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Abstract: Rapid advancement of data management and sharing technology has urged organizations
to develop effective maintenance management systems. This research, therefore, proposes and
implements an Electronic Repair Records (ERR) system for the blockchain of maintenance planning
and management. In ERR, this research develops two optimization models for scheduling and
sequencing failure repairs from different types over multiple periods. Each failure repair is treated
as a block, for which the data, current hash, and previous hash are obtained from failure repair
parameters, resources availability information, and the optimal values of the start and finish times
of the assigned failure repairs. The scheduling model assigns failure repairs to technicians and
in maintenance shops on each scheduling period at a minimal total cost of delay, undertime, and
overtime costs, while the sequencing model sequences the assigned failure repairs at minimal total
overtime costs and minimum total repair start times. Once the blocks are confirmed, the blockchain
is then shared through an electronic network among all maintenance departments. The developed
ERR system was implemented to manage the repairs of 36 failures from different failures in six
maintenance shops over a period of three days. The results showed that this system is found to be
effective in managing optimal repairs and efficient in improving the utilization of available resources
in maintenance shops. These advantages may result in significant savings in maintenance costs and
better utilization of resources. In conclusion, the developed ERR system including the optimization
models can provide in real-time assistance and de-centralized technology to planning engineers when
managing maintenance activities over multiple periods in a wide range of business applications.

Keywords: maintenance; blockchain; failure repairs; electronic repair record; scheduling; sequencing

1. Introduction

Effective data management and sharing are vital elements for the efficient running of
business applications and to provide analytical information that helps drive operational
decision-making and strategic planning by business managers and other end users. An
effective technology for this purpose is the adoption of the blockchain, which might
result in profound tangible impacts on planning business operations. The blockchain is
defined as the decentralized technology that is applied to register, confirm, allocate, and
transfer all manner of data [1,2]. It gives the opportunity for a traceability aid, records
management, and other business applications [3]. In technology circles, it is used as a
permanent distributed directory to record all value activities. Each node participating in
the activity would have access to the ledger from multiple devices. Participants can initially
review all activities connected to the blockchain [4]. On any distributed database, each
element is called a block [5–7]. The structure of the block, as shown in Figure 1, is mainly
composed of five components: the data maintained in the distributed database blocks; the
current hash which is functions and values that meet the demands needed to solve for the
current block computations; the previous hash which is values that are used to chain the
blocks; Timestamp which is all time events for each block starting from when the block
is added to the chain; and finally, other information that consists of the used tools and
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software with the complexity level. The blocks are then connected as shown in Figure 2 to
ensure synchronization between blocks and avoid separating any individual block from
the other blocks [8–11].
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The adoption of the blockchain has been implemented in many business applications,
including: banking industry [12], technology in transportation in Industry 4.0 strategy [13],
supply chain traceability [14], agri-food value chain management [15], electronic health-
care [16], the Australian carbon market [17], and construction projects [18–21].

