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Abstract: The ability to foresee hazards early plays a critical role in estimating the entire cost of a
project. Although several studies have established models to predict the total cost of a project at a
conceptual stage, there remains a research vacuum in measuring the overall risk at this stage. Using
artificial neural networks, this research provides a strategy for estimating the overall risk in residential
projects at the conceptual stage. There are eight important components in the suggested paradigm.
The model was created using data from 149 projects. In the first hidden layer in the model, there are
five neurons, and in the second hidden layer, there are three neurons. The suggested model’s mean
absolute error rate was 11.7%. In the conceptual stage of residential projects, the number of floors,
the type of interior finishes, and the implementation of risk management processes are the significant
aspects that influence the overall risk. The proposed model assists project managers in precisely
estimating the project’s overall risk, which leads to a more accurate estimation of the contract’s entire
worth at the conceptual stage, allowing the stakeholders to decide whether or not to proceed with
the project.

Keywords: early-stage; overall risk; residential projects; a multilayer perception

1. Introduction

A project’s cost should be projected with a high degree of precision; however, making
a conceptual cost estimate is challenging at this time due to a lack of data [1]. Construction
companies require an early budget estimate to assess whether this expenditure is acceptable
and, hence, whether the project should be continued or abandoned. To estimate the contract
value, the project manager usually calculates the direct cost, indirect cost, profit, and
contingencies for project risks. As a result, performing an early risk assessment is critical.
Stakeholders can make decisions and choices during the conceptual stage of the projects,
which have major impacts on construction duration and costs, but this effect reduces as the
project progresses through its life cycle [2]. Negative risks may result in schedule delays
and expense overruns [3]. As a result, the project manager should concentrate as much as
possible on the major risks [4]. Overall risk estimation suffers many challenges during the
conceptual stage of a project due to the limited data provided. A major issue that develops
in the early phase is the lack of effective and reliable overall risk estimation approaches. As
a result, project decision-makers have begun to focus more on conceptual planning, where
a thorough cost analysis is a critical component in achieving the project’s objectives [5].
The goal of the estimation process is to make sure that the contract plans and specifications
match the cost of completing the project [6].

Developing cost estimation models, both in the planning stage and in the conceptual
stages of a project, has been the subject of a lot of research. Despite the importance of overall

Buildings 2022, 12, 480. https://doi.org/10.3390/buildings12040480 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12040480
https://doi.org/10.3390/buildings12040480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-0672-4929
https://orcid.org/0000-0001-6156-7797
https://doi.org/10.3390/buildings12040480
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12040480?type=check_update&version=2


Buildings 2022, 12, 480 2 of 14

project risk, there is a gap in the research on assessing the overall risk in the conceptual stage
of a project when there is insufficient project information, necessitating the development
of a model for predicting the overall risk at the conceptual stage of a project [7]. This
research uses artificial neural networks to construct a model for evaluating the overall
risk in residential projects, based on a few characteristics that may be easily recognized
at a conceptual stage with acceptable accuracy. In other words, this research does not
investigate the assessment of individual positive or negative risk variables, but rather the
classification of the overall risk of residential projects at a conceptual stage based on the
influence on project cost.

As there is a gap in developing a method to estimate the total risk in the conceptual
stage, this research aims to propose a model to predict the overall risk of residential build-
ings at the conceptual stage using an artificial neural network with a multilayer perception.

2. Literature Review

Financial risks are regarded as the most significant risks in construction projects in
Egypt and Saudi Arabia, followed by design, political, and construction risks [8]. Lack of
money, a tight deadline, design revisions, insufficient information on sustainable design,
and a weak definition of sustainable scope were the top hazards to sustainable building
projects in the UAE [9]. At the planning stage, risk assessment models have been proposed,
using an artificial neural network such as risk assessment in Saudi Arabian building
projects [10] or the construction of an expressway [11]. Another model, based on system
dynamics and discrete event simulation, was proposed to evaluate the impact of risk factors
on project schedules in infrastructure projects [12]. Al-Tabtabai and Alex (2000) provided
an ANN-based model for predicting project cost escalation owing to political concerns and
the average error was 7% [13]. A model using the Bayesian Belief Network was developed
to assess and enhance the implementation of residential construction projects. Improper
construction procedures and poor communication were the top risk factors [14]. At a
conceptual stage, the most important aspects that determine the overall risk are the use of
risk management processes, the entire project duration, contract cost, and contract type [15].
The most essential criteria in the tender process are price, the scope of work, and technical
resources [16].

