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Abstract: This paper developed a data analysis approach to estimate the probabilistic life of an earth
pressure balance (EPB) tunnel boring machine (TBM) under wearing conditions with incomplete
information. The marginal reliability function of each system component of TBM is derived based
on data collected from the site. The structure of the failure framework was determined based on
the evaluation of influencing factors, including the wearing of the cutter head panel and screw
conveyor. The joint distribution model was built by utilizing the best-fit copula function and the
remaining reliable mining distance can be predicted from this model. Real data of the remaining
thickness of the wearing resistance structure of the cutter head panel and screw conveyor from
an earth pressure balance (EPB) TBM were captured. A realistic metro tunneling project in China
was utilized to examine the applicability and effectiveness of the developed approach. The results
indicate that: (1) With the selection of normal distribution and Gumbel copula as the best-fit marginal
distribution function and copula function, the reliable mining distance was predicted as 4.0834 km
when the reliability equaled 0.2. (2) The copula function was necessary to be considered to assess the
joint distribution of the reliability function, as the predicted mining distance reduces significantly
to 3.9970 km if assumed independent. (3) It enables the user to identify the weak component in the
machinery and significantly improve the reliable mining distance to 4.5075 km by increasing the
initial thickness of the screw conveyor by 0.5 mm. This approach can be implemented to minimize the
risk of unintended TBM breakdown and improve the tunneling efficiency by reducing unnecessary
cutter head intervention during the mining process.

Keywords: TBM; service life prediction; copula modeling; incomplete information; dependent structure

1. Introduction

With rapid urban development, the underground rail transit system has been largely
applied as a transport system in the city [1]. Tunnel boring machines (TBM) have been
widely used during tunnel construction for their high stability and safety control, fast and
consistent excavation speed, and less disturbance to nearby structures [2]. However, due to
complex underground soil conditions and huge loadings applied, some key components
in TBMs, including the cutter head panel and the screw conveyor, are worn or damaged
during the underground tunneling process [3,4]. Failures of the key components of TBM
cause the machine to break down [5], which could induce significant cost overrun and
progress delay [6]. To control construction risk, the industry normally conducts periodic
cutter head interventions (CHI) for visual inspection to check the wearing condition of
these key components [7]. However, such practice inevitably causes an elongated project
duration with a reduced profit margin. Moreover, additional safety risks are introduced
when humans are under pressurized conditions during the inspection [8]. Therefore,
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an accurate estimation of TBM reliability and the remaining service life under wearing
conditions is essential for project success.

The service life prediction and analysis of TBM reliability under wearing conditions
could be at a high level of complexity. A large number of parameters may affect the
final result, including soil parameters, underground water conditions, the existence of
rocks or other hard materials, the depth and rate of excavation, the type and structural
strength of steel material used in TBM, etc. [9]. Therefore, it is difficult to identify the key
influencing parameters and determine their influence on a TBM’s service life. To assess
this problem, existing research has mainly focused on exploring the failure mechanism
of the TBM components. For the cutter head, Huo et al. [10] studied the mechanism of
stress-strain transition in the cutter head disc based on small time-scale fatigue and a crack
growth model. Barzegari et al. [11] predicted the lifetime of TBM components from a soil
perspective by calculating the soil abrasivity from their proposed soil abrasion test. Ling
et al. [12] studied structural fatigue mechanisms and predicted the TBM cutter head lifetime
by proposing a method of fatigue crack propagation. However, the study on the cutter head
itself was insufficient to precisely predict the service life for a TBM, as it may be affected by
other factors. Some studies explored the performance of the screw conveyor. For instance,
Talebi et al. [13] utilized computational fluid dynamics to predict the performance of the
screw conveyor by simulating the soil movement inside. Wang et al. [14] developed a
performance prediction model for a screw conveyor based on particle movement simulation
by the discrete element method. However, two main research gaps were identified. Firstly,
research on the tool wear of screw conveyors is very limited. Secondly, to the best of our
knowledge, the joint effect from both components has not been investigated. In summary,
there is insufficient research focused on the service life prediction of TBM by considering
the dependency between the affected components.

Copula has proved to be a strong tool to model the relationship between the marginal
probability distribution of the factors and the joint probability distribution of the related
factors [15,16]. It has been largely applied in various fields, including financial model-
ing, risk analysis, hydrology, and others [17–21]. The copula theory has been applied in
underground studies. For instance, Pan et al. [22] studied the face reliability of TBM by
developing a bivariate model considering the supporting pressure and ground settlement.
Tang et al. [23] evaluated the slope stability under incomplete information with copula
functions. Pan et al. [24] modeled the structural health in an operational subway system
in Wuhan, China, with a copula-Bayesian approach. Since the service life of a TBM could
be affected by key components, including the cutter head and the screw conveyor, which
are subjected to wear during excavation, this paper intended to explore the possibility of
adopting the copula theory to consider the dependency between TBM components and to
achieve service life predictions in an accurate and reliable manner.

The main research questions are: (1) How to model the structure with incomplete
information that can predict the service life of TBM? (2) How would the initial data affect the
prediction result? (3) What is the minimum requirement for the data collection to achieve
a reliable prediction? To address these questions, a data-driven copula approach was
proposed to estimate the service life of a TBM with respect to tunneling mining distance.
This research contributes to the state of practice in developing a novel approach that
predicts TBM service life based on limited data collected on-site. The proposed approach
could serve as an effective decision-making tool for the engineers since TBM’s reliability
can be estimated without laboratory tests or developing complex numerical modeling. The
construction safety and overall efficiency during the tunnel operation could be improved
based on the service life estimation. It also helps to identify the less strong component in
the system so that the system performance can significantly improve by strengthening the
bottleneck components.

The rest of the paper is organized as follows. Section 2 reviews the existing approaches
to TBM wearing tools’ service life prediction. The proposed approach with detailed step-
by-step procedures is presented in Section 3. A realistic case study in China was used to
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verify the feasibility of the method developed in Section 4. Section 5 discusses the impacts
of the system structure and marginal distributions on the overall result of TBM service life.
Section 6 draws up conclusions and provides recommendations for future studies.