Further, the vast development of data management and sharing technology has urged a
real need to develop an effective approach for managing maintenance activities. In addition,
maintenance activities play a critical role in increasing productivity but through consuming
costly and limited resources, including repair time, skilled staff, equipment, and spare parts.
Moreover, the increasing complexity of maintenance activities challenges maintenance
engineers to constantly strive for cutting incurred maintenance costs through effective
activities planning [22–25]. An emerging challenge to maintenance engineers is to schedule
and sequence maintenance activities at minimum maintenance costs while maximizing
resource utilization. Significant research efforts, therefore, have been devoted to developing
optimization models or heuristics for scheduling and sequencing activities of interest in a
wide range of applications [26–30]. For example, El-Sharkh and El-Keib [31] formulated a
fuzzy model for integrated generation and transmission maintenance scheduling problems
under uncertainties. The model was tested on the IEEE 118-bus system with 33 generating
units and 179 transmission lines. Ruiz et al. [32] proposed a simple criterion to schedule
preventive maintenance operations into the production sequence. The objective function of
the optimization criterion is minimizing the makespan of the sequence using six adaptations
of existing heuristic and metaheuristic methods to a set of 7200 instances. The results
revealed that the modern Ant Colony and Genetic Algorithms provide very effective
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solutions for dealing with the scheduling and sequencing of maintenance operations.
Squires and Hoffman [33] considered an operating military optimization problem by
formulating and implementing complementary models to full-sized instances using the
sliding windows formulation. The objective was minimizing the cost of assigning all
items to a set of facilities and maximizing the number of scheduled jobs considering their
tardiness budget. Xiao et al. [34] developed an optimization model connecting preventive
maintenance with production scheduling using a genetic algorithm. The objective to
minimize the total cost, which consisted of production cost, preventive maintenance cost,
minimal repair cost, and tardiness cost was the main target. Irawan et al. [35] developed
a mixed-integer linear optimization model based on the Dantzig–Wolfe decomposition
method for maintenance scheduling in offshore wind farms. The objective functions were to
minimize maintenance costs, including travel, technician, and penalty cost. Then, the model
determines the optimal schedule for maintaining the turbines and the optimal routes for the
crew transfer vessels to service the turbines along with the number of technicians required
for each vessel. Liao et al. [36] developed a single-machine-based integration model based
on a genetic algorithm to meet the requirements of production scheduling and preventive
maintenance in group production. Minimizing total completion time and maintenance
costs were the main objective functions. Gholami and Hafezalkotob [37] used a combination
of data mining techniques and time series models to schedule maintenance activities. A
real database was considered that included failures and values of factors degrading the
pump at the time of failure. A clustering algorithm was used to categorize failures based
on the similarity in the types of maintenance activities. Then, rules were extracted for
characterizing the clusters. Finally, time series models were used to predict the time period
for each factor. Kiefer et al. [38] presented a strategic mixed-integer programming model
for scheduling maintenance measures for the infrastructure of transportation systems.
Minimization of the sum of maintenance costs, cost of extra trams, cost of busses, and
penalty cost was the main objective function. Alayo and Paucar [39] developed a mixed-
integer linear optimization model for maintenance scheduling in a transmission company.
The objective function included minimizing equipment unavailability due to maintenance
activities. Finally, the model was applied to the Peruvian system. Su and Schutter [40]
determined an optimal time schedule for the maintenance activities and optimal routes for
the maintenance crew for the railway in the Dutch regional network. The objective function
was to minimize the total setup costs and the travel costs over the whole planning horizon.
The track maintenance scheduling problem with three variants of the Capacitated Arc
Routing Problem with a fixed cost was solved by transforming them into three node routing
problems. Samadi et al. [41] proposed an Inspection-Based Maintenance model for yearlong
transmission equipment maintenance scheduling. The probability distribution of the
deterioration condition was estimated using the transition probability matrix of the Markov
process. The optimal inspection time of equipment was obtained by minimizing the total
cost, including inspection, maintenance, and failure costs. Maintenance of transformers
and transmission lines in IEEE-RTS and IEEE 57-bus test systems were used for illustration
of the proposed model. Chansombat et al. [42] developed a mixed-integer linear model
for simultaneously optimizing the integrated production and preventive maintenance
scheduling in the capital goods industry. The objective function was to minimize total
costs involving the following: penalty and holding costs; preventive maintenance costs;
and production idle time costs. Yeardley et al. [43] utilized machine learning to predict
both machine faults and repair time and used their data to underpin the scheduling of
maintenance activities. The proposed methodology was used to plan maintenance and
optimize the schedule with a cost objective within the constraints of labor availability
and plant layout. A dataset was obtained using a simulated Fischertechnik (FT) model.
Results showed that the overall plant maintenance costs were reduced by decreasing
unplanned downtimes and increasing maintenance efficiency. Hu et al. [44] proposed a
linear programming-enhanced rollout model for constrained deterministic and stochastic
maintenance scheduling with an infinite horizon. The maintenance optimization under
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uncertainties was treated as a Markov Decision Process problem and then solved by a
modified Reinforcement Learning method. Chou and Yu [45] developed a mathematical
model to determine the optimal individual maintenance schedule and group maintenance
schedule for various components. The optimal maintenance schedule was designed to
maximize cost-effectiveness while minimizing environmental and safety risks. Fuzzy
probabilities were employed to assess the environmental and safety risks. Urbani et al. [46]
formulated mathematical scheduling and sequencing models for maintenance repairs for
bi-objective maintenance scheduling on a networked system with limited availability of
maintenance personnel. Also, they proposed an algorithm that is a good approximation
of the Pareto front in terms of costs and productivity was adopted to determine a set of
maintenance schedules. Consequently, this research aims at developing mathematical
models for scheduling and sequencing maintenance activities including failure repairs from
different types over multiple periods that minimize the total cost of delay, undertime and
overtime costs, and minimum total repair start times. However, little research has been
reported on blockchain adoption with information that is obtained by optimal scheduling
and sequencing of maintenance activities and employed to define the components of
the blocks.