At the conceptual stages, there is a research gap in estimating overall risk. As a result,
an essential point to consider is what proportions of errors are acceptable in any model
assessing the overall risk. For every equation or model, there is a rate of error, but how
can this ratio be judged, meaning how one can determine if the model is accepted or not.
It is not fair to judge the error rate of a model in the conceptual stage, where there is
not enough information, to the error rate of a model in the design stage where there is
sufficient information. It is expected that the error rate is less in the design stage than at the
conceptual stage. Therefore, the error rate of any model must be compared with the extent
of errors in the same stage. Since there is no research that deal with estimating the total risk
of the project in the conceptual stage, the error rate in the proposed model for calculating
the total risk of the project in the conceptual stage was compared with the acceptable range
of the rates of estimation models for cost estimation models in the conceptual phase. Hence,
to estimate the allowable range of percentage errors, the authors relied on a review of past
studies on cost estimation at a conceptual stage.

To estimate the cost of school buildings in Korea, ten factors were identified. Three
models were developed to calculate the cost of the school buildings, based on 217 projects.
The first model was developed using neural network techniques, while the regression
analysis was used in the second model and the third model was presented using the support
vector machine. The results of the neural network model showed a more accurate estimate
than the results of regression analysis or the supporting vector machine models [17]. Two
studies were conducted in Gaza to estimate the cost of buildings at an early stage. The first
research was based on seven variables and a model was proposed based on information
derived from 71 construction projects using artificial neural networks [18]. While the
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second research developed a model for assessing the cost of construction projects with
a high degree of accuracy and without the need for a lot of information, through the
use of artificial neural networks. A database of 169 projects was collected from relevant
institutions in the Gaza Strip has been adopted. The artificial neural network model has
eleven factors as independent inputs [19]. A study to predict the cost of construction
projects at the conceptual stage in Taiwan using ten parameters. The research suggested
the utilization of the evolutionary fuzzy neural inference model to enhance cost assessment
accuracy. The proposed model was relied on eleven factors [20]. In Egypt, a model to assess
the cost of a residential building at an early stage using the artificial neural network and data
obtained from 174 residential projects. The proposed model depended on four parameters:
number of floors, the area of the floor, type of external finishing, and type of internal
finishing [21]. The costs of 136 executed projects were utilized to propose an artificial neural
network model to predict the preliminary cost of construction projects in Yemen. The
suggested model contained 17 factors [22]. In the United States, research was conducted on
the difference in the computation of construction costs utilizing artificial neural networks
by comparing nineteen variables in 20 projects [23]. In Taiwan, a study has presented a
prototype for the rapid assessment of a proposal integrating a probabilistic cost sub-model
and a multi-factor assessment sub-model. The cost-based sub-model concentrates on the
cost divisions. While the multi-factor assessment sub-model captures the specific elements
influencing the cost division. That research is based on 21 variables [24]. The eight previous
studies mostly agreed on nine primary factors that can be used for cost estimates at the
conceptual stage of a project. These nine parameters are floor area, number of floors, type
of foundation, number of elevators, type of slab, type of exterior finishing, interior finishes,
type of electromechanical works, and number of basements. Table 1 shows the different
sources for each parameter.

Table 1. Sources of parameters influencing the cost estimation.

Factor [17] [18] [19] [20] [21] [22] [23] [24]

Floor area
√ √ √ √ √ √ √ √

Number of floors
√ √ √ √ √ √ √ √

Slab type
√ √ √ √ √

Internal finishes
√ √ √ √ √ √ √

Number of elevators
√ √ √ √ √

External finishes
√ √ √ √ √

Foundation type
√ √ √ √ √

Basement
√ √ √ √

Electromechanical type
√ √ √ √ √

The symbol “
√

” means the corresponding research determined the corresponding factor as a key factor for
identifying the cost estimate at the conceptual stage.