2. Related Studies

Predicting the service life of TBM is critical for improving the safety of the tunneling
process [25]. Tool wear is one of the major factors that impact the efficiency and security of
TBM [26]. A large number of research efforts have been made to address this problem with
various approaches, which can be categorized as empirical, experimental, numerical, and
intelligent methods.

(1) Empirical methods: Empirical methods aim to predict the service life based on em-
pirical formulas. Numerous attempts have been developed over the past decades.
In the early years, the Colorado School of Mines (CSM) model, the Norwegian Insti-
tute of Technology (NTNU) model, and the Gehring model [27–29] were proposed
as common models used for cutter tool wear prediction. Apart from that, Nelson
et al. [30] developed an empirical formula based on TBM field performance data from
various geological conditions and TBM parameters. Bieniawski et al. [31] established
the relation between rock mass excavatability and the Cerchar abrasivity index based
on cutter consumption. Recent research on empirical methods has been more diversi-
fied into different types of geological conditions and cutter tools. For example, Liu
et al. [32] proposed a new empirical model that focused on predicting the wearing of
cutter discs of large size. Hassanpour et al. [33] introduced a new empirical model to
predict the cutter wear specifically for strong pyroclastic and mafic igneous rock.

(2) Experimental methods: Experimental methods predict the service life based on lab-
oratory soil abrasivity tests [11,34]. A large number of lab tests were developed in
the early studies, including the Cerchar abrasivity test [35], the Laboratoire Central
des Ponts et Chausées (LCPC) abrasimeter test [36], and the NTNU soil abrasion
test [37]. In recent years, Salazar et al. [34] proposed a new test device that could
produce a reliable result in a short period of time. Cardu et al. [38] developed an
intermediate linear cutting machine to study the TBM behavior with a reduced scale
of detail. Jakobsen et al. [39] explored the influence of numerous parameters that
could affect soil abrasivity based on the developed soft ground abrasion tester (SGAT)
device. Major conventional abrasivity tests are summarized in Table 1.

(3) Numerical methods: Numerical methods simulate site conditions based on the com-
puter model. Common numerical methods include the finite element method and
the discrete element method. For instance, Ren et al. [40] analyzed the disc cutting
failure based on a 3D circular cutting analysis and numerical simulations. Li et al. [41]
established a finite element model to study the characteristics of the interaction be-
tween TBM cutting tools and rock and soil during excavation. Owen and Cleary [42]
used the discrete element method to predict the performance of the screw conveyor.
However, numerical methods usually require a long period to establish the model
and obtain results. Moreover, Geng et al. [43] criticized the numerical method on
its accuracy due to various assumptions. A better approach should be proposed to
predict the service life with high accuracy and the ease of model construction.

(4) Intelligent methods: Intelligent methods utilize various mathematical and data pro-
cessing methods to analyze the data collected from the site [44]. These methods have
been largely applied in reliability studies due to their capabilities and high adapt-
ability to resolve complex problems [45]. Crk et al. [46] conducted a degradation
analysis to predict the reliable service time for highly reliable components. For TBMs,
Zhao et al. [47] predicted the wearing condition of the cutting tools by developing
a prediction model with a support vector machine incorporated. Zhang et al. [48]
proposed a hybrid simulation approach to analyze the TBM performance and relia-
bility by integrating dynamic fault trees and Bayesian networks. Gouarir et al. [49]
presented a tool wear prediction system that used convolutional neural networks and
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force analysis. Indeed, there are insufficient studies on TBM service time predictions
that are based on their reliability and the degradation of the wearing components.

Table 1. Summary of major abrasivity test methods.

Test Description Reference

NTNU soil abrasion test

Soil abrasivity is estimated based on the loss of
steel pieces in the test device after a designed

amount of oven-dried soil power sample flows
through this test device.

[37]

LPCP abrasimeter test
The test uses a metal impeller to crush the soil

sample and sample abrasivity is measured
based on the wearing of the metal impeller.

[36]

Cerchar test

The test can obtain the Cerchar abrasivity
index (CAI) by measuring the wearing of a

steel stylus that moves into the rock sample at
a certain force.

[35]

In this study, there was a large number of influencing factors that may affect the
wearing condition of the TBM, including complex underground soil conditions and var-
ious dynamic TBM operational parameters [50]. In the traditional methods (empirical,
experimental, and numerical methods), there are always assumptions involved in order to
simplify the problem that inevitably compromise the accuracy of the prediction. Moreover,
the adaptability of the traditional methods is limited, as the proposed models are only
suitable for specific soil conditions. Motivated by high capability and adaptability, the
intelligent methods could overcome the problem of comprehensive parameters involved
by directly modeling the relationship between TBM service life and data collected on-site.
Therefore, this paper proposes an intelligent method to predict the TBM service life based
on the available degradation data generated during the operational period of the TBM.

3. Methodology

To analyze the relationship between the overall TBM reliability and its key wear-
resistance components with respect to the mining distance, a data analysis approach with
a copula function was proposed to model this problem. A flowchart of the developed
approach is illustrated in Figure 1. There were three main stages incorporated, which are
elaborated in Sections 3.1–3.3, respectively.

3.1. Data Fitting for Marginal Distributions under Incomplete Information

The data used in this research mainly include the remaining thickness for the wear-
resistant material on the TBM’s key components, namely the cutter head panel and screw
conveyor. In particular, the remaining thickness of the wear-resistance strip welded on
the different sides of the cutter head panel was measured prior to and during tunnel
excavation. The cutter head panel was evenly divided into several zones, with a few
locations measured for each zone. To avoid data bias, the average value for each zone was
calculated to represent the zone. Similarly, the screw conveyor was divided into several
zones and the remaining thickness of the wear-resistance strips was measured at the same
location as the cutter head panels. The collected data were used to analyze the service life
of single components as well as the joint distribution of the overall service life prediction.

The marginal distribution functions describe the reliability of TBM components with
respect to mining distance. To establish the copula model on the TBM lifetime prediction, it
was critical to derive the marginal distribution function for all key components involved.
However, the data obtained from the site were incomplete due to the limited site mea-
surements available. To overcome this problem, a marginal distribution function with
incomplete information was constructed by the following steps.
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Figure 1. Flowchart of the developed approach for reliability assessment in complex systems.

