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Abstract: The relationship between outdoor microclimate and indoor building conditions requires
the input of hourly weather data on the typical meteorological characteristics of the specific location.
These data, known as typical meteorological year (TMY), are mainly deduced from the multi-year
records of meteorological stations outside urban centres, preventing the actual complex interactions
between solar radiation, wind speed, and high urban density. These factors create the urban heat
island effect and higher ambient air temperatures, skewing the assumptions for energy demand
in buildings. This paper presents a computational method for assessing the effect of the urban
climate in the generation of typical weather data for dynamic energy calculations. As such, the
paper discusses an evaluation method of pairing ENVI-met 4 microclimate and IES-VE building
energy modelling software to produce a typical urban specific weather dataset (USWDs) that reflects
the actual microclimatic conditions. The ENVI-met results for the outdoor microclimate conditions
were employed to determine the thermal boundaries for the IES-VE, and then used to compute the
building’s energy consumption. The energy modelling that employed the USWDs achieved better
performance compared to the TMY, as the former had just a 6% variation from the actual electricity
consumption of the building compared to 15% for the latter.

Keywords: ENVI-met; energy modelling; microclimate; urban specific weather dataset (USWDs)

1. Introduction

It is well known that urban heat islands (UHI) arise when trapped heat is released,
increasing the temperature of built-up urban areas in comparison to adjacent rural areas;
this issue is due to the comparatively larger amount of incident solar energy absorbed and
stored by manmade materials. This makes cities particularly vulnerable to meteorological
hazards and climate change [1]. In this context, the last decade has seen the most rapid
growth in energy demand, at 2.3% higher than in 2018 [2]. Much of this energy is used
to create comfortable levels of heating, ventilation, and air conditioning (accounting for
35%), compared to lighting (11%) and major appliances (18%); the other 36% is spent on
miscellaneous uses such as electronics. As such, the Paris Agreement reported an urgent
need for reduced total energy demands and GHG emissions. In addition to the inevitable
1.5 ◦C increase in global temperatures, adaptation strategies are required to enhance the
design of urban areas and energy systems [2]. In this regard, the Energy Performance Build-
ings Directive 2002/91/EC obligates all EU members to enact innovations and practices to
react to the rising energy demands from the building sector [3]. However, with the current
status of “climate action failure”, there is a very high risk that over the next decade there
will be the most damage ever seen on a global scale [4]. In the arid climate, this problem is
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even worse due to the predicted air temperature increase and the negative implications of
this for ecosystems and mortality rates [5,6].

Dynamic energy simulation has therefore become a key tool in the primary phases
of building designs due to its ability to represent the complex, temporary phenomena
that govern a building’s energy performance [7]. In the last fifty years, building energy
simulation (BES) research has been focused on improving the dependability of modelling
tools and since building energy consumption is weather-dependent, numerous efforts have
been made to combine building energy simulation and analysis with weather datasets [8].
In this regard, weather data files are an essential input for BES as their accuracy is crucial
not only for representing the external conditions around the building being modelled [9]
but also for the computation of the building’s heating and cooling loads [10]. Weather files
for BES are an artificial climate profile comprised of averages of 25–30 years for every hour
in a year. Crucially, they are gathered from weather stations often located at airfields, where
there is no UHI effect. As such, if they are used to represent variations in local measured
climatic conditions, this can lead to a miscalculation in the energy modelling of a building
located in a dissimilar environment. That is, the building being modelled could be in an
urban area with limited vegetation and isolated obstacles or a city centre with a mix of
building rises [11–14]. This difference is key, as air temperatures in street canyons can
typically be higher. For example, a study reported a rise of 4–6 ◦C in street canyons over
temperatures in rural areas in Hong Kong, a high-density city [15]. This difference affects
both a building’s energy performance and pedestrian comfort, as well as outdoor space
usage [15].

