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Abstract: Construction safety monitoring is a significant issue in practical engineering. Unfortunately,
specific techniques in this field still heavily depend on artificial monitoring. To detect the abnormal
scenarios during the construction process automatically, a method was proposed for the detection and
localization of abnormal scenarios in time and space. The method consists of three components: (1) an
I3D-AE video prediction model, which extracts the video features from multiple I3Ds and reconstructs
the video by 3D deconvolution; (2) a spatial localization module AS-CAM, which determines the
location of abnormal areas via back-propagating the I3D-AE; (3) a temporal parameter St, which can
calculate the abnormal time period. The effectiveness of the method was verified with the use of a
dataset, and the resulting data were plotted as ROC curves. The results indicated that the proposed
method exceeded 0.9 on the frame-level test and 0.76 on the pixel-level test with the use of the AUC
evaluation metric. Therefore, it can be used to assist the construction managers to improve the
efficiency of construction safety management.

Keywords: abnormal scenarios detection; localization; video prediction; autoencoder; construction
process

1. Introduction

Construction is a high-risk industry in many countries, and the risks inherent in the
construction industry contribute to high worker fatalities. According to the US Bureau
of Labor Statistics (US BUREAU OF LABOR STATISTICS), 3.1 out of every 100 full-time
construction workers in the US were injured and sick, and according to the UK National
Safety Executive (HSE), 262 workers were injured per 10,000 workers in the UK construction
industry in 2017 [1].

Construction site monitoring is an essential procedure in construction safety control,
to minimize construction safety risks, as well as to support project managers in making
strategic decisions at critical times [2]. However, the construction site environment is
complex [3], and with many targets [4], so it is difficult for construction managers to monitor
the construction site in real time. Since there are numerous cameras on the construction
site [5], it is convenient to introduce some vision-based technologies for continuously
monitoring the activities of construction sites [6–10].

However, most of the existing studies have focused on the recognition and tracking
of workers’ actions during the construction process. The hazards of the construction
process do not arise only from workers’ actions, but also from the presence of some
construction workers, construction machines, or construction materials in areas and times
where they should not be. For example, falling from heights are the greatest risk of death
for construction workers [11,12]; on the one hand, they are due to the construction workers
not wearing safety belts as required when working at heights [13], while on the other
hand, the illegal presence of construction workers in some overhead areas is an important
reason [14]; in construction site fire accidents, flammable construction materials in areas

Buildings 2022, 12, 562. https://doi.org/10.3390/buildings12050562 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12050562
https://doi.org/10.3390/buildings12050562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12050562
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12050562?type=check_update&version=2


Buildings 2022, 12, 562 2 of 12

with a considerable amount of welding work are the main cause of fires in the construction
process [15–17]. To cope with these risks, researchers have proposed intelligent methods
for identifying risk scenarios [18,19].

Although the current approach focuses on specific risk recognition, in the construction
site, there are many types of risks, and they change with time, so if the risks are recognized
in a directional way, it is easy to cause insufficient recognition of risks; a risk recognition
method that can be used for a multi-scenario recognition is also lacking. Under a sound
security management system, the occurrence of risk events is generally a small probability
event, i.e., an abnormal event. Abnormal events are unpredictable, and if they are rec-
ognized for this characteristic of risk events, security risks can be effectively recognized
while consuming a small amount of computation. Compared with previous methods, the
greatest contribution of this paper is in its exploratory attempt to use the unpredictability
of risk scenarios to identify risks; this is the first time that the idea of abnormal scenarios
prediction is used to recognize the safety risks of the construction process, for which only a
deep learning network is needed to avoid tedious database construction.

Based on the above analysis, we proposed a 3DCNN-based encoder model to detect
abnormal frames by predicting future frames, which is an end-to-end deep learning frame-
work trained on normal video samples. Specifically, we predicted a video based on the
history of video clips; to this end, we first built a prediction model that can predict future
videos, and we trained it with a normal video so that it can predict future videos. In the
testing phase, if the error between the truth frame and the predicted frame was small, we
decided that it was a normal video, and if the error was large, we considered this frame
as an abnormal frame. An effective model to predict the video is key for the task, and
therefore, we used an I3D-AE encoder as the video prediction model, which consists of two
parts—an encoder and a decoder. In the encoder part, we used multiple I3D [20] networks
to extract video features, which have good performance in extracting video features, and
we used multiple 3D deconvolutional networks in the decoder. For the abnormal scenarios
localization, we proposed a module AS-CAM for the spatial information localization and a
parameter St for the temporal information localization.