Step 1: We defined the remaining thickness of wear-resistance structures in the cutter
head panel and screw conveyor over the mining distance x following a function yi(x). In
this function, i indicates the type of components (i = 1 for cutter head panel, i = 2 for screw
conveyor). In this research, we assumed that the relationship between the mining distance
and the remaining thickness for the cutter head panel or the screw conveyor was linear.
This assumption was purely based on the observation of the data, and it might not be
applicable to other cases. A different function can be proposed based on the nature of the
collected data or estimated by means of the maximum likelihood methods [51]. In this
study, the function was proposed as follows.

yi(x) = αi + βix (1)

where α indicates the initial thickness, β is the rate of wearing, and x is the mining distance.
The normal distribution, Weibull distribution, Gumbel distribution, and logistics distribu-
tion were selected as candidate marginal distributions to describe the relationship between
the remaining distance of the wear-resistance structure and the mining distance.

Step 2: For the normal distribution, i.e., α ∼ N
(
µαi, σαi

2), β ∼ N
(
µβi, σβi

2), yi(x)
follows Equation (1). As α and β are independent, the mean and variance for function yi(x)
can be expressed as follows:

µ̃i(x) = E{yi(x)} = µαi + µβix (2)
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σ̃i(x) = Var{yi(x)} = σαi
2 + σβi

2x (3)

where parameters from Equations (2) and (3) can be derived by finding out the best-fitting
distribution based on TBM mining data.

Step 3: The function Fi(x) was defined as the probability of the component malfunction,
and the malfunction value for the cutter head panel and screw conveyor was set as H1 and
H2. If the thickness of the wear-resistance structure for these two components falls below
the malfunction value, y1 < H1 or y2 < H2, then the TBM is considered unreliable for work.
Therefore, the function Fi(x) is the cumulative density function (CDF) of yi < Hi, and it is
expressed as follows:

Fi(x) = P(yi(x) < Hi) = Φ
(

Hi − µ̃i(x)
σ̃i(x)

)
=

1√
2π

∫ t

−∞
e−

t2
2 dt (4)

where t = Hi−µ̃i(x)
σ̃i(x) and Φ denote the expression in the bracket that follows the CDF of

standard normal distribution.
Step 4: The function Ri(x) was defined as the probability of component functions

reliability. The probability for the component is 1 when the tunneling work just starts and
gradually reduces with the increment of mining distance. That is, Ri(x) reduces and Fi(x)
increases as the mining distance x increases. However, the total probability of component
reliability and malfunction is always constant. Therefore, Fi(x)+Ri(x) = 1, and Ri(x) is
expressed as

Ri(x) = 1− Fi(x) = P(yi(x) ≥ Hi) = 1−Φ(
Hi − µ̃i(x)

σ̃i(x)
) = 1− 1√

2π

∫ t

−∞
e−

t2
2 dt (5)

Step 5: The same procedure is repeated in steps 2–4 for the Weibull distribution
and/or Gumbel distribution. However, the mean µ̃i(x) and variance σ̃i(x) for the normal
distribution is replaced by the location parameter µ̃i(x) and scale parameter b̃i(x) for
the Gumbel distribution, the shape parameter k̃i(x) and scale parameter λ̃i(x) for the
Weibull distribution, and the location parameter µ̃i(x) and scale parameter s̃i(x) for logistic
distribution. The reliability function for the Gumbel distribution, Weibull distribution, and
logistic distribution can be expressed in Equations (6)–(8), respectively:

Ri(x) = P(yi(x) ≥ Hi) = e−e−(x−µ̃i(x))/b̃i(x)
(6)

Ri(x) = P(yi(x) ≥ Hi) = e
−( Hi

λ̃i(x)
)

k̃i(x)

(7)

Ri(x) = P(yi(x) ≥ Hi) =
1

1 + e−(Hi−µ̃i(x))/s̃i(x)
(8)

where the location parameter µ̃i(x) = µαi + µβix and scale parameter b̃i(x) = bαi + bβix for
the Gumbel distribution, shape factor k̃i(x) = kαi + kβix, the scale parameter λ̃i(x) =
λαi exp

(
λβi
)
+ λγi for the Weibull distribution, and location parameter µ̃i(x) = µαi +

µβix and scale parameter s̃i(x) = sαi + sβix for the logistics distribution.
Step 6: The goodness of fit for candidate distributions should be estimated to determine

the best fitting type of marginal distribution. Akaike Information Criteria (AIC) [52] and
Bayesian Information Criteria (BIC) [53] are the two common measures for checking data
fitness. AIC and BIC are estimators that can estimate the quality of each model, which is
the best-fitting marginal distribution function. AIC and BIC values can be calculated based
on the formulas below:

AIC = −2 ∑N
i=1 ln f (x; µ, σ) + 2k (9)

BIC = −2 ∑N
i=1 ln f (x; µ, σ) + klnN (10)
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where k is the number of correlation parameters in the model, N is the number of data, and
f (x; µ, σ) is the maximum value of the likelihood function of the model. As Equations (9) and (10)
suggest, the difference between AIC and BIC is that BIC gives more penalty when a greater
number of correlation parameters are involved in the model under relatively big data size.
However, as the parameters in candidate models are the same in this case, AIC and BIC
values should be consistent. Therefore, the model should be selected when AIC and BIC
values are the lowest among the candidate models.

3.2. Structural Learning for System Failure Models

The structure of the failure mode is critical for reliability analysis. The failure structure
of the system is determined according to the mechanism and the relation between the
components. Generally, serial, parallel, and mixed are the three essential relationships
between the components in an engineering system [54]. If the components are in serial,
the system will fail if any of its components fail. For a parallel system, the system will
succeed if any of its components succeed. The mixed system is a more complicated system
that contains both serial and parallel systems [55]. One of the useful tools to describe the
relationship between the components and the overall system is the reliability block diagram
(RBD) method. In this approach, the influential components are represented by blocks,
and their relationships are denoted by the links in between. Given components 1, 2, . . . ,
i, and their marginal failure probability functions F1(x), F2(x), . . . , Fi(x), the joint failure
probability is different if the components are constructed in different structures.