Traditional cost estimation strategies in construction projects are the most often used.
They rely on time-consuming manual project cost estimation or Excel spreadsheets, rather
than using computerized tools to estimate building costs. Soft computing strategies for
conceptual-stage software development were compared by Bhatnagar and Ghose (2012).
The feed-forward back propagation neural network model had a mean absolute percentage
error (MAPE) of 13%, a cascaded feed-forward back propagation neural network model
had a MAPE of 13.6 percent, a layer recurrent neural network model had a MAPE of
11.5 percent, and a fuzzy logic model had a MAPE of 3.9 percent. This means they accepted
models up to MAPE with a 13.5% acceptance rate [25].

There is a lot of research that investigates the cost estimates at the conceptual stage.
Each research proposed a model with a mean absolute percentage error. Table 2 shows the
mean absolute percentage error for some of these prior studies. Which illustrated that the
errors in the proposed models were ranged from 4–28.2%. This means that the maximum
acceptable mean percentage error in the proposed model at the conceptual stage is 28.2%.
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Table 2. The minimum absolute percentage errors for the previous studies.

Reference Research MAPE

[26] Data modelling and the application of a neural network approach
to the prediction of total construction costs 16.6

[27] A neural network approach for early cost estimation of structural
systems of buildings 7

[28] Conceptual cost estimates using evolutionary fuzzy hybrid neural
network for projects in the construction industry 10.4

[18] Early-stage cost estimation of buildings construction projects using
artificial neural networks 4

[19] Cost estimation for building construction projects in the Gaza Strip
using an artificial neural network (ANN) 6

[17]
Comparison of school buildings’ construction costs’ estimation

methods using regression analysis, neural network, and support
vector machine

5.27

[29] Estimating water treatment plants’ costs using factor analysis and
artificial neural networks 21.2

[30] Conceptual cost estimation model for engineering services in
public construction projects 28.2

[31] Cost estimation of civil construction projects using machine
learning paradigm 6.2

[32] Comparison of artificial intelligence techniques for project
conceptual cost prediction 26.3

[21] A hybrid approach for a cost estimate of residential buildings at the
early stage 13.2

Limited studies in the conceptual stage of risk estimation identified four criteria: use
of risk management processes, duration of the entire project, total cost, and type of contract.
As the total cost of the project can be estimated through nine criteria: floor area, number
of floors, type of foundation, number of elevators, type of slab, type of external finishing,
internal finishes, type of electromechanical works, and number of basements. Hence, the
cost of the project can be replaced by these nine factors. The type of contract was not
included due to research limitations, as the research is related to estimating the cost of
housing projects based on a fixed price contract only. Hence, the initial list of criteria used
to derive the overall project risk at the conceptual stage contained eleven criteria: floor area,
number of floors, type of foundation, number of elevators, type of slab, type of exterior
finish, interior finishes, type of electromechanical works, number of basements plus the use
of risk management processes, and the entire project duration.

3. Methodology

This study’s approach is divided into three sections. The first step in achieving the
study’s goal is to identify the essential components influencing the overall risk assessment
by evaluating past research studies that focus on construction cost and risk estimation at a
conceptual stage. As a result, eleven construction elements (or processes) were presented
in the primary list. Five experts with at least 15 years of experience in the construction of
residential projects were randomly selected. The primary questionnaire was presented to
the experts using the Delphi technique to determine the parameters in the final question-
naire in three stages. In the first stage, experts were asked to add any missing criteria, if any,
that could affect the overall risk and could be discovered in the conceptual stage. Data are
collected from experts, revised, and re-sent back to the experts where they are asked to rank
each criterion on a five-point Likert scale. After collecting the data from the second round,
the averages are calculated and any factor that has a very low impact on estimating the
overall risk of the project is removed from the final list. In the third round, the experts are
asked to assess whether or not they agree with the final list. The third step is to develop the
model. The model is simulated using artificial neural networks using Statistical Package
for the Social Sciences (SPSS) software. The critical parameters that affect the estimation of
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the overall risks at the conceptual stages are considered as inputs to the model while the
output is the overall risk of the project. The model may contain one or two hidden layers.
The number of neurons in the one-hidden-layer model can be three, four, or five. In models
with two hidden layers, the number of neurons can be four in the first layer and three in
the second, or five in the first layer and three in the second, or five in the first layer and
four in the second. Thus, there are three different groups in terms of the number of neurons
in each hidden layer. Hence, six models can be developed. The hyperbolic tangent function
was used as an activation function for the hidden layers in six models, and the Sigmoid
function was tested as an activation function for the hidden layers in six other models.
Hence, twelve Multilayer Perceptron models have been identified and tested. To evaluate
the performance of the model, the available data were also randomly divided 5-fold. The
first fold contains 29 cases, while the subsequent folds contain 30 cases. Four folds were
used to train the network in each model, while the fifth fold was used to evaluate the model.
The final proposed model for estimating the overall risk in the conceptual stages is the
model with the lowest mean absolute error rate.

