)

Water
(kg/m3) w/cGravel

19
Gravel

16
Gravel

25
Gravel

12

1 471.6 581.5 768.8 330.1 0.0 0.0 2.4 0.0 217.0 0.46

2 451.5 586.0 774.6 332.7 0.0 0.0 2.4 23.9 218.6 0.48

3 431.0 590.5 780.6 335.2 0.0 0.0 2.4 47.9 220.3 0.51

4 471.6 581.5 0.0 330.1 768.8 0.0 2.4 0.0 217.0 0.46

5 451.5 586.0 0.0 332.7 774.6 0.0 2.4 23.9 218.6 0.48

6 431.0 590.5 0.0 335.2 780.6 0.0 2.4 47.9 220.3 0.51

7 471.6 581.5 0.0 0.0 768.8 330.1 2.4 0.0 217.0 0.46

8 451.5 586.0 0.0 0.0 774.6 332.7 2.4 23.9 218.6 0.48

9 431.0 590.5 0.0 0.0 780.6 335.2 2.4 47.9 220.3 0.51Buildings 2021, 11, x FOR PEER REVIEW 5 of 15 
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Table 2. Granulometric distribution of the aggregates used.

Sieves
(mm)

Cumulative Mass Retained (%)

Gravel 19 Gravel 16 Gravel 25 Gravel 12 Sand (FA)

25.0 0.0% 0.0% 0.0% 0.0% 0.0%

19.0 75.1% 0.0% 51.9% 0.0% 0.0%

16.0 89.2% 2.5% 86.3% 0.0% 0.0%

12.5 95.9% 59.3% 94.1% 0.0% 0.0%

9.5 99.5% 71.9% 97.3% 88.3% 0.0%

6.3 100.0% 97.1% 99.2% 98.9% 0.0%

4.75 100.0% 100.0% 100.0% 100.0% 1.9%

2.36 100.0% 100.0% 100.0% 100.0% 14.6%

1.18 100.0% 100.0% 100.0% 100.0% 29.1%

0.6 100.0% 100.0% 100.0% 100.0% 44.2%

0.3 100.0% 100.0% 100.0% 100.0% 64.9%

0.15 100.0% 100.0% 100.0% 100.0% 83.6%

0.075 100.0% 100.0% 100.0% 100.0% 93.6%

<0.075 100.0% 6.43% 100.0% 100.0% 100.0%

Fineness
modulus (−) 6.97 6.88 7.52 6.61 2.38

The specimens tested were wet-cured for 28 days after being kept in ambient condi-
tions for 1 day. To allow the installation of transducers, lateral cuts were made, creating
parallel plane surfaces diametrically opposed.

In this work, 162 cylindrical concrete test specimens and 27 prismatic specimens were
made with nine different concrete mixtures. Eighteen specimens of each mixture were made
and divided into three groups of six units. Each group of six was subjected to compression
rupture tests according to the different ages: seven, twenty-eight and sixty days. At the
same ages, each group of three prisms was subjected to nondestructive ultrasound tests.
Nine readings at each age resulted in 486 ultrasonic pulse velocities.

For structuring the neural network models, input data were ordered by associating
the ultrasonic velocity in the prisms with the results for the concrete test specimen’s
compressive strength. At each age, the average of nine ultrasonic velocities of each of the
three prisms of each concrete mixture was calculated. For the six specimens at each age,
three averages of two specimens were, then, calculated. Each average of nine ultrasonic
velocities was associated with the average of two results of compressive tests at each.
Therefore, from the treatment carried out, three input pairs per age for each concrete
mixture were obtained, totaling, for the three ages and nine mixtures investigated, 81
epochs for the ANN models.

4. Results

The factors that affect the ultrasonic pulse velocity (UPV) can be divided into
two categories:

(a) Factors resulting directly from concrete properties, such as the (1) aggregate sizing,
grading, type and content; (2) cement type; (3) water/cement ratio; (4) admixtures;
and (5) age of the concrete.