For a system that consists of two components, their relationship would be either serial
or parallel. Figure 2 summarizes the RBD for a system with two components. The system
follows failure mode (a) if the two components are in parallel and mode (b) if the two compo-
nents are in serial. Apart from different failure modes, the dependency between each com-
ponent affects the joint probability as well. For example, if the given system follows mode
(a) and the two sub-systems are independent of each other, the reliability can be calculated
as R(x) = (1− F1(x))(1− F2(x)) = 1− F1(x)− F2(x) + F1(x)F2(x). However, if the two
sub-systems are dependent, the reliability is calculated as R(x) = 1− C(F1(x), F2(x); θ1),
where C denotes the copula function, and θ is the correlation parameter between the two
marginal variables. Similarly, the general formula of the reliability function Ri(x) un-
der different failure mode structures and different dependency conditions (dependent or
independent) can be calculated, respectively, and the results are shown in Table 2.
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For the system that consists of three components, the relationship can be serial, parallel,
or mixed. Figure 3 summarizes the RBD for a system with three components. Similar
to the two component case, mode (a) and (b) describe the failure scenarios for the three
component system, where mode (a) is for all components in parallel and mode (b) is for all
in serial. However, there are three other possible failure modes described in (c), (d), and
(e), where the components are in a mixed system. Different RBDs are formed based on the
different critical paths of the components. Mode (c) is followed when two components
(F1(x) and F2(x)) are replaceable with each other while any of them can form a critical path
with the other one (F3(x)). However, if there are two possible critical paths between the two
components (F1(x) and F2(x)) or F3(x), mode (d) is followed. If the system can properly
function when any two out of three components are working well, mode (e) describes such
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a situation. The reliability functions Ri(x) for three components under different failure
modes and dependencies are also summarized in Table 2. For instance, if a system has
three components, then a failure of all causes the system to break down. In this case, these
three components are in parallel and failure mode (a) in Table 2 is followed. As a result, the
reliability function follows R(x) = 1− C(F1(x), F2(x), F1(x); θ1θ2θ3).
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(c–e) in a mixed system.

Table 2. Joint distribution functions for a system consisting of two and three components under
different failure modes and dependency conditions.

No of Components Mode Reliability Function Ri(x) (Independent) Reliability Function Ri(x) (Dependent)

Two (a) 1− F1(x)F2(x) 1− C(F1(x), F2(x); θ1)
(b) 1− F1(x)− F2(x) + F1(x)F2(x) 1− F1(x)− F2(x) + C(F1(x), F2(x); θ1)

Three (a) 1− F1(x)F2(x)F1(x) 1− C(F1(x), F2(x), F1(x); θ1θ2θ3)

(b) 1− F1(x)− F2(x)− F3(x) + F1(x)F2(x) +
F1(x)F2(x) + F1(x)F2(x)− F1(x)F2(x)F1(x)

1− F1(x)− F2(x)− F3(x) +
C(F1(x), F2(x); θ1) + C(F1(x), F3(x); θ2) +
C(F2(x), F3(x); θ3)−
C(F1(x), F2(x), F1(x); θ1θ2θ3)

(c) F1(x)F2(x)− F1(x)F2(x)F3(x) C(F1(x), F2(x); θ1)−
C(F1(x), F2(x), F1(x); θ1θ2θ3)

(d) 1− F3(x) + F1(x)F3(x) + F2(x)F3(x)−
F1(x)F2(x)F3(x)

1− F3(x) + C(F1(x)F3(x); θ2) +
C(F2(x)F3(x); θ3)−
C(F1(x)F2(x)F3(x); θ1θ3)

(e) 1− F1(x)F2(x)− F1(x)F3(x)−
F2(x)F3(x) + 2F1(x)F2(x)F3(x)

1− C(F1(x)F2(x); θ1)−
C(F1(x)F3(x); θ2)− C(F2(x)F3(x); θ3) +
2C(F1(x)F2(x)F3(x); θ1θ2θ3)

3.3. Copula Enabled Data-Driven Prediction

Copulas are functions that describe the dependency between the n-dimensional multi-
variate joint distribution and 1-dimensional marginal functions, given that the probability
distribution of these variables is uniform [56]. Derived by Sklar [57], given a d-dimensional
CDF, F(x1, x2, . . . , xd ), with marginal functions F1, F2, . . . , Fd, a copula C exists, as
shown below:

F(x1, x2, . . . , xd ) = C(F1(x1), F2(x2), . . . , Fd(xd)) (11)
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where all xiε[−∞, ∞] and i = 1, 2, . . . , d. The copula function is unique if Fi is continuous
for all i = 1, 2, . . . , d. For the case of two variables, the formula can be rewritten as follows.

F(x1, x2) = C[F1(x1), F2(x2)] = C(u1, u2; θ) (12)

where C denotes the copula function, θ is the correlation parameter between the two
marginal variables, and u1, u2 refer to the marginal distribution functions for F1, F2, respec-
tively. Therefore, the copula function is utilized to develop the reliability function model
that includes dependent marginal variables.

There are three types of copula functions largely applied in engineering studies,
namely Archimedean copulas, Elliptical copulas, and Vine copulas. Archimedean cop-
ulas are by far the most popular copulas due to their relatively simple structure, ease
of calculation, and high adaptability and flexibility in engineering problems [58]. There-
fore, Archimedean copulas were tested in this paper to find the most suitable copula type
for the TBM service life prediction model. The selected candidate copulas are shown in
Table 3 below.

Table 3. Selected Archimedean copulas for testing.