2. Related Research
2.1. Abnormal Scenario Detection Methods

Sungmin and Junseok [21] proposed a novel system that detects abnormal events.
Unlike conventional methods, they considered abnormal event detection as a variation
matching problem. In the application of abnormal scenarios detection, deep learning plays
an irreplaceable role. Wei et al. [22] proposed an abnormal scenario detection method for
monitoring abnormal activities in public places. They exploited fully convolutional neural
networks (FCNs), which have been proved to be powerful in image processing, to extract
the features of videos. Zhang et al. [23] introduced a more effective algorithm for detecting
abnormal behaviors in narrow areas with perspective distortion. The algorithm firstly uses
the adaptive transformation mechanism to make up for the distorting effect in the region of
interest extraction. Then, an improved pyramid L–K optical flow method with perspective
weight and disorder coefficient was proposed to extract the abnormal behavior feature that
occurred in historical moving images. Abid [24] proposed a two-stream architecture using
two separate 3D CNNs to accept a video and an optical flow stream as input to enhance
the prediction performance. He et al. [25] proposed an anomaly introduced learning (AL)
method to detect abnormal events. A graph-based, multi-instance-learning (MIL) model
was formed with both normal and abnormal video data. Sabokrou et al. [26] were the
first to apply deep learning to the task of abnormal scenario detection; the researchers
combined two detectors into a cascade classifier and achieved good detection results. Fully
convolutional networks (FCNs) were used in a pretrained model [27], combining semantic
information (inherited from existing CNN models) and low-level optical flow to measure
local anomalies. One of the advantages of this method is that it does not require fine-tuning
of the phase.
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2.2. Construction Risk Scenario Detection Methods

Duan et al. [28] proposed a method to recognize and classify four different risk events
by collecting specific acceleration and angular velocity patterns through built-in sensors of
smartphones. The events were simulated with anterior handling and shoulder handling
methods in the laboratory. After data segmentation and feature extraction, five differ-
ent machine learning methods were used to recognize risk events, and the classification
performances were compared. Jeongeun et al. [29] proposed a deep convolutional neu-
ral network that automatically recognizes possible material and human risk factors in
the field regardless of individual management capabilities. The most suitable learning
method and model for this study’s task and environment were experimentally identified,
and visualization was performed to increase the interpretability of the model’s prediction
results. Kim et al. [30] analyzed the step-by-step process required to automate construction
site safety management based on Building Information Modeling (BIM) and evaluated a
specific construction site hazard using a BIM-based example. Yang et al. [31] developed a
fire identification model and a real-time construction fire detection (RCFD) system. Experi-
ments were conducted to verify the applicability of the proposed system under different
environmental conditions. Xiong et al. [32] developed an automated hazards identification
system (AHIS) to evaluate operational instructions generated from field videos based on
safety guidelines extracted from text files by construction safety ontology. Zhang et al. [1]
proposed an automatic recognition method.

3. Proposed Method

We proposed an abnormal detection method during the construction process based
on future frame prediction, consisting of a model for predicting future frames, which is
called I3D-AE, and using past frames in video clips to predict future frames. We proposed
a module AS-CAM to locate the spatial information of abnormal scenarios and used
a parameter St to locate the temporal information of the abnormal scenarios. The key
elements of the proposed method are shown in Figure 1.
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3.1. I3D-AE Video Prediction Model

Unlike conventional autoencoders, our convolution is a 3D convolution, and multiple
I3Ds were used in the encoder (two-stream inflated 3D ConvNets) [20]. One video clip was
extracted from each I3D, and the video clips extracted from adjacent I3Ds were consecutive
but not intersecting. The number of I3D modules can be used according to the actual
situation; the number of modules used for the purposes of this paper was four. The
3DCNN is expanded from 2DCNN Inception-V1 and can use the parameters pretrained on
ImageNet. The experimental results show that this model achieved the best results with
this configuration on all standard datasets. The middle layer uses three fully connected
layers, and the decoder has a 3D deconvolutional structure. We used a normal construction
site video as the training video, as we can reconstruct the video well when the test video is
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a normal video, and the reconstruction error is large when the test video is an abnormal
video. The model structure is shown in Figure 2.
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At the beginning of the training, given an input video clip Vi and a future clip Vp, the
autoencoder reconstructs the video using Iw(Fw (Dw (Vi))), where Iw is an I3D integrated
network with the weight parameter ID, Fw is a fully connected layer with the parameter wF,
and the decoder Dw is a 3D deconvolutional network with the weight parameter wD. To
train this autoencoder, we used Euclidean loss as the loss function.