In practice, the increasing complexity and variety of maintenance activities have
challenged decision-makers to adopt effective management systems that enable them
to manage maintenance plans effectively at minimal maintenance costs and maximal
utilization of maintenance resources. In these regards, this research contributes to ongoing
research by developing a framework for the adoption of an Electronic Repair Record (ERR)
for maintenance management and planning. The blockchain framework involves the
development of mathematical models that aim at optimal scheduling and sequencing of
maintenance activities from different categories over multiple periods. The ERR system
allows effective and secure information management and sharing directly to maintenance
engineers and relevant participants. The proposed blockchain framework can be applied to
obtain optimal maintenance plans in various business applications. The remainder of this
paper, including the introduction, is outlined in the following sequence. Section 2 develops
the ERR system. Section 3 illustrates the ERR in a real case study. Section 4 presents the
research results. Section 5 summarizes the conclusions.

2. Development of the ERR System

The proposed ERR system for maintenance planning is depicted in Figure 3 and
described as follows:

Step 1: Assume several orders of failure repairs from different categories (mechanical,
electrical, and others) are received via an electronic system or a cloud-based system, where
each failure repair has been assigned a specific due date for repair. These failures are
analyzed and then summarized in a maintenance management system (MMS). In this
research, each failure is treated as a block. Based on the existing database in MMS and
technical knowledge, the following data are filled in regarding each block, including the
sending department, failure type, repair due date, repair duration, repair dependency,
failure severity, required technician skills, and key resources of the time horizon. The blocks
are accessed by the maintenance planning engineers to determine the current block and
previous hashes through scheduling and sequencing modelling. Hence, two mathematical
models are formulated under stochastic repair durations.

Step 2: The scheduling model aims to assign suitable available resources to failure
repairs at minimum maintenance costs via cloud computing. The results of this step
include the assigned repair technician, maintenance shop, and day of repair. Assume that a
maintenance shop consists of W technician crew (w = 1, . . . , W), E equipment (e = 1, . . . ,
E), F failures (f = 1, . . . , F), and S shops (s = 1, . . . , S), as illustrated in Figure 4. Let yfst be a
binary decision variable that determines which shop s will be assigned to the repair failure
f on which day t; where yfst equals 1 if failure f is assigned to shop s on day t; otherwise,
yfst equals 0. The scheduling model determines the optimal yfst values, total cost along with
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overtime hours, Ost, and idle time hours, Ist, for shop s on day t. The objective function of
the scheduling model is to minimize the total of associated costs in all repair shops; delay
costs, in which the waiting time for the failure repair is calculated as the time between the
arriving date, DAf, and scheduled repair time t.
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Let Cd and DAf denote the total delay cost per day and the arriving date of failure f,
respectively. When a failure repair is assigned (yfst = 1) within the scheduling period T, the
total of delay costs, Cdtot(1), for F scheduled failure repairs in S shops over T period is then
expressed mathematically as:

Cdtot(1) =
T

∑
t=1

S

∑
s=1

F

∑
f=1

y f st

(
t− DA f

)
·Cd, ∀y f st = 1 (1)

However, when the repair of failure f is not scheduled (yfst = 0) during the scheduling
period T, the waiting or delay time of the failure repair in this period is calculated as the
time between the failure arriving date, DAf, and its repair due date, Dduef, as also illustrated
in Figure 5.
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Then, the total of delay cost for all unscheduled failure repairs, Cdtot(2), is formulated as:

Cdtot(2) =
F

∑
f=1

(
1−

T

∑
t=1

S

∑
s=1

y f st

)
·
(

T − DA f

)
·Cd, ∀y f st = 0 (2)

Let Ci denote the idle time cost per hour and Ist denote the idle time of shop s on day
t (in hours). Idle time cost represents the cost of unutilized time of the regular hours in
all MD shops. Then, the total idle time cost, Citot, for S shops over T period is expressed
mathematically as follows:

Citot =
T

∑
t=1

S

∑
s=1

(Ist·Ci), (3)
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Let Co denote the overtime cost per hour and Ost denote the overtime of shops on day
t. Overtime costs represent the cost of work performed after regular hours of all MD shops.
Then, the total overtime cost, Cotot, in S shops over T period, is expressed in Equation (4).

Cotot =
T

∑
t=1

S

∑
s=1

(Ost · Co), (4)

Finally, the objective function of Model I is written as:

Min
T
∑

t=1

S
∑

s=1

F
∑

f=1
y f st

(
t− DA f

)
· Cd + [Total of delay cost for all scheduled failures]

F
∑

f=1

(
1−

T
∑

t=1

S
∑

s=1
y f st

)
·
(
T − DA f

)
· Cd + [Total of delay cost for all unscheduled failure]

T
∑

t=1

S
∑

s=1
(Ist · Ci) +

T
∑

t=1

S
∑

s=1
(Ost · Co), [Total idle time and overtime cost for shops]

(5)

where

Ist = αst

(
Nst −

F

∑
f=1

y f st·Dtot f

)
, ∀s, t (6)

Ist ≥ 0, ∀s, t (7)

Further, the objective function is subjected to the following constraints:

1. For shop s on day t, the idle time, Ist, t is always positive and equal to the difference
between regular time hours and the summation of the duration of all performed
repairs. Let Nst denote the regular time of shop s on day t (hours) and αst specifies
whether shop s is working on day t or not. The total duration of repair, Dtotf, is the
time reserved for a given repair procedure, including the time required for setup, dsetf,
repairing, drepsf, and changeover, dchf.

2. Then, the overtime, Ost, for shop s on day t is always positive and equal to the
summation of the duration of repairs of F failures performed outside regular hours of
that shop, or mathematically:

Ost = αst

(
F

∑
f=1

y f st·Dtot f − Nst

)
, ∀s, t (8)

Ost ≥ 0, ∀s, t (9)

3. The total of repair durations of F failures on day t in shop s can exceed regular hours by
the maximum allowed overtime for this shop on day t. Let Zst denote the maximum
overtime allowed in shop s on day t. Then, the overtime repair duration must not
exceed Zst, as expressed in Equation (10).

F

∑
f=1

(
y f st·Dtot f

)
− Nst ≤ Zst, ∀s, t (10)

4. Let λwt and βfw be binary variables that identify whether technician crew w is available
on day t and the repair assignment of failure f to technician crew w, respectively. It
should be emphasized that the repair assignment of failure f to technician crew w
depends on this failure’s category and skill level of this crew. In addition, the total
repair duration of F failures in S shops by the technician crew w on day t should not
exceed the maximum working time, Gwt, on this day. Mathematically,

F

∑
f=1

S

∑
s=1

y f st·Dtot f ·β f w·λwt ≤ Gwt, ∀w, t (11)
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5. Let the binary variable, τfst, denote the availability of the needed equipment to repair
failure f in shop s on day t. To assign a failure repair to shop s on day t, shop s,
skilled crew w, and equipment should be available, and their assignment should be
applicable as expressed in Equation (12):

y f st ≤ αst·τf st·
W

∑
w=1

(
β f w·λwt

)
, ∀s, f , t (12)

6. The failure’s repair due date, Dduef, should be respected and a failure repair should
be assigned at most once in S shops, or

T

∑
t=1

S

∑
s=1

y f st ≤ 1, ∀ f |t ≥ DA f (13)

T

∑
t=1

S

∑
s=1

y f st = 0, ∀ f |t < DA f (14)

7. Integrality of the variables should be assured by introducing Equation (15):

y f st, τf st, λwt, β f w, αst ∈ {0, 1} (15)

8. Failure repairs are assigned based on the duration of a failure’s repair as well as a
failure’s severity and seriousness. A failure that requires a repair duration of less than
or equal to a half hour will be assigned first in shop s, as given by Equation (16).