Copula Type Copula Function C(u1,u2;θ) Generator ϕ(t,θ) θ

Gaussian
∫ Φ−1(u1)
−∞

∫ Φ−2(u2)
−∞

1
2π
√

1−θ2 exp[− x2
1−2θx1x2+x2

2
2(1−θ2)

]dx1dx2 — [−1, 1]

Clayton (u−θ
1 + u−θ

2 − 1)
−1/θ

ϕθ(t) = 1
θ

(
t−θ − 1

)
[0, ∞]

Frank − 1
θ ln
(

1 + (e−θu1−1)(e−θu2−1)
e−θ−1

)
−ln e−θt−1

e−θ−1
(−∞, ∞)\{0}

Gumbel exp
{
−[(−lnu1)

θ + (−lnu2)
θ ]

1/θ
}

ϕθ(t) = (−lnt)θ [1, ∞]

Before the confirmation of the copula function, it is vital to analyze the dependence
structure of copulas. There are three principles used to measure the dependence: Pearson
correlation, rank correlation, and coefficient of tail dependence. Pearson correlation mainly
measures the linear relationship between variables, while it is not suitable for non-linear
conditions. Spearman’s rho and Kendall’s tau are the key values for rank correlation
measures, and they are very useful in calibrating copula functions. Tail dependence
was not necessary to be measured in this case. Therefore, Kendall’s tau was utilized to
measure the dependence and correlation parameter θ. For two random variables X1 and
X2, Kendall’s tau ρT is defined as

ρT =

(
N
2

)−1

∑i<j sign
[(

x1i − x1j
)(

x2i − x2j
)]

(13)

where sign(·) is defined as

sign =

{
1
(
x1i − x1j

)(
x2i − x2j

)
> 0

−1
(
x1i − x1j

)(
x2i − x2j

)
< 0

i, j = 1, 2, . . . , N (14)

Based on the copula theory, the correlation parameter of copula θ can be calculated
based on the following equation:

ρT = 4
∫ 1

0

∫ 1

0
C(µ1, µ2; θ)dC(µ1, µ2; θ)− 1 (15)

AIC and BIC are used to determine the best-fitting candidate copula models. AIC and
BIC values for the copula model can be calculated based on the formula below.

AIC = −2 ∑N
i=1 ln f (µ1i, µ2i; θ) + 2k (16)
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BIC = −2 ∑N
i=1 ln f (µ1i, µ2i; θ) + klnN (17)

where f (u1i, u2i; θ) denotes the likelihood function and can be regarded as the density of
the respective copula function, where f (u1i, u2i; θ) =

∂C(u1,u2;θ)
∂u1∂u2

[59,60]. AIC and BIC values
are calculated for each candidate copula function, and the one with the minimum AIC and
BIC values is the best-fit model among the candidate copula models.

From Section 3.1, the remaining lifetime function for a single component is Ri(x) =
P(yi(x) ≥ Hi). Therefore, with the copula model developed in Section 3.2, the remaining
lifetime function of the whole TBM can be expressed as below.

R(x) = P(y1(x) ≥ H1, y2(x) ≥ H2)
= 1− P(y1(x) < H1)− P( y2(x) < H2) + P(y1(x) ≥ H1, y2(x) ≥ H2)
= 1− F1(x)− F2(x) + C(u1, u2; θ)

(18)

where F1(x), F2(x) are the marginal distribution function for the remaining lifetime of
the wear-resistance structure in the cutter head panel and screw conveyor, respectively.
C(u1, u2; θ) is the copula function that indicates the probability of both components.

4. Case Study

In order to justify the applicability and effectiveness of the developed approach, real
data from open literature were utilized for an example illustration. The data were collected
in one of the EPB-TBM projects in the Chengdu metro system, China.

4.1. Case Background

There are various types of TBMs available on the market, including open mode TBM,
slurry TBM, mix shield TBM, and EPB TBM. EPB TBM is widely used in tunnel construction
under soft cohesive soil or mixed ground conditions [61,62]. The basic principle for EPB
TBM is to use the excavated soil to counter-balance the earth’s pressure, which is achieved
by filling the soil inside its working chamber [63]. During the mining process, the soil is
crushed and excavated by the cutter head and is transported into the pressurized working
chamber. The screw conveyor then transports the soil from the working chamber to the
belt conveyor or muck buckets, and the ladder transports the excavated soil to the disposal
point [64]. While excavating the soil, the jacking system supplies pressure and thrust force
to push the whole TBM moving forward. A detailed illustration of EPB-TBM, including the
key components and photos of the cutter head panel and the screw conveyor, is shown in
Figure 4a–c, respectively. As both the cutter head and screw conveyor can be worn during
the mining process, the probability of failure is increased when the excavation distance
increases. Therefore, the reliability of TBM is the joint probability distribution developed
based on the marginal distribution of the two components.

The data used in this study follow the literature [65], which was collected from the
Chengdu metro system tunneling project. Two sets of data were collected regarding the
remaining thickness of the wear resistance structure for the cutter head panel and screw
conveyor. For the cutter head panel, the wear-resistance structure refers to the wear-
resistance strip welded on the front, rear, and sides of the cutter head panel. These strips
were under the same working environment and loading conditions. Moreover, strips at
different locations had the same initial thickness and material properties. To avoid data
insufficiency, cutter head panels were evenly divided into 12 zones, in which each zone had
30 degrees of area. For each zone, a few data points were captured, while the average value
was taken with extreme data eliminated to represent the actual remaining thickness for this
zone. For the screw conveyor, the wear-resistance strips were also welded on the screw
conveyor as a wear-resistance structure to protect the conveyor. For this EPB-TBM, there
were nine rounds of spiral in the screw conveyor, and each round of spiral was equally
divided into 18 zones. Similar to the data collection process for the cutter head panel, the
average value for each zone was calculated from the remaining thickness measured on each
round of the spiral to represent the actual condition. The remaining thickness was measured
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at a mining distance of 0 km, 0.614 km, 1.546 km, and 2.762 km. Details of the collected
data for both cutter head panel and screw conveyor are shown in Tables 4 and 5 below.
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Figure 4. Illustration of EPB-TBM for (a) key components in the TBM, (b) photo of the cutter head
panel, and (c) photo of the screw conveyor.

Table 4. The remaining thickness for the wear-resistance structure on the cutter head panel.

Zone
Remaining Thickness (mm) at Different Mining Distances

0 km 0.614 km 1.546 km 2.762 km

1 7.62 6.24 5.12 2.72
2 7.52 6.56 5.36 3.08
3 7.68 6.08 5.38 3.08
4 7.56 6.44 5.78 3.24
5 7.48 6.32 5.74 2.7
6 7.6 6.56 5.68 3.2
7 7.76 6.06 5.16 3.7
8 7.68 6.26 5.5 3.4
9 7.54 6.06 5.32 2.5
10 7.56 6.42 5.48 3.92
11 7.54 6.34 5.28 2.98
12 7.64 6.24 5.78 3.36

Table 5. The remaining thickness for the wear-resistance structure on the screw conveyor.