wI , wF, wD = argmin ∑
i
‖ Vp − Iw(Fw(Dw(Vi))) ‖2

2 + λ
(
‖ Iw ‖2

2 + ‖ Fw ‖2
2 + ‖ Dw ‖2

2

)
(1)

The first term of the objective function is the loss function, which was used to calculate
the difference between the reconstructed frame and the video frame, and the second phase
of the objective function is the L2 regularization, which was used to limit the complexity of
the parameters in the autoencoder. In the encoder part, to reduce the model parameters,
we read 64 frames of grayscale video instead of RGB video and used four I3D modules as
feature extractors; the features extracted by the I3Ds were pooled in time and then entered
into the fully connected layer. In the decoder part, we used four upsampling layers and
three deconvolution layers, each of which contains a ReLU layer.

3.2. Spatial and Temporal Locating
3.2.1. Abnormal Scenario Spatial Localization

Since we trained normal clips as the dataset, abnormal scenarios cause a larger recon-
struction error when they appear in the clips. The reason for the increased reconstruction
error is due to the presence of abnormal scenarios in the clips. Therefore, it is crucial to find
the pixels that cause the reconstruction error to increase, the locations of which indicate
abnormal scenarios. Based on the above assumptions, we proposed an AS-CAM module to
locate abnormal scenarios, which was developed based on Grad-CAM++ [33]. The flow of
the AS-CAM is shown in Figure 3.
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Grad-CAM++ is based on CAM [34] and Grad-CAM [35], the principle of which is to
construct the weights of the action maps, and by solving for the weights, the contribution of
different action maps to the reduction in the objective function is obtained; furthermore, by
multiplying weights with the action maps, the heat maps are obtained to show which area
contribute most to the reduction in the objective function. In our task, we needed to find
out which areas contributed most to the increase in reconstruction error, which were the
locations of irregular construction in the construction scenarios. The calculation formula
for the abnormal location is as follows:

Lij = ∑
k

wk·Ak
ij (2)

where Lij is the saliency map of abnormal scenarios of spatial location (i,j), and wk is the
weight of the pixel Aij in the kth action map. The value of wk can be multiplied by the pixel
weights αc

ij and the loss gradient through the negative ReLU (NReLU) activation weighting.

wk = ∑
i

∑
j

αk
ij·NReLU

(
∂∆J
∂Ak

ij

)
(3)

where αk
ij is the weighting coefficient of pixel (i,j) when wk is calculated; NReLU is the

activation function. The calculation of αk
ij is as follows:

αk
ij =

∂2∆J(
∂Ak

ij

)2

2 ∂2∆J(
∂Ak

ij

)2 + ∑
a

∑
b

Ak
ab

∂3∆J(
∂Ak

ij

)3

(4)

where (i,j) and (a,b) are iterators over the same activation map. NReLU is designed to
activate the negative gradients, so the expression of NReLU is as follows:

NReLU = f (x) = min(x, 0) (5)

where ∆J is the reconstruction error, with the input of Vi. It can be calculated by backprop-
agation of the I3D-AE, and the equation is as follows:

∆J = ‖ Vp − Iw(Fw(Dw(Vi))) ‖2
2 (6)
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Therefore, the saliency map of abnormal scenarios is calculated by Equation (7) as follows:

L = ∑
i

∑
j

Lij (7)

3.2.2. Abnormal Scenario Temporal Localization

For the temporal localization of abnormal scenarios, we calculated the reconstruction
error for each frame by subtracting the pixel value of each frame from the pixel value of the
corresponding frame of the reconstructed video.