T

∑
t=1

S

∑
s=1

y f st = 1, ∀ f ∈ [1, . . . , F]|Dtot f ≤ 0.5 & t ≥ DA f (16)

9. Let RPNf denote the risk priority number of failure f, which indicates the failure’s
severity and seriousness. Then, the repair of a failure with RPNf is equal to or greater
than the selected criteria of the failure severity and seriousness, CRT, shall be assigned
only once in shop s, as stated in Equations (17) and (18).

T

∑
t=1

S

∑
s=1

y f st = 1, ∀ f ∈ [1, . . . , F]|RPN f > CRT & t ≥ DA f (17)

T

∑
t=1

S

∑
s=1

y f st = 0, ∀ f ∈ [1, . . . , F]|RPN f > CRT & t < DA f (18)

10. However, if the risk priority number of failure f, RPNf, is less than CRT, then it should
be postponed to the next scheduling period, T2, and assigned once at most in shop s,
as expressed in Equations (19) and (20).

T

∑
t=1

S

∑
s=1

y f st ≤ 1, ∀ f ∈ [1, . . . , F]|RPN f ≤ CRT & t ≥ DA f (19)

T

∑
t=1

S

∑
s=1

y f st ≤ 0, ∀ f ∈ [1, . . . , F]|RPN f ≤ CRT & t < DA f (20)

The obtained optimal scheduling results are finally attached to blocks, as depicted in
Figure 6.
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Step 3: The sequencing optimization model is formulated to obtain the start times of
failure repairs and then the optimal results are stored in their corresponding blocks. The
sequencing model aims to minimize the sum of the total overtime, Ost, in all S shops over
the scheduling period T and the total of repairs’ start times, stsf, of all F failures. That is,

Min
T

∑
t=1

S

∑
s=1

Ost +
F

∑
f=1

sts f [Total overtime of all shops] (21)

The objective function is subject to the following constraints:

1. The closing time, Lst, for shop s on day t cannot be before the completion of regular
hours, Nst, and the maximum allowed overtime is Zst, as illustrated in Figure 7, where
the closing time, Lst, constraints are expressed mathematically as follows:

Lst·y f st = 9y f st |max
{

sts f + Dtot f

}
·y f st > 8; ∀ f , s, t

Lst·y f st = 8y f st |max
{

sts f + Dtot f

}
·y f st ≤ 8; ∀ f , s, t

(22)

Lst ≥ Nst, ∀s, t (23)

Lst − Nst ≤ Zst, ∀s, t (24)
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The completion time of failure repair, tcsf, should be equal to the summation of the
repair start time, stsf, setup time, dsetf, repair duration, drepsf, and changeover time, dchf,
for each failure repair in shop s on day t, as illustrated in Figure 8. Consequently, the tcsf is
expressed mathematically as follows:

tcs f = sts f + Dtot f , ∀ f
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2. Let OPt denote the time of the shop opening on day t. Then, the overtime, Ost, of shop
s on day t is the difference between the closing time, Lst, and regular hours, Nst, as
illustrated in Figure 9 and expressed in Equation (25).

Ost ≥ Lst − (Nst + OPt), ∀s, t (25)
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Furthermore, the overtime of each shop on each day t, Ost, should always be positive,
as formulated in Equation (26).