4. Identifying the Critical Parameters Affecting the Estimation of Overall Risk at the
Conceptual Stages

Literature analysis and earlier research yielded eleven criteria that can be utilized
to forecast overall risk in residential projects. Floor space, number of floors, slab type,
interior finishes, number of elevators, external finishes, electromechanical type, number
of basements, foundation type, risk management implementation, and overall project
duration are some of the elements to consider. Five experts with at least 15 years of
experience in residential project management used the Delphi technique to select the final
parameters. Table 3 shows the demographic information about the experts. The experts
were requested to add missing parameters, if any, that could affect the overall risk and
could be discovered at a conceptual stage, in the first round. There is no missing factor
according to the experts’ responses. On a five-point Likert scale, the experts were asked to
evaluate the weight of each parameter in the second round. “1” indicates that this element
is inconsequential; “2” suggests low importance; “3” indicates moderate significance;
“4” indicates high significance; and “5” indicates extremely significant. Equation (1) was
used to calculate the relative relevance index based on the responses received. Table 4
displays the relative importance indexes. The lowest number on the Likert scale is “1,” and
the highest is “5”, resulting in a range of four, which will be graded according to the five
categories. The zone for each category is 0.8. The very low category has a range of 1 to 1.8.
The low category has a range from 1.8 to 2.6, while the range of the medium category is
from 2.6 to 3.4. The high category is from 3.4 to 4.2, whereas the very high category is from
4.3 to 5.0.

RII = ∑ W
AN

=
(5n5 + 4n4 + 3n3 + 2n2 + 1n1)

5N
(1)

Table 3. Demographic data regarding the experts.

Expert I.D. Education Level Experience Job Title Company

Expert (1) Bachelor of Civil Engineering 18 Project manager Private
Expert (2) Bachelor of Civil Engineering 15 Risk manager Private
Expert (3) Ph.D. in Civil Engineering 22 Project manager Private
Expert (4) Bachelor of Civil Engineering 17 Project manager Public
Expert (5) Bachelor of Civil Engineering 16 Project manager Private
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Table 4. The relative importance indices of critical parameters.

Expert I.D. Floor
Area

Number of
Floors

Slab
Type

Internal
Finishes Elevator External

Finishes
Foundation

Type Basement Electromechanical
Risk

Management
Application

Total
Project

Duration

Expert (1) 4 4 1 3 1 3 1 2 2 3 4
Expert (2) 4 4 2 2 1 2 2 3 3 3 5
Expert (3) 3 4 1 1 1 1 1 2 3 4 4
Expert (4) 4 5 1 2 1 2 2 3 4 3 5
Expert (5) 3 4 2 2 2 2 2 2 2 3 4