(b) Other factors, such as the (1) transducer contact, (2) temperature of the concrete, (3)
moisture and curing conditions for the concrete, (4) path length, (5) size and shape of
the specimens, (6) level of stress, and (7) presence of reinforcing steel.
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4.1. Relationship between Compressive Strength and UPV

There is not a clear consensus for the relationship between the compressive strength
and the UPV; for example, Güneyli et al. [15] and Silva et al. [16] presented a linear re-
lationship between these variables, and several researchers [17,18] have presented an
exponential relationship between compressive strength and UPV, i.e., fc = aVb

p and
fc = aeaVp , respectively. To verify if the results for the samples investigated followed
the same trend, exponential fittings between the UPV and compressive strength of the
tested specimens were performed, and Figure 2 presents the best one obtained with a
strong correlation coefficient (R), i.e., close to 97%.
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Figure 2. UPV (longitudinal) vs. compressive strength.

Table 3 presents the experimental average results for the compressive strength and
ultrasonic pulse velocities obtained for each concrete mixture tested. It can be seen that for
each age investigated, an increase in the metakaolin amount acted positively to increase
both the compressive strength and ultrasonic pulse velocity, a fact that can be explained due
to the high pozzolanic activity of metakaolin. The addition of 10% metakaolin showed it to
be the best amount of cement replacement, giving the best values of compressive strength
and ultrasonic pulse velocities, a result that is consistent with previous studies [10,11].
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Table 3. Experimental average results for the compressive strength and ultrasonic pulse velocities (UPVs) of each mixture
tested for hardened concrete specimens.

Mixture
Slump

(cm)
Metakaolin

(%)

Compressive Strength
(MPa)

Ultrasonic Pulse Velocity, UPV
(km/s)

7 days 28 days 60 days 7 days 28 days 60 days

1 12 0 34.77 36.55 41.00 4.23 4.30 4.36

2 19 5 34.96 37.27 43.90 4.28 4.34 4.45

3 10 10 39.18 44.86 45.25 4.36 4.47 4.50

4 20 0 32.24 35.86 37.00 4.22 4.33 4.36

5 18 5 35.33 35.95 40.35 4.27 4.28 4.38

6 10 10 37.61 42.67 44.26 4.36 4.45 4.47

7 18 0 30.47 34.00 35.56 4.18 4.28 4.30

8 18 5 33.60 35.95 36.47 4.24 4.30 4.32

9 17 10 36.33 40.09 41.15 4.33 4.39 4.43

4.2. Influence of Metakaolin and Aggregate on Concrete Compressive Strength

Regarding the diameter of the aggregates, it can be said that the mixtures that showed
greater compressive strength were those with 19 mm coarse aggregate sizes, granulomet-
rically improved compared to those with 16 mm coarse aggregate sizes. Likewise, this
mixture was also consistent with regard to the increase in strength related to the amount of
metakaolin. In fact, metakaolin is a highly reactive pozzolan that significantly improves
many features of most cement-based products in the short and long term [19].

Some authors [16,20,21] report that with a 5% addition of metakaolin, it is already
possible to observe an increase of 12 to 15% in concrete compressive strength, and for an ad-
dition of 10%, the observed increase in strength varied from 9 to 28% [22,23]. It is important
to highlight that it is well known that the aggregate size influences the Young’s modulus of
concrete more than its compressive strength [24], although compressive strength might also
be related to concrete pore size composition—distribution and spacing [25]. Decreasing the
coarse aggregate size can also increase the concrete compressive strength [26–28], mainly
due to the increase in adherence generated by the effect of aggregate size reduction [27–29].

The fact that concretes made with coarse aggregate size combinations—19 and 16 mm—
presented better performance than the mixtures made with 25 and 16 mm aggregate sizes
and the mixture made with 25 and 12 mm aggregate sizes shows the importance of
improved granulometry in the performance of concretes.

It can be said that, for the mixtures investigated in this work and their respective
materials, the granulometric improvement with 16 mm coarse aggregate was better realized
when the coarse aggregate used was 19 mm in size. This happens because it creates a
condition that is close to the packaging process in concrete manufacture. The combination
of 25 and 12 mm aggregate sizes presented a greater number of voids to be filled, directly
reflecting the value of the compressive strength.

It was also found that the addition of metakaolin exhibited a greater effect in increasing
the compressive strength at the ages of 28 and 60 days. The most significant evolution
in compression occurred until the seventh day; after this period, there was a very small
increase in the compressive strength.