Zone
Remaining Thickness (mm) at Different Mining Distances

0 km 0.614 km 1.546 km 2.762 km

1 5.92 5.3 3.82 2.24
2 6.00 4.74 3.62 2.76
3 5.84 5.26 3.56 1.94
4 5.74 5.04 3.36 2.9
5 5.58 5 3.3 2.14
6 5.80 5.22 3.44 2.28
7 5.66 4.86 3.42 2.48
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Table 5. Cont.

Zone
Remaining Thickness (mm) at Different Mining Distances

0 km 0.614 km 1.546 km 2.762 km

8 5.88 4.8 3.28 2.56
9 5.94 4.94 4.03 2.06
10 5.86 5.20 3.70 2.6
11 5.72 4.7 3.46 2.86
12 5.76 5.06 3.3 1.8
13 5.82 4.72 3.36 2.33
14 5.94 5.07 3.56 2.56
15 6.00 5.03 3.8 2.82
16 5.84 5.14 3.4 2.62
17 5.66 5.24 4.07 1.60
18 5.84 5.08 3.36 2.44

4.2. Model Development

Based on the data shown in the table above, the respective parameters under different
candidate marginal distributions discussed in Section 3 could be calculated by fitting the
data into the respective distribution. With the derived parameters, the probability of failure
at each mining distance can be calculated. The predicted mining distance can then be
determined at the preferred reliability.

To further illustrate the procedure, the normal distribution was utilized as an example.
From the original data from the cutter head panel and screw conveyor, the mean and
variance at each mining distance were calculated as shown in Table 6. With the calculated
mean and variance, the best-fitting regression line was derived and plotted in Figure 5a,b
for the mean and variance, respectively. In particular, the dots in Figure 5a represent the
original data collected for each zone of the cutter head panel and the screw conveyor, and
the dots in Figure 5b are the variance of these data at different mining distances. Since the
linear fitting line achieved a high coefficient of determination (R2) with the data (greater
than 0.95 for both cutterhead and screw conveyor), it justifies that our assumption was
reasonable based on the collected data. The respective parameters are shown in Table 7,
where α and β denote the initial thickness and wearing rate for the wear-resistance strips.

Table 6. Data fit mean and variance for the cutter head panel and screw conveyor under the normal
distribution.

Component Parameters
Mining Distances

0 km 0.614 km 1.546 km 2.762 km

Cutter head panel Mean 7.5983 6.2983 5.4650 3.1567
Variance 0.0807 0.1767 0.2350 0.4113

Screw conveyor Mean 5.8383 5.0500 3.5258 2.3600
Variance 0.1142 0.1771 0.2404 0.3391

Since the mean and variance at all mining distances are known, the cumulative
probability of failure can be calculated based on Equations (4) and (5) are derived in
Section 3.1. For example, at a mining distance of 4 km, the mean and variance for the cutter
head were 1.37 mm and 0.54 mm, respectively. The reliability was calculated to be 0.75.
Similarly, the reliability at all mining distances were calculated and plotted in Figure 6a.
Similar to the normal distribution, data fit parameters for other candidate distributions are
shown in Tables 8–10. Following Equations (6)~(8) derived in Section 3.1, the reliability
curves for both the cutter head panel and screw conveyor under these distributions are
plotted in Figure 6b–d, respectively.
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(a) mean values; (b) variance values.
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distribution; (b) Weibull distribution; (c) Gumbel distribution; and (d) logistics distribution.
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Table 7. Mean and variance for the cutter head panel and screw conveyor under the normal distribution.

Parameter Component µai σai µβi σβi

Cutter head panel 7.542 0.1143 1.5380 0.0853
Screw conveyor 5.7499 0.1197 1.2638 0.0796

Table 8. Shape and scale parameters for the cutter head panel and screw conveyor under the Weibull
distribution.

Parameter Component kai kβi λai λβi λγi

Cutter head panel 7.5661 1.4909 82.54 1.502 11.6
Screw conveyor 5.811 1.2298 55.47 1.009 2.852

Table 9. Location and scale parameters for the cutter head panel and screw conveyor under the
Gumbel distribution.

Parameter Component µai bai µβi bβi

Cutter head panel 7.6386 0.0805 1.5354 0.1660
Screw conveyor 5.8887 0.0872 1.5967 0.2153

Table 10. Mean and variance for the cutter head panel and screw conveyor under the logistics
distribution.

Parameter Component µai sai µβi sβi

Cutter head panel 7.5932 0.0452 1.5419 0.1023
Screw conveyor 5.8474 0.0607 1.4698 0.1324

Following the procedures mentioned in Section 3.1, AIC and BIC values were calculated
to determine the best-fitting distribution for the data, and the results are shown in Table 11.
In Table 11, the normal distribution has the smallest AIC and BIC values for both the cutter
head panel and screw conveyor (bold font). Hence, the normal distribution was selected as
the candidate marginal distribution for this case study. Considering a threshold value of
H1 = 1 mm, which is the minimum allowable thickness for the wear-resistance strips on
both the cutter head panel and screw conveyor, the target reliability can be set at R(x) = 0.2.
That is to say, there is a high chance that the wear-resistance strips are less than 1 mm, which
is unsafe if continues. However, the TBM itself is still safe at this point. From Figure 6, it is
shown that the reliable mining distance for the cutter head and the screw conveyor under
this setting is around 4.59 km and 4.18 km, respectively.

Table 11. AIC and BIC values for the cutter head panel and screw conveyor under different distribu-
tions. The bold fonts generally indicate the lowest values in the table.