RII 3.60 4.20 1.40 2.00 1.20 2.00 1.60 2.40 2.80 3.20 4.40
Grade H VH VL L VL L VL L M M VH

The five experts agreed that the total duration of the project and the number of floors
are the most important factors, with relative importance indices of 4.4 and 4.2, respectively,
followed by the floor area, which has a relative importance index of 3.6. Experts agreed that
the risk management application and the type of electromechanical factors are considered
to have a medium effect on the cost estimation. While the factors of interior finishes,
exterior finishes, and the number of basements were considered to have a low impact on
cost estimation by experts. Whereas slab type, elevator number, and foundation type had
very low impacts on cost estimation. As a result, any factor with an RII of less than 1.8 was
eliminated from the final list. As a result, the slab type, elevator number, and foundation
type were left off the final list of parameters influencing the total risk prediction in the
conceptual stages. The final set of criteria consisted of the remaining eight parameters.
Experts were asked to assess whether or not they agreed with the finalist list in the third
round. Regarding the final list of criteria, which includes the remaining eight criteria, the
experts agreed unanimously.

5. Data Collection

There were eight input parameters and one output variable in the data collected. Less
than 200 square meters, 200 to 400 square meters, 400 to 600 square meters, and more than
600 square meters were the four categories for the floor space factor. The authors divided
the factors of the number of floors into four categories: one or two floors, three to five
stories, six to eight stories, and more than eight stories. The interior finishes variant is
categorized into four groups: no interior finishes, basic, semi-finished interior finishes, and
luxurious interior finishes. The choice is of the type of semi-finished interior finishes in
the case of normal plaster for walls only and there are no paintworks, whereas for the type
of basic interior finishes, it is in the case of the presence of paint works for the walls and
ceramics for the floors. The type of luxurious interior finishes is chosen in the case of the
presence of paint works for the walls and porcelain or marble works for the floors. The
external finishing aspect was simply divided into two categories: basic and luxurious. The
type of basic external finishing is chosen if the facades of the building have been painted
only without any works of marble, Hashemite, or Pharaonic stone, while the external
finishing is considered the luxurious type if the facades of the building have been done
with any works of marble, Hashemite, or Pharaonic stone. There were two groups for
the number of basements parameter: no basement and one basement. The overall project
duration parameter was divided into four categories by the authors: less than six months,
six months to a year, one year to two years, and more than two years. The risk management
process application parameter was split into two categories: no risk management processes
were performed on the project and risk management procedures were performed on the
project. Electromechanical can be divided into two categories: basic and luxurious. The
type of the electromechanical parameter is considered with the basic standards if the scope
of work includes the main works of water, electricity, and sewage outside the apartment,
but if it includes the internal works of the apartment, the type of the electromechanical
parameter is considered a luxury type.
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Based on the review of planned cost and actual cost data and using Equation (2), the
authors assessed the overall percentage of risk for the completed projects. A project is
excluded from the analysis if there is insufficient information about its planned cost or its
actual cost. According to Table 5, the overall percentage of risk which is the major outcome
variable was divided into three levels: low, medium, and high-risk scores.

%OR =
|AC− PC|

PC
× 100 (2)

“%OR” represents the overall percentage of risk, “PC” represents planned cost and
“AC” represents an actual cost.

Table 5. The Classifications of outputs.

Category Low Medium High

Impact on cost Less than 10% 10–20% More than 20%

The authors examined 250 projects and discovered that some data for the eight input
variables or the result variable were missing. As a result, only the full data of 149 actual
residential projects were accessed. For example, out of the 149 projects analyzed, “case no.
the 26” project consisted of a 12-story building with 500 square meters per level, exquisite
interior and exterior finishes, and luxurious electromechanical work. This building has
one basement and was built in 20 months using risk management procedures, with an
overall risk of roughly 12%. Due to the enormous population, it was assumed that the
population’s size was unlimited, so the sample size could be calculated using Equation (3).
Table 6 shows demographic information about the respondents, whereas Table 7 shows
demographic information about the inputs gathered from 149 projects.

SS =
Z2 × p× (1− p)

C2 (3)

where SS stands for sample size, Z stands for 1.96 with a 95% confidence level, p stands for
the probability of selection, and C stands for the confidence interval. The sample size in
this study was 149 projects, and the p-value was 0.5, hence the confidence interval was 0.08.

Table 6. The demographic data regarding the respondents.