As shown in Figure 3, the addition of metakaolin in mixtures 3, 6 and 9 did not
generate a significant influence, either on the compressive strength or on the UPV, at the
age of 7 days. An opposite behavior, however, was observed at 28 and 60 days, where it
was observed that, with an increase in the addition, the UPV and the compression strength
presented an increase.
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As shown in Figure 4, for the same water/cement ratio, the same mortar content and
the same amount of addition of metakaolin, the best combination of two coarse aggregate
sizes was 16 and 19 mm. This combination for all ages showed the greatest compressive
strength and the highest ultrasonic pulse velocity.
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Figure 3. Influence of the metakaolin on concrete compressive strength and UPV, for (a) 7 days, (b) 28 days and (c) 60 days.



Buildings 2021, 11, 44 9 of 15

Buildings 2021, 11, x FOR PEER REVIEW 8 of 15 
 

  

(b) 

  

(c) 

Figure 3. Influence of the metakaolin on concrete compressive strength and UPV, for (a) 7 days, (b) 28 days and (c) 60 
days. 

As shown in Figure 4, for the same water/cement ratio, the same mortar content and 
the same amount of addition of metakaolin, the best combination of two coarse aggregate 
sizes was 16 and 19 mm. This combination for all ages showed the greatest compressive 
strength and the highest ultrasonic pulse velocity. 

  

(a) 

y = 0.831x + 35.405
R² = 0.814

y = 0.681x + 34.755
R² = 0.760

y = 0.609x + 33.635
R² = 0.959

0

10

20

30

40

50

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

C
om

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Metakaolin (%)

Samples 1–3

Samples 4–6

Samples 7–9t = 28 days

y = 0.012x + 4.270
R² = 0.923

y = 0.010x + 4.267
R² = 0.824

y = 0.008x + 4.243
R² = 0.9233.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

U
PV

 (k
m

/s)

Metakaolin (%)

Samples 1–3

Samples 4–6

Samples 7–9t = 28 days

y = 0.425x + 41.258
R² = 0.958

y = 0.726x + 36.907
R² = 0.998

y = 0.559x + 34.932
R² = 0.868

0

10

20

30

40

50

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

C
om

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Metakaolin (%)

Samples 1–3

Samples 4–6

Samples 7–9t = 60 days

y = 0.011x + 4.342
R² = 0.997

y = 0.008x + 4.317
R² = 0.980

y = 0.005x + 4.298
R² = 0.9873.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

U
PV

 (k
m

/s)

Metakaolin (%)

Samples 1–3

Samples 4–6

Samples 7–9t = 60 days

y = –1.675x + 36.403
R² = 0.998

y = –2.250x + 39.440
R² = 0.995

y = –1.625x + 40.423
R² = 0.9490

10

20

30

40

50

C
om

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 7 days

Gravel 19–16 Gravel 16–25 Gravel 25–12

y = –0.010x + 4.260
R² = 1.000

y = –0.010x + 4.280
R² = 1.000

y = –0.015x + 4.313
R² = 0.964

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

U
PV

 (k
m

/s)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 7 days

Gravel 19–16 Gravel 16–25 Gravel 25–12
Buildings 2021, 11, x FOR PEER REVIEW 9 of 15 
 

  

(b) 

  

(c) 

Figure 4. Influence of the aggregate on concrete compressive strength and UPV, for (a) 7 days, (b) 28 days and (c) 60 days. 

4.3. Artificial Neural Network Modelling 
Regression models based on experimental research results are commonly used 

strategies for the qualitative assessment of a given parameter of interest, based on varia-
bles that influence its behavior. However, depending on the field of scientific research 
and the phenomena under investigation, the complexity of the relationships between 
input and output variables may significantly limit the ability of these models to provide 
adequate responses. In these situations, more efficient modelling tools such as artificial 
neural networks can be more applicable. 

Artificial neural networks use concepts associated with the massive local and dis-
tributed processing believed to occur in the human brain. These networks acquire 
knowledge through experience, and this knowledge is represented by the ability to map 
relationships between input and output parameters. A neural network is best defined as 
a set of simple, highly interconnected processing elements that are capable of learning 
information presented to them, and their ability to learn and process information classi-
fies them as a form of artificial intelligence. 

ANNs are especially useful for dealing with situations in which establishing a de-
scription of the functional relationships between the variables involved in a problem is 
either overly complex or impossible. The success of ANN problem modelling is directly 
related to the network architecture, i.e., the number of hidden layers and the number of 
neurons in these layers and training strategies used.  