Distribution Measures Cutter Head Panel Screw Conveyor

Normal
AIC 2.009×104 1.529×104

BIC 2.010×104 1.530×104

Weibull
AIC 2.418× 104 1.644× 104

BIC 2.418× 104 1.644× 104

Gumbel
AIC 2.813× 104 7.101× 104

BIC 2.814× 104 7.101× 104

Logistics AIC 3.445× 104 2.121× 104

BIC 3.445× 104 2.122× 104

However, during the mining process, the soil is excavated by a cutter head and
mixed with slurry. The slurry is then transported by a screw conveyor. The reliability
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and remaining thickness of the cutter head panel and screw conveyor are affected by
some mutual parameters, such as the face pressure, thrust force, and soil excavation rate.
Therefore, these two components are dependent, and the failure probability for TBM is
the joint distribution depending on both marginal distributions of reliability. In this case,
as two components are in serial, failure mode type (b), developed in Section 3.2, was
followed. Moreover, the copula function was adopted to describe the dependency between
the two marginal distributions. With the procedures described in Section 3.3, AIC and BIC
values were calculated as shown in Table 12. With the AIC and BIC results, the Gumbel
copula was considered the best-fitting candidate copula, as it possessed the smallest AIC
and BIC values among these four candidate copula functions (bold font). Hence, the joint
reliability function distribution was derived based on the Gumbel copula. The 3D plots of
the probability density function (PDF) for different copulas are shown in Figure 7, where
the surface of the figures indicates the probability of the copula function under the domain
of [0,1].

Table 12. AIC and BIC values for different copula types. The bold fonts generally indicate the lowest
values in the table.

Item Gaussian Frank Clayton Gumbel

AIC Value −1.515× 103 −2.547× 103 3.959× 103 −2.605×103

BIC Value −1.510× 103 −2.542× 103 3.960× 103 −2.600×103
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4.3. Analysis of the Results

The joint distribution functions based on the Gumbel copula and other candidate
copulas are plotted in Figure 8a–d, respectively. The line colored in blue is the joint
distribution, and the lines colored in red and green are the marginal distributions for the
cutter head panel and screw conveyors, respectively. However, the blue and red lines in
Figure 8a,b are close to each other because the joint distribution and the screw conveyor’s
marginal distribution are similar under the Gumbel and Gaussian copulas. The predicted
mining distances at the reliability of 0.1, 0.2, and 0.3 for different copula models are shown
in Table 13. The results indicate that the recommended reliable mining distance in this case
study is 4.1652 km based on the reliability of 0.2. The predicted results are analyzed in
detail below.

(1) The results indicate that it is essential to consider the dependency between the wear-
ing of the cutter head panel and the screw conveyor. It was shown that there is a
strong positive correlation between the measured data of the two components. The
predicted mining distance will not be accurate if the failure probability between the
two components is assumed to be independent. From the results shown in this case
study, the predicted mining distance would only be 3.9970 km if assuming indepen-
dent. Compared with the result that incorporated the Gumbel copula function, the
prediction is overly conservative and creates additional unnecessary costs due to CHI
and cutting tool replacement. Therefore, the dependency between components was
considered, and copula functions are the strong tool that could characterize the depen-
dent structure. As shown in the case study, the predicted mining distance calculated
based on candidate copula models vary from 4.0803 km to 4.0834 km, which is 2.08%
and 2.16% higher than the independent assumption.

(2) The developed reliability function curve is consistent with the data obtained from the
site. From the data collected at a mining distance of 2.762 km, the remaining thickness
of the wear resistance structure for both the cutter head panel and the screw conveyor
were at an average of 3.15 mm and 2.36 mm, respectively. As all data collected at
2.762 km were much greater than 1 mm (mal-function value), these components were
in good condition with 100% confidence. When reflecting on the reliability function
curve, the reliability for both marginal distributions and joint distribution was 1. The
remaining thickness kept dropping when the mining process persisted, the reliability
curve started drop at 2.75 km and 3.25 km for screw conveyors and cutter head panels,
and it reached 0 at a mining distance of 5 km and 5.5 km, respectively. This indicates
that some wearing tools could have dropped to below 1 km between these mining
distances and all would be below 1 mm at a distance of 5 km and 5.5 km. To keep a
sufficient safety buffer, as well as to prevent being over-conservative, the reliability of
0.2 was selected for the mining distance prediction.

(3) The screw conveyor is the key component that imposes a major contribution to the
service life of TBM. This finding is based on the comparison between the two marginal
distributions and the comparison with the joint distribution. Considering the two
marginal distribution curves, it was shown that the cutter head panel was more reliable
than the screw conveyor at the same mining distance. By comparing the marginal
distribution curve and joint distribution curve, the joint distribution function line was
the same as the reliability function of the screw conveyor when reliability was higher
than 0.05. This shows that the screw conveyor could be the key component affecting
the reliability of the whole TBM. However, when the mining distance was more than
4.5 km, the joint distribution curve moved away from the marginal distribution curve
of the screw conveyor. This could be due to the dependency between the cutter head
panel and the screw conveyor. In addition, although the joint reliability function was
governed by the marginal reliability function of the screw conveyor, this does not
mean that the screw conveyor is more important than the cutter head in terms of the
tunnel excavation. Instead, the result generally indicates that the screw conveyor
could be the bottleneck component in the system, and the overall performance of the
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TBM could be largely improved if a stronger screw conveyor is provided. A more
detailed discussion on bottleneck detection is presented in Section 5.2.

(4) Prediction results varied with different copulas selected. As shown in Figure 5, the
types of copula functions affected the distribution of the joint PDF curve, which then
resulted in different values at the same reliability. As reflected in Table 11, the values
of the predicted mining distance varied from a minimum of 4.0803 km (Clayton
copula) to a maximum value of 4.0834 km (Gumbel copula). As there is only a 0.76%
difference between the maximum value to the minimum value, the selection of the
copula function did affect the result significantly for this case study. The result could
be because the joint reliability function of TBM is highly governed by the performance
of the screw conveyor. Therefore, the observation from this case study may not be
applicable to other cases. Hence, it is still recommended to select the most suitable
copula function based on the AIC and BIC values calculated.
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Table 13. Predicted mining distances (unit: km) under different copulas, independent conditions,
and marginal distributions.