et =

∑
x,y
‖ V(x, y, t)− I(F(D(V(x, y, t)))) ‖2

x·y (8)

where V(x, y, t) indicates the pixel value of a frame, I(F(D(V(x, y, t)))) indicates the pixel
value of the reconstructed frame at that specific time; after normalizing the reconstruction
error, we obtained the temporal information parameter as follows:

S(t) =
et − emin

emax − emin
(9)

4. Experiments
4.1. Construction Site Dataset

A dataset was taken at a construction site in Chengdu with an iPhone 13. The intention
of this section is to simulate a fire scenario in a construction site, hoping to detect fire
scenarios in time and space. In construction sites, fires are generally prohibited, so in order
to simulate the identification of fire scenarios, in this section, we use the image of steel
welding as an alternative. Since fire and smoke are generated when steel welding is drawn
and welded, the characteristics of fire can be well simulated. The video in which no firelight
and smoke are generated was used as the regular screen for training I3D-AE in dataset
species, and the welding screen containing firelight and smoke was tested as the abnormal
screen. The dataset contained a total of 62 min of video in the regular frame and 3 min of
video in the abnormal frame.

4.2. Evaluation Criteria

In order to evaluate the abnormal scenarios detection method, the receiver operating
characteristic (ROC curve) was used as an evaluation metric, which is based on a series
of different dichotomies, (cutoff values or decision thresholds), with the true-positive rate
(TPR) representing the percentage of samples that are correctly judged as positive among all
samples that are actually positive, and false-positive rate (FPR) representing the percentage
of samples that are incorrectly judged as positive among all samples that are actually
negative. The ROC curve represents the sensitivity of different thresholds to TPR and FPR,
and the fuller the curve, the better the classification. TPR and FPR are calculated as follows:

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

where false negative is FN, false positive is FP, true negative is TN, and true positive is TP.
As shown in Table 1, FN indicates a sample judged to be negative but is in fact positive,
FP indicates a sample judged to be positive but is in fact negative, TN indicates a sample
judged to be negative and is in fact negative, and TP indicates a sample judged to be
positive and is in fact positive.
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Table 1. Meaning of TP, TN, FP, and FN.

Actual Positive Samples Actual Negative Samples

Predicted to be positive samples TP FN
Predicted to be negative samples FP TN

The effectiveness of the proposed method was evaluated from two perspectives—the
pixel-level evaluation method and the frame-level evaluation method. Both methods use
the area under the curve (AUC) as an evaluation metric, in addition to the ROC curve,
which indicates the area enclosed by the ROC curve and the coordinate axes; the larger it is,
the better the performance of the classifier.

(1) Pixel level

The ROC curves at the pixel level were designed to provide the localization ability
of the proposed method in space, for which the intersection-over-unio ratio was used as
a predictor. Intersection-over-unio (IOU) ratio, a concept used in target detection, is the
intersection ratio of the generated candidate frames to original marker frames, i.e., the ratio
of their intersection to the merged set, and is calculated as shown in Equations (1)–(12). The
intersection-to-merge ratio is ideally a complete overlap, i.e., a ratio of 1. If the intersection-
to-merge ratio between the localized area and the true anomaly area is greater than a
threshold, the localization result under that frame is defined as a positive sample, and if
the intersection-to-merge ratio is less than the threshold, the localization result under that
frame is defined as a negative sample.

IoU =
area(L) ∩ area(G)

area(L) ∪ area(G)
(12)

(2) Frame level

The ROC curves at the frame level were designed to provide the localization ability of
the proposed method in time, for which the St value was used as a predictor.

4.3. Implementation Details

We adjusted all video clips to 224 × 224 and calculated the optical flow between each
adjacent frame [36]. I3D-AE uses Adam [37] as the optimizer with a learning rate of 0.0001,
a minimum batch size of 100, and an epoch setting of 200; our model was implemented
on TensorFlow 1.14 and trained, with a 2080TiGPU. The model parameters are shown
in Table 2.

Table 2. I3D-AE; the main parameters of the model.