Work Experience in the Construction Industry

From 5 to 10 Years From 10 to 15 Years More Than 15 Years

Job title
Site engineer 42 29 0

Project manager 7 52 13
senior manager 0 0 6

Table 7. Demographic data of inputs.

Floor Area (A) Number of Floors (N) Internal Finishes (IF) Total Project Duration (D)

Less than 200 28 one or two 36 N.A 20 Up to 6 32
200 to 400 45 three to five 41 half-finished 49 6 to 12 40
400 to 600 46 six to eight 36 Basic 48 12 to 24 40

more than 600 30 more than 8 36 luxury 32 more than 24 37

External finishes (EF) Number of basements (B) Risk management processes (RM) Type of electromechanical (E)

Basic 72 No 118 No 132 Basic 77
luxury 77 One 31 Yes 17 luxury 72
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Using Equation (4), the authors estimated Cronbach’s Alpha for items. Cronbach’s
Alpha has a threshold of 0.7 [33]. Cronbach’s alpha in this study was 0.757, which is higher
than 0.7. It indicates that the scale is consistent and does not contradict itself, implying that
it will produce the same findings when applied to the same sample again. Validity refers to
how accurate a measurement is. The validity of this study was 0.87.

∝=
n

n− 1
×

(
1− ∑n

1 Vi
Vt

)
(4)

where “n” represents the number of items, Vi represents the variance of item i, and Vt
represents the variance of the test score.

6. Model Specification

The model was simulated using artificial neural networks. Due to its ease of use, IBM
SPSS software was chosen to construct the model. It has a simple user interface and can
be quickly imported and exported from Excel. The model has eight input parameters and
just one output. Floor space, number of floors, interior, and exterior finishes, number of
basements, total project time, risk management process application, and electromechanical
type are all inputs. The output, on the other hand, is the overall risk factor. To evaluate the
model’s performance, the acquired data were randomly divided into 5-fold cross-validation.
The first fold has 29 cases, whereas the subsequent folds have 30. Four folds were utilized
to train the network in each model, while the fifth fold was used to evaluate the model.
One hidden layer or two hidden layers might be present in a model. As a result, there are
two different sorts of hidden layer groups. The number of neurons in the model with one
hidden layer can be three, four, or five. In models with two hidden layers, the number of
neurons can be four in the first layer and three in the second, or five in the first layer and
three in the second, or five in the first layer and four in the second. Thus, there are three
different groups in terms of the number of neurons in each hidden layer. The hyperbolic
tangent function or the sigmoid function was employed as an activation function for the
hidden layers, and both were investigated. Equation (5) can be used to estimate the number
of models that can be tested. Twelve Multilayer Perceptron models were identified and
tested as a result. The examined models and their mean absolute errors (MAE) in each
k-fold are shown in Table 8. Equation (6) can be used to calculate the mean absolute
error [34].

Nm = Nl × Na × Ng (5)

MAE =

(
∑N

i=1(ER− RS)
)

N
(6)

where “Nm” stands for the number of models, “Nl” for the number of hidden layers, “Na”
for the number of hidden layer activation functions, and “Ng” for the number of neuron
groups. “ER” stands for the model’s estimated risk, “RS” for the risk score, and “N” for the
number of case studies.

The mean absolute error of any model is equal to the mean error in its k-fold. Hence,
the proposed model should have the minimum percentage of MAE. In this study, the MAE
was equal to 11.7%, as shown in Table 8. The proposed model consists of two hidden
layers: five neurons in the first hidden layer, and three neurons in the second hidden layer.
The activation function of the hidden layer was the Hyperbolic Tangent function in the
proposed model. Figure 1 illustrates the structure of the proposed model. The real and
estimated overall risks are presented in Table 9.
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Table 8. Mean absolute error of the models.