Ost ≥ 0, ∀s, t (26)

3. The overtime, Ost, for shop s on day t should not exceed the maximum overtime of
that shop, Zst. That is,

Ost ≤ Zst, ∀s, t (27)

4. All repairs should be performed after the opening of the shop, OPt. Then, all failure
repairs start times, stsf, should begin after shop opening, as stated in Equation (28).

sts f ≥ OPt, ∀ f , t (28)

5. The technician crew should operate during the interval of regular hours, Nst. Let Bwt
denote the start of the working time of crew w on day t and Gwt denote the correspond-
ing maximum working time of crew w on day t. The repair of failure f performed by
crew w on day t should be completed before Gwt, as given in Equation (29).

sts f + Dtot f −M
(

2− β f w −
S
∑

s=1
y f st

)
≤ Gwt, ∀ f , w, t (29)
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6. If the repairs of distinct failures f and j are assigned to the same crew w (βfw = βjw = 1)
in the same shop s on the same day t, the stsf of failure j is scheduled after the repair
of failure j is completed, as expressed by Equation (31).

stsj ≥
(

sts f + Dtot f

)
−M

(
5− χ f jt − β f w − β jw −

S
∑

s=1
y f st −

S
∑

s=1
yjst

)
,

∀w, t, f , j ∈ [1, . . . , F]| f 6= j
(30)

7. If failures f and j are assigned to the same shop (yfst = yjst = 1) and failure f will be
repaired before failure j, χfjt = 1, on the same day, as shown in Figure 10, then the start
time of failure j, stsj, should be equal to or greater than the entire time required in
shop s for the repair of failure f. That is,

stsj ≥ sts f + Dtot f −M
(

3− χ f jt − y f st − yjst

)
, ∀s, t, f , j ∈ [1, . . . , F]| f 6= j (31)
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Figure 10. The sequence of failure f assigned to shop s.

The dependency of failure repairs should be respected. That is, if the repair of failure
f in any shop is to be started before the repair of failure j, then the start time of failure f
should be earlier than the start time of failure j, as expressed in Equation (32).

stsj ≥ sts f −M
(

1− χ f jt

)
, ∀t, f , j ∈ [1, . . . , F]| f 6= j (32)

Moreover, the repair precedence is established for failures f and j on the same day in
shop s, as presented in Equation (33).

χ f jt + χj f t =
S

∑
s=1

y f st·
S

∑
s=1

yjst, ∀t, f , j ∈ [1, . . . , F]| f > j (33)

8. The failure with RPNf greater than the selected criteria of failure severity and serious-
ness, CRT, shall be repaired first. That is,

sts f ·y f st = 0|max
{

RPN f > CRT
}

;

sts f ·y f st = sts f ·y f st|max
{

RPN f ≤ CRT
} ∀ f , s, t (34)
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9. If the RPN for failures f and j are equal on the same day in shop s, the failure with an
earlier arrival time, DA, shall be assigned first, as expressed by Equation (35).

stsj·y f st·yjst ≥ sts f |
{

RPN f = RPNj & DA f < DAj

}
·y f st·yjst;

stsj·y f st·yjst ≥ stsj|
{

RPN f = RPNj & DA f ≥ DAj

}
·y f st·yjst;

∀t, s, f , j ∈ [1, . . . , F]| f 6= j

(35)

10. The binary decision variables are written as:

y f st ∈ {0, 1}, β f w ∈ {0, 1}, χ f jt ∈ {0, 1} (36)

The sequencing model is finally solved, and the additional information will be added
to blocks, as depicted in Figure 11.
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Step 4: Each completed block is next assigned a hash to avoid access to the block
information by unauthorized individuals. In this research, the block hash includes the
failure category, assigned technician, maintenance shop, and the day in which the failure
will be repaired with its start and finish times, while considering blocks dependency. For
example, suppose block 2 shall be repaired after block 1. If the repair of block 1 has a start
time at time 0 (previous hash of block 1) and its finish time at time 2 (hash of block 1) on
day 1, then the repair of block 2 should have a start time at time 2 (=previous hash of block
1) and finish time on the same day 1 (hash of block 2), as depicted in Figure 12.
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Step 5: Blocks are finally transferred via computer networks for consensus of the
maintenance and relevant departments, as shown in Figure 13. The implementation of IoT
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and smart contracts can be employed to facilitate this process of blockchain approval and
validation. Accessibility to the ERR to amend, remove, and approve is permitted by the
planning section in the maintenance department. The maintenance manager can monitor
the execution of maintenance activities through the number of executed blocks compared to
the scheduled number of failure repairs and evaluate the efficiency of repair activities. The
ERR system can provide online daily, weekly, or monthly repair progress reports, efficiency
evaluations, and shops utilization of resources in the maintenance department to enable
maintenance managers as well as the relevant department take in real-time decisions, as
shown in Figure 14.
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3. Application of Electronic Repair Records

The following case study was employed to illustrate the developed ERR system in a
maintenance department and is presented as follows:

Step 1: Receiving failure repairs
A maintenance department performs failure repair services in its six shops, as shown

in Table 1.