Dependency Structure
Predicted Mining Distance at Different Reliability

Levels (km)

Reliability = 0.1 Reliability = 0.2 Reliability = 0.3

Dependent

Gumbel copula 4.2653 4.0834 3.9543
Gaussian copula 4.2653 4.0807 3.9543
Clayton copula 4.2614 4.0803 3.9545
Frank copula 4.2649 4.0804 3.9546

Independent
Joint 4.1371 3.9970 3.8919

Screw conveyor 4.2655 4.0836 3.9546
Cutter head

panel 4.7628 4.5676 4.4424

5. Discussions

Two significant factors affect the reliability of the predicted results, namely the struc-
ture of the failure mode and the marginal distribution of the components. For the failure
mode structure, the prediction results vary largely if these components are in parallel
instead of in serial. For marginal distribution, one component is the key influencing factor
if the rate of wearing is huge. The system is optimized only if both components are equally
reliable. Detailed discussions are presented below.

5.1. Influence of the System Structure

The failure mode structure can significantly affect the prediction result. As discussed
in Section 3.2, a system with two components could be either in serial or parallel. The
prediction result of 4.165 km was obtained based on the assumption that the components
were in serial. However, the results were different if they were in parallel. The reliability
R(x) was calculated as R(x) = 1− C(F1(x), F2(x); θ1) in this case.

Figure 9 plots the reliability function with different failure mode structures (serial and
parallel). Compared with serial failure mode, the prediction result for parallel was 4.576 km
at the reliability level R(x) = 0.2, with a 9.87% difference in prediction result. Therefore, it
is critical to determine the failure mode before performing the calculation of the service
life prediction or reliability. In this case study, the structure was clear and was easily
determined, as only two components were involved in the study. However, for a complex
system with a large number of components involved, the failure mode must be determined
prior to the calculation. As discussed in Section 3.2, the user identifies the critical path
for the components in the system and develops the RBD for the system. For example, for
a system that consists of three components, the user needs to determine whether mode
(e), (f), or (g) should be followed and decide which component is F1(x), F2(x), or F3(x)
in the diagram. For a complex system, the user also determines the components that are
dependent or independent of each other. A copula function should only be applied to those
that are dependent on each other. The reliability function of the machinery could then be
developed based on the RBD and dependency conditions between the components.
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5.2. Influence of the Marginal Distribution

For the case study in Section 4, it can be seen that the joint distribution function was
very close to the marginal distribution for the screw conveyor. The results indicate that
the wear resistance structure in the screw conveyor could be the key factor that affects the
service life of the entire TBM. Therefore, a further test is needed to justify the hypothesis
of how the marginal distribution could affect the final prediction result. In this study,
the initial thickness of the screw conveyor and cutter head panel increased by 0.5 mm,
respectively, to test their contribution to the improvement of the overall reliability. Figure 10
shows the marginal distribution and joint distribution with the improved cutter head panel
and screw conveyor.
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In Figure 10, the plot reliability function curve indicates that the predicted mining
distance increased significantly from 4.1652 km to 4.5075 km (8.22% increment) if the screw
conveyor improved. However, there was no improvement in the TBM if the cutter head
improved. Therefore, it can be concluded that the screw conveyor is the “bottleneck” of
the system. Although an increment of 0.5 mm in thickness on the wear-resistance strips
seems very negligible, the result was reasonable considering the scale of the original data.
In specific, the wear-resistance strips of the screw conveyor had an average mean thickness
of 5.83 mm before excavation and reduced to around 2.36 mm after excavation for around
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2.76 km. Refer to Figure 5 for the data fit line; the wearing of the screw conveyor was
around 1.26 mm/km. Therefore, by increasing the initial thickness of 0.5 km, the increment
of the reliable excavating distance of around 0.35 km (from 4.1652 km to 4.5075 km) was
reasonable. Instead of increasing the initial thickness, the predicted mining distance also
increased significantly to 4.4875 km (7.74% increment) if the wear resistance material in
a screw conveyor was replaced with stronger material (uβi reduced to 1.1638 instead of
1.2638). Therefore, it is recommended to improve the performance of the screw conveyor in
this case study, which could be achieved by either increasing the initial thickness or using
a better wear-resistance material. In general, this model can help the user to identify the
weakness of the components in the TBM.

6. Conclusions and Future Works

This research provides a data analysis approach to predict the mining distance of a
TBM by assessing the reliability of each component and deriving the joint distribution with
a copula function. The developed approach provides a recommended mining distance for
the user to conduct the inspection and replace the unreliable components. It could help to
eliminate the risk of sudden breakdown and prevent redundant cutter head intervention,
which could further help to reduce the operational cost and improve the efficiency of
tunneling works. The developed approach consists of 3 main steps, including (1) marginal
distribution determination, (2) structural learning, and (3) adaptive prediction based on
data analysis.

Real data from Chengdu metro system tunneling project were utilized to examine the
feasibility and effectiveness of the developed approach, where the wear resistance structure
in the cutter head panel and screw conveyor were identified as the key components that
may cause the malfunction of a TBM. The results from this case study indicate that: (1) With
the developed approach, normal distribution and Gumbel copula function were selected as
the best fitting marginal distribution and copula function. The predicted reliable mining
distance was 4.1652 km at the reliability equals 0.2. (2) The copula function is critical to be
considered, as the predicted result was only 4.0521 km if assumed independent, which is
over-conservative. (3) The wear resistance structure in the screw conveyor is the key factor
that influenced the mining distance of the TBM in this case study. With an improvement in
either initial structure thickness or the capability of wearing resistance, the reliable mining
distance can increase to 4.5075 km instead of 4.0834 km. Therefore, the developed method
could help the user to identify the “bottleneck” in the system and to improve the overall
performance by eliminating the bottleneck with the least resources required.

However, there are several limitations in this study for continuous research and im-
provement. For one thing, the soil condition in this study was assumed to be homogeneous,
and the influence of TBM operational parameters was not considered. The estimation
will be inaccurate if there is a large variation in the geological condition or the key TBM
operating parameters (e.g., huge change in cutterhead torque or thrust force, etc.) during
the tunnel excavation, as the rate of wearing on the structure varies in such conditions.
Therefore, future study is recommended to consider these factors and quantify the contribu-
tion of different factors such that the model will be more robust under complex condition.
For another, it is also very important to evaluate and mitigate the TBM damages during
excavation, and our future study will focus on optimizing TBM operational parameters
using advanced multi-objective optimization algorithms [66,67] for enhanced safety and
efficiency of TBM operations, particularly in complex geological conditions.
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