A very important task for creating an ANN model is defining its hidden layer ar-
chitecture. Several studies have already shown that it is always possible to obtain a single 
hidden layer solution with the same level of learning of complex solutions as several 
hidden layers with a large number of hidden neurons [30,31]. 

y = –2.300x + 39.953
R² = 0.965

y = –2.060x + 41.427
R² = 0.941

y = –2.985x + 48.147
R² = 0.970

0

10

20

30

40

50

C
om

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 28 days

Gravel 19–16 Gravel 16–25 Gravel 25–12

y = –0.015x + 4.300
R² = 0.750

y = –0.020x + 4.330
R² = 1.000

y = –0.035x + 4.440
R² = 0.942

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

U
PV

 (k
m

/s)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 28 days

Gravel 19–16 Gravel 16–25 Gravel 25–12

y = –2.720x + 43.293
R² = 0.931

y = –3.360x + 46.723
R² = 0.992

y = –2.550x + 48.090
R² = 0.963

0

10

20

30

40

50

C
om

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 60 days

Gravel 19–16 Gravel 16–25 Gravel 25–12

y = –0.020x + 4.360
R² = 1.000

y = –0.040x + 4.437
R² = 0.980

y = –0.050x + 4.500
R² = 1.000

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

U
PV

 (k
m

/s)

Aggregate

Samples 1,4,7

Samples 2,5,8

Samples 3,6,9t = 60 days

Gravel 19–16 Gravel 16–25 Gravel 25–12

Figure 4. Influence of the aggregate on concrete compressive strength and UPV, for (a) 7 days, (b) 28 days and (c) 60 days.

4.3. Artificial Neural Network Modelling

Regression models based on experimental research results are commonly used strate-
gies for the qualitative assessment of a given parameter of interest, based on variables that
influence its behavior. However, depending on the field of scientific research and the phe-
nomena under investigation, the complexity of the relationships between input and output
variables may significantly limit the ability of these models to provide adequate responses.
In these situations, more efficient modelling tools such as artificial neural networks can be
more applicable.

Artificial neural networks use concepts associated with the massive local and dis-
tributed processing believed to occur in the human brain. These networks acquire knowl-
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edge through experience, and this knowledge is represented by the ability to map relation-
ships between input and output parameters. A neural network is best defined as a set of
simple, highly interconnected processing elements that are capable of learning information
presented to them, and their ability to learn and process information classifies them as a
form of artificial intelligence.

ANNs are especially useful for dealing with situations in which establishing a descrip-
tion of the functional relationships between the variables involved in a problem is either
overly complex or impossible. The success of ANN problem modelling is directly related
to the network architecture, i.e., the number of hidden layers and the number of neurons in
these layers and training strategies used.

A very important task for creating an ANN model is defining its hidden layer architec-
ture. Several studies have already shown that it is always possible to obtain a single hidden
layer solution with the same level of learning of complex solutions as several hidden layers
with a large number of hidden neurons [30,31].

To build concrete compressive strength prediction models through nondestructive
ultrasound testing combined with the network model, the software QNET [32] was used.
QNET is a multi-layer perceptron whose training is performed using a retro-propagation
algorithm. This program allows the definition of up to eight intermediate layers of neu-
rons and the choice of four different activation functions (sigmoid, tangent hyperbolic,
hyperbolic and Gaussian).

Predicting the axial compression strength of concrete is a complex problem, influenced
by a number of factors, mainly, the water–cement (w/c) and aggregate–cement (ag/c)
ratios, testing age, and amount and type of addition, among others, and its modelling with
ANNs is a hard task to implement.

To assess the potentialities for predicting the compressive strength of concrete, an
ANN model using experiments described in Section 2 was created with the following
features: five input variables—the water cement ratio, aggregate cement ratio, age of
testing, metakaolin cement ratio, and measured ultrasonic velocity. The output variable
was the average compression strength (fc).

For the development of models with the ANN, data normalization is necessary. This
normalization is essential since the different activation functions that activate neurons in
the model provide values within a range between 0 and 1. The software used to create the
ANN models allows automatic data normalization, but this normalization omits important
information. For that reason, the input and output data values were normalized outside
the software considering a linear relationship between the maximum and minimum values
of each of the variables, within the range 0.25–0.85, using Equation (1):

Xnorm − 0.25
0.85 − 0.25

=
X − Xmin

Xmax − Xmin
(1)

where Xnorm is the normalized variable, X is the variable to be normalized, Xmax is the
maximum value of the variable to be normalized and Xmin is the minimum value of the
variable to be normalized.