Table 1. Maintenance shops.

Maintenance Shop, s Maintenance Category

1, 3, 5 General failures
2 Electrical failures
4 Mechanical failures
6 Welding processes

A total of 36 regular failures (F = 36) were received via smart contract to be repaired
over a period of three days (T = 3). Failure-related variables are presented in Table 2.
The availability matrix for the shop (αst-matrix) and technician crew are presented in
Tables 3 and 4, respectively.

Table 2. Failure-related variables.

f
Failure-Related Variables

f
Failure-Related Variables

DAf dsetf drepsf dchf Dtotf Dduef RPNf DAf dsetf drepsf dchf Dtotf Dduef RPNf

1 2 1 2 1 4 2 0.9 19 1 0.2 0.8 0.5 1.5 1 0.1
2 1 0.5 1.5 1 3 1 0.75 20 1 0.2 0.5 0.3 2 2 0.1
3 −1 0.25 0.75 0.5 1.5 1 0.95 21 1 1 1 1 3 1 0.4
4 −2 1 1.5 1 3.5 1 0.1 22 2 0.2 0.8 1 2 2 0.3
5 1 0.5 1 0.5 2 1 0.5 23 2 1 1.5 1 3.5 3 0.5
6 1 0.25 0.5 0.25 1 3 0.3 24 1 1 1.3 0.7 3 1 0.05
7 2 0.5 2 1 3.5 2 0.02 25 1 0.3 0.3 0.4 1 1 0.01
8 2 0.25 1.25 0.5 2 3 0.05 26 0 0.5 1 1 2.5 2 0.3
9 1 0.25 1 0.25 1.5 1 0.3 27 3 0.25 1 0.25 1.5 3 0.5
10 3 1 1 1 3 3 0.08 28 2 0.5 1 0.5 2 2 0.2
11 3 1.25 1.5 0.25 3 3 0.2 29 1 0.25 0.5 0.25 1 1 0.1
12 1 1 1 0 2 2 0.09 30 1 0.75 1.5 0.75 3 1 0.09
13 2 1 2 1 4 2 0.3 31 2 0.5 1.25 0.25 2 2 0.02
14 1 1 1 1 3 1 0.2 32 1 1 2 1 4 3 0.01
15 1 0.5 0.5 1 2 2 0.01 33 3 0.25 1.75 1 3 3 0.3
16 1 0.5 1 1 2.5 2 0.7 34 1 1.5 2 0.5 4 1 0.06
17 3 0.5 0.5 0.5 1.5 3 0.4 35 1 1 1.5 1.5 4 2 0.24
18 3 0.5 1 1.5 3 3 0.3 36 2 1 1 1 3 2 0.35

Table 3. Technicians’ availability (λwt-matrix).

Technician
Crew (w)

Day (t) Technician
Crew (w)

Day (t)

1 2 3 1 2 3

1 0 0 1 7 1 1 1
2 0 0 0 8 1 1 1
3 1 1 1 9 1 1 1
4 1 1 1 10 1 1 1
5 1 1 1 11 1 1 1
6 1 1 1 12 0 1 0
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Table 4. Shops’ availability (αst-Matrix).

Shop (s)
Day (t)

1 2 3

1 1 1 0
2 1 1 1
3 1 0 0
4 1 1 0
5 1 0 1
6 1 1 1

In step 2, the optimal failure assignment is presented in Figure 15. However, it is
noted that there were no failures scheduled at shop 1 on day three, shop 3 on days two
and three, shop 4 on day three, and shop 5 on day two, due to the shops’ unavailability.
Although shop 6 was available on day one, the equipment to perform the repair in this
shop on day 1 was not available. The results also showed that 33 failures were scheduled;
however, the repairs of the three failures 10, 17, and 18 are unscheduled due to workers’
unavailability on day 3. Thus, their repairs can be scheduled on day 4 or subcontracted.
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Step 3 utilizes the optimal scheduling results to obtain the optimal sequence of blocks
by solving the proposed sequencing model. Figure 16 displays the obtained results. The
optimal results from scheduling and sequencing models will be stored in each block.