Model H3-0 H4-0 H5-0 H4-3 H5-3 H5-4 S3-0 S4-0 S5-0 S4-3 S5-3 S5-4

No. of hidden layer 1 1 1 2 2 2 1 1 1 2 2 2
No. of neurons in the

first layer 3 4 5 4 5 5 3 4 5 4 5 5

No. of neurons in the
second layer - - - 3 3 4 - - - 3 3 4

Activation Function H H H H H H S S S S S S
K-1 11.4% 10.7% 13.4% 10.7% 13.4% 13.4% 14.8% 15.4% 18.1% 18.1% 15.4% 13.4%
K-2 10.7% 10.7% 13.4% 13.4% 9.4% 10.7% 12.8% 9.4% 14.1% 13.4% 14.1% 10.7%
K-3 12.8% 16.1% 16.8% 16.8% 14.8% 16.1% 20.8% 15.4% 16.8% 15.4% 12.1% 17.4%
K-4 16.1% 15.4% 16.1% 16.8% 10.1% 14.8% 19.5% 12.8% 16.8% 22.1% 18.1% 22.8%
K-5 10.7% 14.8% 16.1% 14.8% 10.7% 16.1% 15.4% 16.8% 18.8% 14.8% 19.5% 20.1%

MAE 12.3% 13.6% 15.2% 14.5% 11.7% 14.2% 16.6% 14.0% 16.9% 16.8% 15.8% 16.9%

“H” stands for the Hidden Layers’ Hyperbolic Tangent activation function and “S” stands for the Hidden Layers’
Sigmoid activation function.
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Table 9. Classification of overall risk.

Sample Classification
Predicted

Low Medium High Percent Correct

Training
Low 73 5 0 95.5%

Medium 5 26 1 85.1%
High 0 4 5 57.7%

Testing
Low 14 2 0 92.6%

Medium 0 9 1 85.7%
High 0 4 0 23.1%

7. Discussion

There is very little research on total risk assessment at the conceptual stage. For
example, Oad et al. (2021) determined that price, the scope of work, and technical resources
are the most important criteria in the bidding process at the conceptual stage [16]. Another
study identified project cost, total project time, contract type, and use of risk management
techniques as the primary criteria that can be used to assess overall risk in apartment
buildings at the conceptual stage [15]. In this research, the main criteria used to estimate
the total risks at the conceptual stage in residential projects are the number of floors, the
building area, the interior finishes, the exterior finishes, the number of basements, the
total duration of the project, the type of electromechanical, and the application of risk
management processes. The scope of work that was identified as a critical factor in the
study by Oad et al. (2021) was expressed in the current study by the number of floors,
building area, internal and external finishes, and the number of basements. The duration of
any activity can be estimated based on the required quantity and the production rate of the
available resources. Hence, the technical resources identified by Oad et al. (2021) as critical
factors in the conceptual stage were expressed in the quantities that can be inferred from the
scope of work and the total duration of the project in the current study. Whereas the project
cost component in the conceptual stage, which was identified by Badawy et al. (2022) can
be estimated through many previous studies in the conceptual stage, which indicated that
the cost can be deduced from the number of floors, building area, interior, and exterior
finishes, and the number of basements, which was applied in the current study. Therefore,
the eight input variables in the current study are in agreement with previous studies.

In the training phase, the proposed model predicted an average of 104 cases correctly
and accurately with a ratio of 87.4% and predicted 15 cases incorrectly. The MAE for the low
overall risk classification was 4.5%, and for the medium overall risk, the MAE was 14.9%.
Unfortunately, the prediction of the overall risk in the case of the high-risk classification was
42.3%, which is considered a high ratio. In the testing phase, the proposed model predicted
an average of 23 cases correctly and accurately with a ratio of 76.7% and predicted 7 cases
incorrectly. The MAE for the low overall risk classification was 7.4%, and for the medium
overall risk, the MAE was 14.3%. Unfortunately, the prediction of the overall risk in the
case of the high-risk classification was 76.9%, which is considered a high ratio. Hence, the
results indicated that this model is excellent in predicting the low and medium overall risk
at the conceptual stage.