After data analysis and processing, the final set used in the training and validation
phases totaled 81 epochs. In order to test the developed neural network models, a sepa-
ration of the input data into a training group and a test group was implemented. In the
research, 15% of the input data were randomly chosen to test the model while it was being
trained. This means that the model was not presented to this set of data in the training
phase, and in fact, the model was trained using 69 epochs. The result data were exclusively
used to verify the quality of the ANN during its training process.

For the ANN models investigated, a specific strategy was used to avoid the possibility
that overtraining might govern the model’s response. Overtraining occurs when the test
set error increases while the training set error continues to descend. This indicates that
memorization is the predominant learning mode. When a test set error has reached a
global minimum and increases indefinitely thereafter, overtraining has occurred. Training
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a network after the test set error global minimum has been reached can actually hurt the
predictive capabilities of the model being developed.

The model elaborated in this work was developed with the objective of obtaining
a good approximation for the compressive strength of concrete as a function of the wa-
ter/cement ratio (w/c), aggregate/cement ratio (ag/c), testing age (t), metakaolin/cement
ratio (mk/c) and measured ultrasonic velocity (V) represented by Equation (2):

fc = f
(

a
c

,
ag
c

, t,
mk
c

, V
)

(2)

After several trials, the architecture of the hidden network layers that exhibited the
best error was as follows: [3-5-(1x8)-1]. That means an ANN with three layers—one input
layer with five neurons representing the five input variables, one hidden layer with nine
neurons, and one output layer of neurons with one neuron representing the compressive
strength. Figure 5 shows the ANN architecture used for the prediction of the concrete
compressive strength of the concretes studied.
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Figure 6 shows the evolution of the correlation coefficient R2 during the training
process for the several ANN models investigated. It can be seen that the model that
presented the best overall behavior was the model [3-5-(1x8)-1]—with R2 of 95.42% and
87.24% for the training and test sets, respectively. The other models presented good
performance in the training phase but not so good performance in the testing phase.
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A scatter comparison between the targets and network outputs—the concrete com-
pressive strengths output by the network and the values obtained with the laboratory
tests—is shown in Figure 7. A good agreement can be observed, which means that the
ANN models were able to capture the complexity of the relationships among the several
parameters involved in the problem.
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Figure 7. Scatter comparison of targets vs. network outputs.

Table 4 shows the comparison between the targets and ANN outputs, where the
quality of the overall behavior of the model can be confirmed. Most of the data in
Table 4 were obtained from points that were not used in net training. This means that they
are unknown data for the model. In view of this observation, one can conclude that the
model behaved very satisfactorily in predicting the concrete compressive strength from the
input parameters studied.
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Table 4. Comparison between targets and ANN outputs.

w/c ag/c Age
(days)

mk/c
(%)

V
(m/s)

Compressive Strength (MPa)

Lab Tests ANN Model

0.511 2.589 60 10 4.31 33.18 36.50

0.460 2.330 60 - 4.37 40.51 40.33

0.511 2.589 60 10 4.33 38.33 39.36

0.511 2.589 60 10 4.47 43.53 45.02

0.484 2.453 7 5 4.28 34.96 36.21

0.511 2.589 28 10 4.47 44.82 44.13

0.484 2.453 28 5 4.35 37.77 38.14

0.460 2.330 7 - 4.22 32.24 34.73

0.460 2.330 28 - 4.40 39.61 40.23

0.511 2.589 28 10 4.25 35.33 36.29

0.484 2.453 60 5 4.28 32.09 35.41

0.460 2.330 28 - 4.33 35.31 37.95

0.460 2.33 7 - 4.25 35.18 35.10

0.511 2.589 28 10 4.46 42.29 44.01

0.484 2.453 28 5 4.26 37.48 36.30

0.511 2.589 60 10 4.52 45.81 45.39

0.511 2.589 7 10 4.49 43.27 43.62

0.460 2.330 28 - 4.40 39.61 40.23

0.460 2.330 7 - 4.28 34.87 35.41

0.484 2.453 28 5 4.31 38.22 37.69

In order to investigate the influence of each input parameter on the concrete com-
pressive strength prediction result, Table 5 was prepared. From this table, it is possible to
observe that, for the concretes mixtures studied, with the exception of the testing age, the
other parameters investigated showed a similar contribution in the results of the neural
network model. The fact that age did not show significant importance is consistent with
expectations because the concrete mixtures studied had moderate compressive strength
and their evolution over time should not have been so marked for the ages studied. The
water–cement ratio and the percentage of metakaolin together showed an influence of
more than 50%, which is equally consistent.