Uncertainty with weather file data in BES is high [16], and the data may also not
reflect recent and future weather conditions [17]. For example, typical weather data from
1961–1990 were found to underestimate a Bahraini building’s energy consumption by
14.5% in comparison to data from 1992–2005 [18]. In a sensitivity study that involved
three TMY datasets and four Chinese cities, Sun et al. [19] found that building energy
predictions can vary by 10% to 20%. Bourikas et al. [20] show that microclimate plays
a significant impact in calculating building heating and cooling loads in the subtropical
climate of Hangzhou, China. The study used actual measurements of air temperature and
relative humidity at 26 sites within a 250-m radius, the outcomes show the limitations
of weather datasets like the TMY, where the final heating and cooling loads computed
with/without considering the microclimate showed variations of up to 20%. Furthermore,
Dorer et al. [21], used a thorough building energy simulation (BES) for a typical office
building in an urban canyon, local weather was found to have a significant effect on how
much heat is exchanged between buildings, which in turn affects how much energy is
required. In Chicago, Jain et al. [22] used the data exchange and coupling between a high-
resolution microclimate model and a BES to evaluate the impact of urban weather boundary
conditions on buildings’ energy performance, where using a local weather dataset led to
a 4.7% difference in cooling energy use compared to TMY weather data. In Montreal,
Canada, a large-scale building performance simulation was performed where the findings
showed discrepancies of between 3% and 29% in energy use simulated by actual and default
meteorological data [23]. Another more recent study in 2021 reported an underestimation
of 12.5% for peak heating load and 18% for peak cooling load in a residential building as
a result of using a typical meteorological year (TMY) [16]. Therefore, it can be concluded
that most existing BESs lack the ability to consider micro-scale variability in the urban
microclimate, and this could significantly alter a building’s energy performance in dense
cities [24].

Nevertheless, the urban microclimate and UHI are influenced by the surrounding
buildings and urban manmade features, which in turn alter people’s outdoor thermal
sensation. For this reason, urban microclimate simulation is mainly used to investigate how
the built environment alters the local microclimate and outdoor thermal comfort, and it
does so by influencing a series of thermodynamic phenomena [25]. The programs provide
information related to microclimate performance such as air temperature (Ta), mean radiant
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temperature (MRT), relative humidity (RH), thermal comfort indices, such as predicted
mean vote (PMV), and wind speed. Generally, the computation domains are restricted
to outside walls when the aim is solely the evaluation of the microclimate or the thermal
comfort of pedestrians. Indoor profiles of use are averaged, so energy evaluation is not
directly possible [26].

Although urban context design and building energy performance are interrelated and
co-dependent, and despite the availability of numerous BES tools, there is no single tool
which can directly evaluate the influence of an actual urban context and its microclimate on
a building’s energy performance, for the reasons of micro-scale variability noted above. This
was concluded by Lauzet et al. [27] detailed literature review on how local climate affects
building energy models in urban settings, noting that exchanging boundaries between BES
and urban micro-climate models requires to be generalized to improve the accuracy of
building simulations. Due to this lack of integration of climatic aspects in the planning
and design process, there is an urgent need for interdisciplinary collaboration between
urban planners, building designers, and urban simulation experts [28–30]. In this paper, we,
therefore, present a comprehensive practice for creating a more localised weather data file
for the microclimate conditions of a university campus in Manama, Bahrain in an attempt
to generalize and simplify the creation of a more localized weather file. This involved a
numerical simulation combining two different modelling approaches. First, ENVI-met
4 was used as a computational fluid dynamics (CFD) tool for analysing the interaction
between the microclimate and a building in Manama, Bahrain; second, the BES tool IES-
VE was used to calculate the building’s energy performance. In so doing, it was hoped
that a realistic energy consumption profile could be attained. The main objectives of this
study are:

- Quantification of the interaction between the localised microclimate and a building’s
energy consumption

- Evaluation of the usefulness of pairing ENVI-met 4 and IES-VE as a promising ap-
proach to improving urban microclimate and reducing energy consumption in build-
ings in hot, arid climates.

2. Overview: Methods of Creating Typical Weather Years

In terms of simulations, the need to balance precision against computational efficiency
has prompted the use of typical weather files in BES. Several approaches for acquiring
typical weather data have been documented, and here we consider four methods: typical
meteorological year (TMY), test reference year, meteorological year for energy calculation
(MYEC), and example weather year (EWY).

In 1978, the TMY format was produced by the United States National Renewable
Energy Laboratory for 248 locations, utilising long-term measurements of solar radiation
and weather data from 1952–1975; it is one of the most often used hourly data format files for
BES [31]. Later revisions, beginning in the early 1990s, introduced the TMY2 format, drawn
from measurements taken between 1961–1990 [32] (William, 1996), and the current TMY3
datasets cover 1020 US locations using data from 1976–2005 or 1991–2005 [33]. The typical
year is made up of 12 typical meteorological months [34] taken from various years and
combined into a single year [35]. Gazela and Mathioulakis [36] provide a full description of
how a TMY is produced. The TRY approach was established by the Chartered Institution of
Building Services Engineers (CIBSE) [37], using a similar compilation procedure based on
long-term measurements (generally 20 years). Finkelstein-Schafer statistics are predicted
for every month and climatic variable so that typical months can be defined, and these are
then aggregated to make a whole year. The full selection process for the average months
that make up a TRY is described in [38]. Currently, CIBSE used the average dry bulb
temperature from April to September to calculate the Design Summer Year (DSY). The
simplicity of this method excludes factors like incident solar radiation and extreme monthly
temperature values, both of which have a significant impact on a building’s ability to
withstand summer overheating. However, Jentsch et al. [39] investigated the validity of
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this simplified approach which showed inconsistent relation between the DSY and the
corresponding TRY and that, for some sites, building performance simulations using DSY
files produce unreliable outcomes. There are two major differences between the TRY and
TMY techniques: (1) in the TRY technique, only the mean values of dry bulb temperature,
wind speed, and global solar radiation are considered, while the TMY method includes
nine variables; and, (2) in TRY, all three variables have equal weight, but TMY uses the
meteorological year for energy calculation method.