In Step 4, a hash is assigned to each block. Practically, the linkage between blocks
(failure repairs) that will be repaired on the same day can be referenced by the start and
finish repair times. As noted previously, failure 30 should be repaired on day 1 at time 0
(should be repaired first on that day) at maintenance shop 3. In addition, failure 32 should
be repaired on day 1 at time 3 at the same maintenance shop 3. Then, the linkage between
these two failure repairs is developed, as depicted in Figure 17.

In step 5, all assigned blocks are shared with relevant stations through computer
networks. Finally, the blockchain is created among private networks for access without the
possibility to make changes. Once a block has been completely repaired, feedback is sent to
the maintenance department and the maintenance engineers make necessary changes to
update the block hash.
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4. Research Results

The developed ERR system enables effective management and monitoring of the
progress of maintenance activities. Further, using the optimization models can provide
efficient utilization of maintenance resources and reduce high maintenance costs. Finally,
progress reports and statistical analysis for the performance of the maintenance department
are obtained in real time, which enables managers to take on time corrective actions. For
illustration, the calculated overtime and idle time (hours) are listed in Figure 18, where
the total overtime and idle time are zero and 12 h, respectively. Noticeably, the largest
idle time (=5.5 h) is incurred in shop 2. The total costs of idle and delay times are 30 and
540 JOD. Such a report enables maintenance engineers to take the proper actions to reduce
such costs, enhance the skills of repairmen, and increase utilization of maintenance shops
by applying a preventive maintenance policy.
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Moreover, the shops’ utilization equals the total repairing time divided by the normal
working hours. Figure 19 displays the calculated shop utilization. The smallest utilization
is 77%, which corresponds to shop 2. Nevertheless, such utilization values are acceptable.
As a result, it can be concluded that the developed ERR system including the optimization
models is found effective in the scheduling and sequencing of failure repairs, managing
maintenance activities, and controlling maintenance resources.
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Figure 19. Estimated shops’ utilization.

Most of the previous work focused on developing a framework for the adoption of
the blockchain in data management and sharing. However, this research contributes to
literature and practice by: (1) developing optimal information for blocks by formulating
and solving optimization models for scheduling and sequencing maintenance activities;
(2) generating effective planning of maintenance activities that optimizes resources utiliza-
tion and minimizes maintenance costs; (3) developing an effective framework for blockchain
adoption that can be customized to other applications, such as project management, health-
care, and production; (4) providing real-time information on the progress of business
operations, deliveries, and other important information and providing analytical/statistical
reports that help decision-makers and end users to track the current status.
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5. Conclusions

This research developed an ERR system with two optimization models used for
scheduling and sequencing failure repairs in the blockchain under minimal costs. Each
failure was treated as a block. Then, the optimization models were used to assign daily
resources and shops to failure repairs and sequence repair activities in each maintenance
shop. A real case was employed for illustrating the developed ERR system. Thirty-six
failures from different categories were received for repair in six maintenance shops over
a three-day period. The models were found effective in managing 33 failure repairs in
this period, while the remaining three failures were delayed due to the unavailability of
repair technicians. Besides, the utilization of maintenance shops was acceptable. Still,
maintenance managers can enhance the utilization of shops by implementing preventive
maintenance, adding new multifunctional equipment, and multiskilled technicians. In
conclusion, the developed ERR system including the developed optimization models is
found effective in managing and controlling the blockchain of failure repairs at minimal
costs and can help in: (i) analyzing the various cost elements associated with scheduling
and sequencing of failure repairs and determining the necessary actions to minimize costs
and improve utilization and (ii) reducing failure waiting time and delay costs. Future
research considers developing an electronic patient recording system.
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