Table 5. Contribution of input node to outputs.

Input Node Contribution (%)

w/c 26.0

ag/c 22.9

t 5.6

mk/c 26.3

V 19.2

5. Conclusions

The research performed was successful in proving that ANN modelling is a good
strategy for predicting the compressive strength of concrete using special information
about the concrete mixture and its ultrasonic pulse velocity. Good correlation coefficients
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were obtained for the trained nets, an aspect that highlights the applicability of the devel-
oped models.

The great benefit in using artificial neural networks to solve engineering problems lies
in the fact that these models can be “trained” to learn the existing relationships between the
input and output parameters of a given problem. This characteristic has great importance
when dealing with situations in which the establishment of a description of the functional
relationships between the variables involved in a given problem is either excessively
complex or simply not possible. On the other hand, an important difficulty in using neural
networks to solve engineering problems lies in the difficulty in establishing an adequate
internal architecture for the problem being addressed. In the present work, this difficulty
was overcome by adopting a simultaneous training and validation strategy that allowed
the rapid identification of the best architecture for the studied problem.

A secondary result of this research is that the ANN model was able to capture the
influence of the concrete mixture parameters used in the investigation that played a more
important role in the compressive strength of the concrete—the water/cement ratio (w/c),
aggregate/cement ratio (ag/c) and metakaolin/cement ratio (mk/c)—which together
contributed about 75% to the end result for the concrete compressive strength.

The ultrasonic pulse velocities also showed an important participation in the compres-
sive strength of concrete, with approximately 20% contribution, but they were not the most
important factor. This fact suggests that the equations available in the literature that seek
to correlate the compressive strength of concrete with only with its ultrasonic velocity need
to be adjusted to consider other parameters related to the concrete mixture, although the
relationship between the UPV and compressive strength was demonstrated to be strong
and linear, following the literature.

Author Contributions: All the authors contributed to the development, analysis, writing, and
revision of the paper: conceptualization, F.A.N.S., R.S.C. and J.M.P.Q.D.; methodology, F.A.N.S.,
J.M.P.Q.D., R.S.C. and A.C.A.; software, F.A.N.S.; validation, A.C.A., A.S.G. and A.G.B.L.; formal
analysis, A.C.A., A.S.G., J.M.P.Q.D. and A.G.B.L.; investigation, R.S.C., F.A.N.S.; writing—original
draft preparation, F.A.N.S., A.S.G., J.M.P.Q.D., A.C.A. and A.G.B.L.; writing—review and editing,
R.S.C., A.S.G., J.M.P.Q.D. and A.G.B.L.; supervision, F.A.N.S., J.M.P.Q.D. and A.G.B.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Base Funding—UIDB/04708/2020 and Programmatic
Funding—UIDP/04708/2020 of the CONSTRUCT—Instituto de I&D em Estruturas e
Construções—funded by national funds through the FCT/MCTES (PIDDAC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: New data were created or analyzed in this study. Data will be shared
upon request and consideration of the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Din, H.K.S.; Eisa, A.S.; Aziz, B.H.A.; Ibrahim, A. Mechanical performance of high strength concrete made from high volume of

Metakaolin and hybrid fibers. Constr. Build. Mater. 2017, 140, 203–209. [CrossRef]
2. Dinakar, P.; Sahoo, P.K.; Sriram, G. Effect of metakaolin content on the properties of high strength concrete. Int. J. Concr. Struct.

Mater. 2013, 7, 215–223. [CrossRef]
3. Ray, I.; Gong, Z.; Davalos, J.F.; Kar, A. Shrinkage and cracking studies of high performance concrete for bridge decks. Constr.