The MYEC approach was first proposed by Crow [40] as another means of producing
hourly weather datasets. Although, as with TMY, the WYEC approach forms a complete
year by defining 12 representative months, there are two important differences with both
TRY and TMY techniques. First, a month is only chosen if the average monthly dry bulb
temperature differential is ±0.2 ◦C. Following the initial choice, if anomalies or extreme
events are located, separate days or hours can be manipulated so that the monthly mean
values are nearer to the long-term values, respectively. The entire process of creating hourly
weather values, as well as further improvements to it, have been illustrated by Crow [41]
and later Augustyn [42].

The last approach considered here is the EWY method of Holmes and Hitchin [43].
In this process, monthly mean weather values with the fewest anomalies compared to
long-term observations are used to create an example weather year. As such, an entire
representative year rather than representative months is established, as monthly mean
values for global and diffuse radiation, daily mean wind speed, mean, maximum and
minimum dry bulb temperature and their standard deviation from the long-term mean
are predicted. Years with monthly means greater than the standard deviation from the
matching long-term mean are excluded until one year remains, and this becomes the
selected example year [37,44].

3. Methodology

This study presents a computational method of generating a synthetic localised urban
climate weather profile for BES which reflects the influence of both the local context
and site-specific microclimatic conditions. Building energy and microclimate modelling
approaches were combined to assess and quantify the influence of the local microclimate on
a building’s energy behaviour in the hot, arid climate of Bahrain. The suggested framework
is comprised of four stages (Figure 1), including two modelling programs in which IES-VE
is used for the BES and ENVI-met 4 for microclimate modelling. This pairing permits the
exchange of the relevant boundary conditions between the two models, with ENVI-met
creating the hourly weather dataset later used in IES-VE as boundary conditions to mirror
the typical meteorological phenomena of a precise site. The ENVI-met output files include
the microclimatic parameters of the site around the building, and these must first be input
into a weather file generator, such as Meteonorm, to produce a weather dataset compatible
with being uploaded to IES-VE. As such, these data are more representative of the site
being assessed and so facilitate greater accuracy with the energy modelling performance.
The suggested framework is thus based on interoperability and data exchange between
(Figure 1):

a. ENVI-met v.4 microclimate model
b. Meteonorm Weather Generator
c. IES-VE as BES

For the case study location, we started with microclimate modelling of the current
urban settings. ENVI-met modelling is time-consuming, potentially taking 24–48 h for each
simulation of the model area and its resolution; for this reason, simulating every diurnal
cycle for several years to produce long-term microclimatic results was too inefficient.
Because of this limitation, six representative days were simulated, one for each month of
the extreme summer temperatures when the cooling load is greatest (see Section 3.1). A
specific urban weather dataset was then created from these microclimate results [45,46].
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From the ENVI-met receptors sited around the building, a CSV (character separated
values) file was collected which included the average values of air temperature, relative
humidity, wind speed, and solar radiation. These were then used as inputs for Meteonorm,
which can create a time series of hourly data. As such, this resolved the aforementioned
limitation by generating a customised typical year file for the study location’s climate,
known as an urban-specific weather dataset (USWD). The precise location was identified
using the ‘create new location’ Meteonorm map tool, and the location’s situation was
modified to ‘centre of a large city (over 100,000 inhabitants)’; moreover, we used the clear
sky radiation model and selected the output file in the EnergyPlus (epw) format. This
USWD file, which is a more specific weather file that depicts the microclimate near a
building, can then be input as the boundary condition in IES-VE and should improve
the energy modelling performance as the real microclimate conditions for the site have
been employed.