Layer Output Size Kernel Size Stride Pad

FC 14 × 14 × 128
Upsampling 1 28 × 28 × 128

DeConv 1 28 × 28 × 64 3 × 3 × 3 2 1
Upsampling 2 56 × 56 × 64

DeConv 2 56 × 56 × 32 3 × 3 × 3 2 1
Upsampling 3 112 × 112 × 32

DeConv 3 112 × 112 × 16 3 × 3 × 3 2 1
Upsampling 4 224 × 224 × 16

5. Experimental Results
5.1. Visualization of Spatial Localization Results

Figure 4 shows the experimental results of the method proposed in this study on a
construction site dataset. When workers perform welding, fire and smoke cause changes
in the reconstruction errors, which are localized. When there is no smoke, the proposed
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method locates the flame more accurately, but when there is smoke, the smoke causes an
increase in the reconstruction error and the size of the localized area is larger than the
real area.
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5.2. Temporal Localization Results

Figure 5 shows variations in St values in the construction site dataset and distinguishes
normal and abnormal frames with background colors. It can be seen from the figure that, in
the normal frame, the value of St is small, and the curve is flat, while in the abnormal frame,
the value of St is more prominent, and the two cases can be clearly distinguished. In both
scenarios, there is an elevated value of St in the normal frame, but in the abnormal frame, St
does not appear flat, indicating that the method had a mild over-recognition in recognizing
abnormal scenarios. As shown in Figure 6, a ROC of 0.901 on the frame-level ROC curve
indicates that St can distinguish between normal and abnormal frames in time well.
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5.3. Ablation Experiments

In this section, the effectiveness of each module of the proposed method is tested
through a set of ablation experiments. The experiments are divided into two groups. In
Experiment 1, the four I3D modules in the I3D-AE module were replaced with C3D models,
i.e., the commonly used 3DCNN video feature extraction networks, and then the module
was trained and tested with the replaced network and the construction site dataset. This
experiment tested the feature extraction effectiveness of the proposed I3D-AE. In Experi-
ment 2, AS-CAM was replaced with the reconstruction error-based localization method,
i.e., the reconstruction error was used as the activation map to achieve the localization of
anomalous areas, and then the replaced network and the construction site dataset were
used for training and testing; this experiment tested the localization effect of the proposed
AS-CAM. The ROC curves and AUC values were used to show the localization ability of
the network used in the experiment.

As seen in Figure 7, the ROC curves of the proposed method are fuller than those of
the C3D-based method, indicating that the proposed method outperformed the C3D-based
method in locating anomalous areas. The reason for this is that the C3D-based method
is weaker than I3D in video feature extraction, and I3D has the advantage of pretraining;
therefore, it can capture more details in the video through multiple I3D modules in series,
making it a stable and fast video feature extraction method.
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From Figure 8, it can be seen that AS-CAM has a better localization effect based on
the area surrounded by curves and axes, and the reconstruction error-based method has
a larger gap than the proposed method. The reason is that, in video prediction, although
a reconstruction error can represent an anomalous area, it is also affected by network
depth—when the network layers are deep, the anomalous pixel area causes the error not
necessarily in the mapped anomalous area; therefore, this type of method is more suitable
for shallow encoder networks.
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6. Discussion

(a) In this study, automatic recognition for potential safety risks at construction sites was
investigated. The principle is to use the unpredictability that risk scenes have; thus,
a video prediction model was used, and when the prediction model demonstrated
anomalies, the scene was considered to have the possibility of risk.

(b) Compared with the traditional human safety risk recognition method, the proposed
method is an intelligent recognition technique. Compared with the existing techniques
based on intelligent algorithms, the proposed method omits the database construction
of risk scenes and is a lightweight method.

(c) The proposed method provides a new way of thinking in terms of risk scenario
detection. It is not necessary to detect only specific security risks; undirected detection
can still be effective for risk recognition.

7. Conclusions

Construction safety has always been an important problem in the construction industry,
and currently, it mainly relies on manual inspection to detect the risk of construction sites.
In this paper, deep learning methods were applied to the process of construction risk
detection, providing a new perspective for intelligent monitoring of construction sites
as follows:

• A new abnormal scenarios detection method for construction sites was proposed,
which contains a video prediction model, I3D-AE, a spatial information module,
AS-CAM, and a temporal information parameter, St;

• By locating abnormal areas by replacing the reconstruction error with a weighted
saliency map, this method can achieve a good localization effect when faced with a
complex image;

• Our method was validated with a dataset, and the results show that our method can
reach an advanced level at construction sites;

• The proposed approach allows for the recognition of multiple unknown risks, rather
than specific risk scenarios, avoids building a database, and saves computing resources.
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