Build. Mater. 2012, 28, 244–254. [CrossRef]
4. Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 1990.
5. Malhotra, V.M.; Carino, N.J. HandBook on Nondestructive Testing of Concrete, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004.
6. Balaji, K.V.G.D.; Raju, S.S.S.V.G. Nondestructive assessment of concrete structures exposed to fire. Int. J. Appl. Environ. Sci. 2009,

4, 25–31.
7. Güçlüer, K. Investigation of the effects of aggregate textural properties on compressive strength (CS) and ultrasonic pulse velocity

(UPV) of concrete. J. Build. Eng. 2020, 27, 100949. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2017.02.118
http://doi.org/10.1007/s40069-013-0045-0
http://doi.org/10.1016/j.conbuildmat.2011.08.066
http://doi.org/10.1016/j.jobe.2019.100949


Buildings 2021, 11, 44 15 of 15

8. Mohamed, O.A.; Ati, M.; Hawat, W. Implementation of artificial neural networks for prediction of chloride penetration in
concrete. Int. J. Eng. Technol. 2018, 7, 47–52. [CrossRef]

9. Bilgehan, M.A. comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy
modelling approaches. Nondestruct. Test. Eval. 2011, 26, 35–55. [CrossRef]

10. Dinakar, P. The effect of Metakaolin on high strength concrete. J. Mater. Sci. 2013, 9, 379–382.
11. Supit, S.W.M.; Pandei, R.W. Effects of Metakaolin on Compressive Strength and Permeability Properties of Pervious Cement

Concrete. J. Teknol. 2019, 81, 33–39.
12. Poon, C.S.; Lam, L.; Kou, S.C.; Wong, Y.L.; Wong, R. Rate of Pozzolanic Reaction of Metakaolin in High Performance Cement

Pastes. Cem. Concr. Res. 2001, 39, 1301–1306. [CrossRef]
13. Egwuonwu, W.C.; Akobo, I.Z.S.; Ngekpe, B.E. Effect of Metakaolin as a Partial Replacement for Cement on the Compressive

Strength of High Strength Concrete at Varying Water/Binder Ratios. Int. J. Civ. Eng. 2019, 6, 1–6.
14. Ramezanicanpour, A.A.; Bahrami, J.H. Influence of Metakaolin as Supplementary Cementing Material on Strength and Durability

of Concretes. Constr. Build. Mater. 2012, 30, 470–479. [CrossRef]
15. Güneyli, H.; Karahan, S.; Güneyli, A.; Yapιcι, N. Water content and temperature effect on ultrasonic pulse velocity of concrete.

Russ. J. Nondestruct. Test. 2017, 53, 159–166. [CrossRef]
16. Silva, F.A.N.; Nogueira, C.L.; Silva, J.A.; Azevedo, A.C.; Delgado, J.M.P.Q. Ultrasonic Assessment of Damage in Concrete under

Compressive and Thermal Loading Using Longitudinal and Transverse Waves. Russ. J. Nondestruct. Test. 2019, 55, 808–816.
[CrossRef]

17. Tharmaratnam, K.; Tan, B.S. Attenuation of ultrasonic pulse in cement mortar. Cem. Concr. Res. 1990, 20, 335–345. [CrossRef]
18. Musmar, M.A.; Alhadi, N.A. Relationship between ultrasonic pulse velocity and standard concrete cube crushing strength. J. Eng.

Sci. 2008, 36, 51–59. [CrossRef]
19. Salimi, J.; Ramezanianpour, A.M.; Moradi, M.J. Studying the effect of low reactivity metakaolin on free and restrained shrinkage

of high performance concrete. J. Build. Eng. 2020, 28, 101053. [CrossRef]
20. Güneisi, E.; Gesoglu, M.; Mermerda, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin.

Mater. Struct. 2008, 41, 937–949. [CrossRef]
21. Muthupriya, P.; Subramanian, K.; Vishnuram, B.G. Investigation on behaviour of high performance reinforced concrete columns

with metakaolin and fly ash as admixture. Int. J. Adv. Eng. Technol. 2011, 2, 190–202.
22. Madandoust, R.; Mousavi, S.Y. Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr. Build.

Mater. 2012, 35, 752–760. [CrossRef]
23. Kirthini, C.H.; Sujatha, T. Effect of incorporating metakaolin on the properties of high performance concrete. Int. J. Eng. Res.

Technol. 2014, 3, 1011–1014.
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