3.1. Identifying the Representative Summer Days for ENVI-Met Modelling

Tirabassi [47] stated that a representative summer day can be defined as the set of 24-h
weather station data with the fewest differences from other 24-h long-term observations
recorded at the same station. In the same way, Santamouris [48] proposed that a repre-
sentative day illustrates a day on which the climate variables almost correspond to the
long-term averages of the respective month. Thus, to define the representative days for the
study modelling, long-term values for all the major climate variables were taken from the
2004–2018 database. Using air temperature as an example, the procedure for determining
representative days for the microclimate simulation, as proposed by Tsoka et al. [49], was
as follows:

• For each day of each month, the mean daily average air temperature was calculated,
over the multi-year timeframe. For example, for 1 January and air temperature:
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T air 1st mean = (T air aver_1st − 2004 + T air aver_1st − 2005 + T air aver_1st − 2006 + · · · +T air aver_1st − 2018)/n (1)

where, n is the number of years in the long-term period.

• For each month, the median of the previously estimated mean values was calculated.
For example, for air temperature:

Median {T air 1st mean, T air 2nd mean . . . T air 31st mean} (2)

Following this method, the representative days were defined, followed by the mi-
croclimate simulations, to acquire the values of all the major climate variables for input
to Meteonorm.

3.2. The Study Context (Base Model and Location)

The Applied Science University (ASU) in Al-Ekr, south of Manama, in the Kingdom
of Bahrain (26.08◦ N, 50.36◦ E) has an area of about 24,000 m2 (Figure 2). It is located
in a category 0B climate zone [50] and is BWh according to the Köppen-Geiger climate
classification [51]. This means extremely hot summers from May to October and mild
winters from November to April. As shown in Figures 2 and 3, the on-campus case study
building, known as Building Technology, has a total area of 1488 m2. The building’s
typology is a mixture of offices, classrooms, computer labs, and laboratory spaces over
three floors. Its basic construction is a reinforced-concrete post and beam structure with
0.2 m thick brick infill walls which have no insulation; the building envelope is not airtight.
Double-glazed windows have a visible light transmittance of 39%, and the facades are
estimated to be 50% glass, with no solar protection. Table 1 provides a description of the
building and the properties of its construction materials. For ground contact construction in
IES-VE, the Floor-plan method was activated with the value of U = 0.57 W/m2-K. Having
no heating system, the building’s air-conditioning is set constantly at 21 ◦C so each space
has been assigned as an independent thermal zone for the three floors. A lighting density
of 10 W/m2 and a computer load of 7 W/m2 were used to represent operational hours
between “8.00–17.00”. Occupancy density was set as 10 m2/person in office spaces and
5 m2/person in classrooms. Daikin indoor/outdoor units have been fitted, with an energy
efficiency ratio (EER) of 5 in cooling mode.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 22 
 

 For each day of each month, the mean daily average air temperature was calculated, 
over the multi-year timeframe. For example, for 1 January and air temperature: 

T air 1st mean = (T air aver_1st − 2004 + T air aver_1st − 2005 + T air aver_1st − 2006 + ⋯ +T air aver_1st − 2018)/n (1)

where, n is the number of years in the long-term period. 
 For each month, the median of the previously estimated mean values was calculated. 

For example, for air temperature: 

Median {T air 1st mean, T air 2nd mean … T air 31st mean} (2)

Following this method, the representative days were defined, followed by the micro-
climate simulations, to acquire the values of all the major climate variables for input to 
Meteonorm. 

3.2. The Study Context (Base Model and Location) 
The Applied Science University (ASU) in Al-Ekr, south of Manama, in the Kingdom 

of Bahrain (26.08° N, 50.36° E) has an area of about 24,000 m2 (Figure 2). It is located in a 
category 0B climate zone [50] and is BWh according to the Köppen-Geiger climate classi-
fication [51]. This means extremely hot summers from May to October and mild winters 
from November to April. As shown in Figures 2 and 3, the on-campus case study building, 
known as Building Technology, has a total area of 1488 m2. The building’s typology is a 
mixture of offices, classrooms, computer labs, and laboratory spaces over three floors. Its 
basic construction is a reinforced-concrete post and beam structure with 0.2 m thick brick 
infill walls which have no insulation; the building envelope is not airtight. Double-glazed 
windows have a visible light transmittance of 39%, and the facades are estimated to be 
50% glass, with no solar protection. Table 1 provides a description of the building and the 
properties of its construction materials. For ground contact construction in IES-VE, the 
Floor-plan method was activated with the value of U = 0.57 W/m2-K. Having no heating 
system, the building’s air-conditioning is set constantly at 21 °C so each space has been 
assigned as an independent thermal zone for the three floors. A lighting density of 10 
W/m2 and a computer load of 7 W/m2 were used to represent operational hours between 
“8.00–17.00”. Occupancy density was set as 10 m2/person in office spaces and 5 m2/person 
in classrooms. Daikin indoor/outdoor units have been fitted, with an energy efficiency 
ratio (EER) of 5 in cooling mode. 