The mean absolute percentage error was 16.6% in an ANN model for estimating the
total construction costs [26], while the MAPE was 13.2% in a hybrid technique for a cost
assessment of residential projects at the early phase [21]. The MAPE was 26.3% an ANN
approaches for cost forecast at the conceptual stage [32], while to estimate the cost of water
treatment plants, the model has an error of 21.2% [29]. A model to predict the conceptual
cost for engineering services in public construction projects was developed with a MAPE
of 28.2 [30]. As a result of reviewing past research on conceptual-stage cost models, it
was discovered that a mean absolute error of more than 13% was permitted, implying
that the accepted model should have an error of less than 13%. The suggested strategy
correctly classified 149 projects with a mean absolute error of 11.7%. Hence, this model can
be accepted. The suggested model’s acceptability implies that the eight input factors can be
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utilized to predict the overall risk of residential projects at a conceptual stage. The results of
the study agreed with the viewpoint of the five experts who were interviewed to determine
the most important criteria in the final list that can be used to predict the overall risk in the
conceptual stage of residential construction projects. The most important of these factors
was the number of floors, which represents 28.5%. The second top criterion was the interior
finishes with 16.3 percent. The execution of the risk management process component
ranked third, with 14.4 percent, while the floor area element came fourth, with 11.7 percent.
The total project time was the fifth component that had a 10.8% impact on the overall risk
forecasting in the conceptual stages, followed by the exterior finishes, which had a 10.2%
impact. Finally, the electromechanical type had a weight of 6.2%, and the lowest parameter
was the number of basements with a relevance of 1.7 percent. The importance of each
component in determining the overall risk in the conceptual stages of residential projects is
depicted in Figure 2.
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8. Conclusions

Decision-makers aim to predict the estimated value of the project budget in the
conceptual stage to assess whether this investment is acceptable or not. The value of the
reserve that covers the project’s overall risk is included in the project budget. As a result,
early on, a comprehensive risk assessment is required. There has been a great deal of
research in developing cost estimation models, both in the planning phase and in the
conceptual stages of a project. Unfortunately, there is a research vacuum in estimating risk
in the conceptual stages of a project due to a lack of knowledge, so this study offers a model
to forecast the overall risk at the conceptual stages of a project. A provisional list of essential
characteristics, consisting of eleven parameters, was generated through a review of existing
research and can be used to anticipate the overall risk in residential buildings at a conceptual
stage. After three rounds of Delphi, the experts reached an agreement on the most critical
parameters. The parameters for slab type, elevator number, and foundation type were
omitted from the final list. Floor area, number of floors, interior finishes, external finishes,
number of basements, kind of electromechanical, risk management process implementation,
and overall project duration were all included in the final list. Four groups were created for
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the floor space, the number of floors, interior finishes, and total project duration, while the
internal finishes, the number of basements, the risk management method execution, and
electromechanical kinds were all divided into two categories. Three levels were assigned to
the output variable. Data were gathered from 149 actual residential projects. As a result, the
confidence interval was 0.08 at the 95% confidence level. The model was simulated using
artificial neural networks. The data were divided into five groups at random. There were
twelve Multilayer Perceptron models identified and tested, each with a distinct number of
hidden layers and activation functions. The proposed model has two hidden layers, the
first of which has five neurons and the second of which has three neurons. In the suggested
model, the Hyperbolic Tangent function was used to activate the hidden layer. The MAE
was equal to 11.7% in this investigation. The number of floors is the most critical factor in
determining the overall risk in the conceptual stages of residential projects, followed by
interior finishing, and the risk management procedure. The electromechanical type and
the number of basements were the least critical elements. The project manager can use
the proposed model to identify residential projects in the conceptual stages as low-risk,
medium-risk, or high-risk. As a result, the proposed model can assist stakeholders in
deciding whether or not to continue with the project.

9. Limitations of Research

The overall risk and the influence of the important parameters were solely calculated
based on the impact on the cost of the residential construction in this study. This study only
looked at projects with fixed-price contracts. As a result, projects with cost-reimbursable
contracts, for example, will require a re-estimation of the input parameter weights. The
eight input criteria can be used in any country to obtain the overall risk at the conceptual
phase. The data were obtained from 149 projects in Egypt, which means that the ranking of
importance of each criterion may differ from one country to another. Hence, they should
be double-checked the ranking of the importance of the criteria before being used in any
other country. The user needs to alter the weights of the variables to adapt the model to
subsequent times because the data used to produce it came from residential buildings in
Egypt built between 2018 and 2020.
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