 
Figure 2. ASU campus, with Building Technology as the case study building. Figure 2. ASU campus, with Building Technology as the case study building.



Buildings 2022, 12, 1407 7 of 20Buildings 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 
Figure 3. Building Technology’s IES-VE model. 

Table 1. Simulation inputs for the building’s properties. 

Building Properties 
Total floor area 1488 m2 
Total volume 5613 m3 
External wall area 1146 m2 
External opening area 260 m2 
External wall insulation U-Value: 0.35 W/m2-K 
Roof insulation U-Value: 0.35 W/m2-K 
Floor insulation U = 0.57 W/m2-K 
Glazing 2 Dbl LoE Spec Sel Clr 6 mm/13 mm 
U-Value SHGC Arg 1.34 W/m2-K 

Light transmission 
0.42 
0.68 

Window-to-wall ratio 50% 
Shading Blinds (inside) with high-reflectivity slats 
Shading control type Glare 
Maximum allowable glare index  22 

3.3. ENVI-Met Micro-Urban Modelling 
With the abovementioned techniques, when generating a suitable climatic dataset, 

multiple years of meteorological values are required; therefore, the micro-urban model-
ling was conducted with the three-dimensional non-hydrostatic climate model in ENVI-
met 4. This advanced simulation system is founded on the fundamental laws of thermo-
dynamics and fluid dynamics. This software can simulate wind flow around buildings to 
replicate outdoor microclimatic dynamics, by handling the interplay between the climatic 
variables, vegetation, soil, and surface roughness [52]. Because of this advantage, the soft-
ware has often been employed to perform micro-urban modelling and outdoor thermal 
comfort analysis in the urban canopy layer (UCL) [53–56]. The simulation grid for ASU’s 
campus was 80 × 40 × 90, with a resolution of 2 m × 2 m × 4 m, as X, Y and Z, respectively 
(see Figure 4). The area of the model was rotated 5° out of the grid north to the east. Nest-
ing grids around the main area were set at 0, and the soil profiles for these grids were set 
as [SD] sandy soil for soil set A, and [ST] asphalt road for soil set B. Vertical grid genera-
tion was equidistant, meaning all dz (height) were equal except for the lowest grid box. 
The default wall and roof properties were [00] concrete slab, and hollow block. Four snap-
shot receptors were placed around the building to capture hourly the microclimatic vari-
ables that resulted from the modelling for each representative day (depicted as orange 
spots in Figure 4). The diurnal cycle of vertical boundary conditions was defined by air 

Figure 3. Building Technology’s IES-VE model.

Table 1. Simulation inputs for the building’s properties.

Building Properties

Total floor area 1488 m2

Total volume 5613 m3

External wall area 1146 m2

External opening area 260 m2

External wall insulation U-Value: 0.35 W/m2-K

Roof insulation U-Value: 0.35 W/m2-K

Floor insulation U = 0.57 W/m2-K

Glazing 2 Dbl LoE Spec Sel Clr 6 mm/13 mm

U-Value SHGC Arg 1.34 W/m2-K

Light transmission 0.42
0.68

Window-to-wall ratio 50%

Shading Blinds (inside) with high-reflectivity slats

Shading control type Glare

Maximum allowable glare index 22

3.3. ENVI-Met Micro-Urban Modelling

With the abovementioned techniques, when generating a suitable climatic dataset,
multiple years of meteorological values are required; therefore, the micro-urban modelling
was conducted with the three-dimensional non-hydrostatic climate model in ENVI-met 4.
This advanced simulation system is founded on the fundamental laws of thermodynamics
and fluid dynamics. This software can simulate wind flow around buildings to replicate
outdoor microclimatic dynamics, by handling the interplay between the climatic variables,
vegetation, soil, and surface roughness [52]. Because of this advantage, the software has
often been employed to perform micro-urban modelling and outdoor thermal comfort
analysis in the urban canopy layer (UCL) [53–56]. The simulation grid for ASU’s campus
was 80 × 40 × 90, with a resolution of 2 m × 2 m × 4 m, as X, Y and Z, respectively (see
Figure 4). The area of the model was rotated 5◦ out of the grid north to the east. Nesting
grids around the main area were set at 0, and the soil profiles for these grids were set as
[SD] sandy soil for soil set A, and [ST] asphalt road for soil set B. Vertical grid generation
was equidistant, meaning all dz (height) were equal except for the lowest grid box. The
default wall and roof properties were [00] concrete slab, and hollow block. Four snapshot
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receptors were placed around the building to capture hourly the microclimatic variables
that resulted from the modelling for each representative day (depicted as orange spots in
Figure 4). The diurnal cycle of vertical boundary conditions was defined by air temperature,
humidity, wind speed/direction, and solar radiation using the EnergyPlus weather file for
each simulated day to create the full forcing boundary condition (Figure 5).
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4. Results and Discussion
4.1. Generating Micro-Urban Specific Weather File

Data on daily average air temperature were gathered from Bahrain’s international
airport weather station (no. 411500) for 2004–2018, and then analysed following the process
in Tsoka et al. [49]. The main value of the daily average temperature was found for every
day and month, and then divided by the total number of years for the period covered in the
weather file. Then, for every month, the median of these mean values was estimated using
Equations (1) and (2). Following the methodology described in Section 3.1, representative
dates were determined (Table 2). ENVI-met micro-scale simulations were then performed
for each of the six days that represented the summer season in Bahrain, to find the main
climatic values gathered from the four receptors placed around the case study building.
These values were then averaged and input as monthly data in Meteonorm.

Table 2. Selected representative days in summer in Bahrain, with air temperature (T air) deviations
from monitored long-term median values.

Selected Representative Day Average Air Temperature T Air Deviation

23 May 2006 31.7 0.5%

27 June 2015 34.3 0.7%

7 July 2015 35.7 0.8%

18 August 2018 35.5 0.1%

14 September 2008 33.8 0.1%

19 October 2007 30.3 0.2%

4.2. ENVI-Met Modelling Outputs

Because of the extended calculation time required for an ENVI-met simulation, only the
representative summer days shown in Table 2 were simulated. Each model was performed
for 24 h, in addition to four further hours used as a spin-up stage to improve the precision
of the CFD simulation. Initialising the simulation at night when turbulence conditions are
weaker can reduce numerical errors or noise in the outcomes [57]. The ENVI-met output
for each day’s air temperature was then compared to the values recorded for the same days
from the actual data taken from Bahrain’s international airport weather station (WMO).
Figure 6 shows that the ENVI-met air temperature was always greater than that actually
recorded, possibly because of the dissimilar environmental conditions at each site; the
meteorological station at the airport is just outside the city and occupies a different height.



Buildings 2022, 12, 1407 10 of 20

Thus, the higher simulated air temperature could be accounted for by a UHI. In a similar
study, the in-site monitored air temperature was 2.2 ◦C higher than the reported ones using
the EPW in the urban centre, and the study relates this to the UHI [58]. The simulated air
temperature (Ta) for the case study ranged from 33.6–39.1 ◦C, a greater range compared to
the average measured monthly value for Bahrain (33–38 ◦C) recorded at the WMO. In a
study by Radhi et al. [59], it was found that the air temperature in Bahrain is increasing by
1.4 ◦C per decade, accompanied by an increase in direct solar radiation, and as such, this is
another factor to consider in simulation weather profiles. Figure 7 presents that ENVI-met
relative humidity was always less than the monitored ones at the WMO yet following the
same trends. Finally, using root mean square error (RMSE) as a statistical evaluation for the
accuracy of the model, as shown in Table 3, it can be seen that all the outcomes fall within
the acceptable range of ±20% [60–62].
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Table 3. Statistical evaluation of the Envi-met model based on RMSE.

Average Air Temperature (◦C) RMSE Average Relative Humidity (%) RMSE

May 32.5 0.695 37 2.55

June 35 0.639 31 4.416

July 36.1 0.757 37 4.052

August 36.25 0.839 45 3.926

September 34.3 0.473 51 4.435

October 30.8 0.574 58 4.619
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4.3. IES-VE Energy Simulation (BES)

Since the study’s aim was to assess the influence of outdoor microclimate conditions
on building energy performance, the microclimate weather data produced in the previous
stages were then input to the building energy simulation program (BES) to compute the
energy consumption of the case study building. Virtual Environment (IES-ve) version 2021,
developed by the Integrated Environmental Solutions Ltd. in Glasgow, UK, is the industry
standard software for thermal and comfort analysis, daylighting, solar studies, egression,
and carbon emissions code compliance [63–65].

4.4. IES-VE Outcomes Using the Generated USWDs

Another study aim was to explore the validity of the paired simulation approach.
As discussed, the precision of the energy modelling is determined by how accurately
the input data are representative of the case study [63], which has all the complexities of
reality [66]. To test the accuracy of the approach, two weather profiles were employed to
simulate the same energy model in IES-VE, following European Standard EN 15603 [67]
validation procedures [68]. One used the weather data from the WMO and the other an
artificial USWD generated by Meteonorm based on the values gathered from the ENVI-
met receptors around the case study building. The building’s energy consumption for
each weather profile was compared to the actual electricity metering. Figure 8 shows the
IES-VE predicted total electricity consumption during summer was 595 MWh, deviating
by 6% from the actual measured consumption (560 MWh). In contrast, the weather station
energy simulation predicted the energy demand to be 664 MWh, with a 15% deviation against
actual consumption. Regarding the accuracy of the model’s predictions, RMSE for the USWD
simulation was 3.5%, whereas the WMO simulation was almost twice as much at 6.6%. As
such, both results are within ASHRAE 14 tolerance criteria for RMSE of ±20% [60–62]. From
this, it can be deduced that creating localised urban boundary conditions for a building
decreases variation in estimated building energy demands.
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The building energy model employed occupancy profiles which were as near to
actual recorded occupancy levels as possible, although they may appear to be much
higher than the simulation outcomes. This might be because of the building type and its
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variable occupancy schedule, which follows the academic calendar and university teaching
periods. In general, the monthly electricity consumption seen with both IES-VE models was
reasonably distributed with regard to the corresponding monthly actual values, although as
we have seen the USWD model deviated less from the actual energy bills, with a deviation
of 6% against 15% for the WMO energy model. Nevertheless, both outcomes correlate
strongly to the measured consumption and are within the accepted range of deviation of
<10–20% [69,70].

These outcomes are aligned with other findings from different studies such as
Tsoka et al. (2018) [49] who indicated mean daily deviations reaching between 0.63 ◦C
and 1.0 ◦C and Fan et al. (2020) who reported an increase from 0.1 ◦C to 1.3 ◦C in the out-
door air temperature which has an impact on building energy loads, as per the findings of
Santamouris et al. [71] literature review, which suggest an increase in the peak energy load
ranges between 0.45% and 4.6% per degree of air temperature increase, whereas the com-
parative analysis of existing scientific results reported 13% average cooling load increase
according to the severity of the phenomena and the characteristics of the buildings [71].
This might be one of the reasons explaining the outcome variation among the different
studies, where variations of up to 20% were observed in the final heating and cooling
loads when considering the microclimate [20]. Very similar outcomes were reported by Sun
et al. [19] in four cities in China with 10% to 20% variation in building energy calculations
based on sensitivity analysis using different TMY files. While using a local weather dataset
led to a 4.7% difference in cooling load in Chicago compared to TMY weather data [22].
In a more detailed recent study investigating the TMY impact on building energy perfor-
mance in six different cities in China, the relative mean deviation, the results show a total
0.7–10% difference [72].

4.5. ENVI-Met Modelling Outputs for an Improved USWD

To improve understanding of the link between outdoor urban design and indoor
energy consumption, simple outdoor passive design interventions have been suggested to
exploit the advantageous aspects of climatic conditions, including outdoor air temperature
and its significant influence on a building’s energy balance. Outside air temperature
affects heat transfer through external walls and roofing, as well as heat transfer through
ventilation [73]. Additionally, outdoor relative humidity is key in hot seasons [74] as it
has a significant effect on latent cooling load and energy consumption in summer. When
investigating condensation conditions, the year-round external air humidity must be taken
into consideration [73]. In this regard, the presence of suitable vegetation at a site is one
possible design intervention which can regulate outdoor air temperature and relative
humidity [74,75]. Accordingly, the car park was replaced with green spaces, in which grass
was set to be 50 cm high to avoid wind obstruction. Figure 9 presents the current and
amended scenarios.
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Using the previous settings for the ENVI-met simulation, only the six days representing
the summer season (Table 2) were simulated, to generate a USWD for the amended scenario
to represent the impact of the intervention on the climatic conditions. Again, the main
climatic values taken from the four receptors around the case study building were averaged
and used as monthly data input for Meteonorm. Figures 10 and 11 illustrate the difference
in air temperature and relative humidity between the existing and amended case study
scenarios. In Figure 10, the air temperature showed the same drift with lower values as the
base case during the whole day for all the summer months. The proposed intervention led
to an average of 0.6 ◦C lower than the base case. May recorded the highest difference of
0.78 ◦C, followed by 0.67 ◦C for August, while the least difference was seen in June and
July, at 0.49 ◦C and 0.42 ◦C, respectively.
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Figure 11 shows that the relative humidity of the amended case increased by an aver-
age of 4% compared to the base. The lower air temperature and higher relative humidity
outcomes are due to the addition of more green area in the urban spaces, caused by its
ability to convert solar radiation into latent heat, which in turn lowers the surface tem-
perature; this is in addition to evapotranspiration, as the green spaces increase relative
humidity through transpiration and wet substrate [76]. According to Yu [77], the solar
radiation reaching the surface of green spaces is converted into biomass, oxygen, and hu-
midity. Similar outcomes have been reported in previous studies. In Egypt, air temperature
decreased by 1 ◦C and relative humidity increased by about 3% in the hot climate [74].
In Algeria, a reduction of 0.8 ◦C was seen in average air temperature due to the presence
of more vegetation cover at the studied site [78]. Moreover, in Algeria, a comparison of
empty and vegetated spaces revealed a maximum deviation between two air temperatures
equal to 6.57 ◦C, and higher relative humidity for the vegetated area with a difference
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of 0.4 g/kg [75]. In Gothenburg, Sweden, during summer the average difference in air
temperature was about 3 ◦C in the park compared to the surrounding neighbourhood [79].

4.6. IES-VE Outcomes Using an Improved USWDs

The two synthetic USWDs created in Meteonorm for the base case and amended
scenario were also used to quantify the relationship between the local microclimate and
the case study building’s energy consumption. The same adjustment employed for the
validation of the generated USWD was used to simulate another energy model using
IES-VE. The building’s energy consumption figures for both USWD weather profiles were
compared. As shown in Figure 12, the IES-VE predicted total electricity consumption for
the base case was 595 MWh, while the energy simulation in the amended scenario was
552 MWh, using 7.25% less total energy. This reduction may be due to the 0.6 ◦C average
reduction in external air temperature, which could decrease the cooling load by 7.25% in
summer. A similar finding was reported in previous research, in that for each 1 ◦C rise in
outdoor air temperatures, the peak cooling load increases by approximately 10% [80].
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Figure 12. Comparison of the electricity consumption of the IES-VE using USWDs for the base case v.
USWDs for the amended case.

5. Conclusions

Long-term local and urban environmental monitoring for the purposes of creating a
climatic weather profile for building simulation is costly and complex. In this paper, the
aim was to explore the feasibility of a method of creating a synthetic urban local specific
weather dataset (USWD) for the estimation of energy demand. Buildings in hot arid
climates, especially those with year-round occupancy, consume a great deal of energy and
have large air conditioning systems. The proposed method involved using data in CSV
file format exported from receptors placed at the case study building, in order to create a
Metronorm urban weather profile, which could then be used to generate a yearly energy
plus weather format (EPW) weather profile compatible with IES-VE (Figure 2). The key
results of this assessment are:

• The method may help with the development of guidelines that link outdoor urban
design with indoor building energy consumption;

• A comparison of the ENVI-met simulated air temperature and the WMO recorded
datasets showed the influence of a UHI, as the simulated air temperature for the case
study varied more than the average monthly value recorded by the WMO weather
station at Bahrain international airport;
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• The creation of a localised weather file (USWD) for BES produces data which are nearer
to actual energy demand figures, with discrepancies of 6% deviation in comparison
to 15% for the energy model that used the WMO weather file. Local microclimate
fluctuates according to the boundary conditions, such as vegetation, surface materials,
urban density, and air quality; all these influence the energy balance of buildings [12,13];

• While both IES-VE simulation outputs were within the accepted <10–20% of actual
energy demand [69,70], various outdoor microclimate situations, such as the presence
of certain types of vegetation, waterbodies, or surface materials should be explored
with USWD files that can accurately estimate the influence on indoor energy demand;

• The site of a weather station and the date of the weather data file played a key
role in the BES outcomes in this study, as seen in the variation in the USWD and
WMO findings. This is in line with a previously reported outcome in a 15-year
data comparison which revealed a difference of up to 3.7 ◦C for air temperature and
1.5 m/s in average wind velocity [16]. Similarly, another study compared two datasets
from 1961–1990 and 1992–2005 and found a 14.5% discrepancy in energy analysis [18];

• The amended scenario of substituting asphalt for 50 cm high grass led to an average
0.6 ◦C lower outdoor air temperature and 4% increase in relative humidity against the
base case. These changes, as well as other microclimate parameters, were recorded
by ENVI-met receptors around the building and used to generate a new USWD for
the intervention;

• IES-VE predicted that the total electricity consumption during the summer, using
the USWD of the base case, was 595 MWh, whereas the energy simulation with the
USWD of the amended scenario was 552 MWh, a reduction of 7.25% in total energy;
in a similar study in Chicago, it was found that using a local weather dataset led to a
4.7% difference in cooling energy use compared to TMY weather data [22];

• In future research, monitored building base loads and occupancy for longer periods
might reduce these discrepancies even more. Long-term on-site observation of the
microclimatic parameters for comparison with ENVI-met output would further raise
confidence in the paper-adopted approach.
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