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Abstract: Fire has significant effects on the residual resistance of steel structures. It is necessary
to accurately clarify its effects on Q690 HSS plate girders, which have been widely used. In this
paper, the ultimate resistance and effective service resistance of Q690 HSS plate girders after a fire are
obtained using material tests and finite element (FE) analysis including parametric studies, where
the data of 210 models were collected. The effects of four key parameters (f,/t, ratio, a/hy ratio,
exposure temperature and cooling method) on post-fire shear resistance reduction of Q690 HSS plate
girders are roughly investigated by individual conditional expectation (ICE), showing exposure
temperature is the most important factor. The popular algorithms of machine learning (ML), namely
artificial neural network (ANN) and support vector regression (SVR) algorithms, are utilized in
model training to predict the reduction factors of both ultimate resistance and effective service
resistance. Finally, the results indicate that the prediction using ML shows much better performance
than that with traditional ordinary least squares (OLS) regression, and SVR with genetic algorithm
(GA) provides the highest prediction accuracy. The results of this paper show the superiority of
machine learning for solving prediction problems of steel structures, compared with conventional
methods such as linear regression.

Keywords: artificial neural network; high-strength steel; plate girder; post-fire; machine learning;
support vector regression

1. Introduction

High-strength steel (HSS) with a yield strength of higher than 460 MPa has been
widely used in high-rise buildings and long-span structures. Compared with mild steel,
HSS possesses higher strength properties, which reduces the steel consumption of structures
and the difficulty of welding.

However, it is worth noting that the elastic modulus of HSS is similar to that of mild
steel. Therefore, the use of HSS could not bring beneficial effects on the buckling resistance,
which is mainly influenced by the dimensions of the component and the elastic modulus
of the material. When the steel component exhibits stable buckling, the load on the steel
component could still increase after buckling because of post-buckling resistance. The plate
structures usually have noteworthy post-buckling resistance [1,2]. The plate girder (PG)
investigated in this study is a welded I-section girder with a large web-height-to-thickness
ratio (see Figure 1). In order to improve the buckling resistant capacity of the web, the steel
plate girder is usually strengthened by transverse stiffeners. Because of the embedment
effects from the flange and transverse stiffener on the web, there is post-buckling capacity
in the plate girder. In that case, when the steel plate girder is subjected to shear load, the
web first exhibits the local buckling. After that, the shear load could be made resistant
stably using a plate girder, where no decrease in resistant stiffness is observed. Then, the
steel plate girder develops post-buckling resistant capacity. Many scholars have studied
the post-buckling performance of steel plate girders. Hassanein studied the ultimate resis-
tance of stainless steel plate girders through finite element analysis [3], where the design
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equations in different codes were validated based on the numerical results. Alinia et al. [4]
performed a numerical investigation on the stress evolution in the web of plate girders,
which clarified the transition from the buckling state to the ultimate state. Considering the
post-buckling resistance of the plate girder, the strength properties of the steel perform
noteworthy effects on the resistant properties of the plate girder, which means the outstand-
ing strength properties of HSS could be fully utilized. Thus, HSS has been a promising
material for plate girders [5-7]. Choi et al. [5] studied the shear behavior of web panels in
HSB800 plate girders, which suggested a predictive method for the ultimate shear resistance.
Xiao et al. [8] clarified the effect of the nonlinear properties of Q690 HSS on the shear capac-
ity of a plate girder. Azizinamini et al. [9] conducted the experiment on the plate girder
consisting of mild steel and HSS, which provided the test results for the tension field action
of the web during the post-buckling segment. Despite all this research, the post-buckling
resistance of the HSS plate girder still needs to be studied thoroughly. Some current investi-
gations ignored the beneficial effects of the strain hardening properties of the structural
steel. Because of the strain hardening properties of structural steel, the stress of the web dur-
ing the post-buckling segment could increase gradually, which brought beneficial effects on
the resistance of the plate girder. When there was a yield plateau in the stress—strain curve,
the beneficial effects of strain hardening properties were reduced. Nonlinear stress-strain
properties of the structural steel perform noteworthy effects on the stress distribution of the
plate girder, which influences the resistant properties. The above issue should be answered
to clarify the resistant properties of the plate girder comprehensively.

Figure 1. Steel plate girder in long-span structures.

Fire is considered to be one of the severe hazards that can destroy buildings [10-16],
reducing the service life of constructions [17]. For steel structures, the high thermal conduc-
tivity and low specific heat make the case more dangerous. The rapid rise in temperature
significantly changes the microstructures of the steel [18], leading to a significant reduction
in the elastic modulus and strength properties of structural steel [19]. When the steel struc-
ture experiences fire without collapse and significant residual deformation, it is necessary
to accurately evaluate the residual resistant performance of the steel structure. Once given
the residual resistance of the steel structure after a fire, a decision could be made about
the subsequent application of the post-fire steel structure, such as direct use, use after
repair or demolishing. As a result, it is necessary to clarify the residual mechanical prop-
erties of structural steel after a fire and to this end, many experimental studies have been
conducted [20,21]. Li et al. [22] performed an experiment to clarify the effects of expo-
sure temperature and cooling methods on the residual mechanical properties of Q690
HSS, where comprehensive predictive equations were suggested based on test results.
Qiang et al. [23] studied the post-fire mechanical properties of 5460 and S690 HSSs with
cooling in air, where the reduction in strength properties was discussed. According to
current studies, the exposure temperature has more obvious effects on the mechanical prop-
erties of HSS, compared with that of mild steel. Additionally, the reduction in the resistance
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of HSS structures after a fire might be larger than that of mild steel structures. Consequently,
the resistant performance of HSS plate girders exposed to elevated temperatures should be
investigated. The key parameters influencing the residual resistance of HSS plate girders
after a fire may include the dimensions of the plate girder, exposure temperature and
cooling method. It should be noted that the resistance of the plate girder was significantly
influenced by the post-buckling behavior, where the load transfer mechanism changed.
In general, it is difficult to suggest predictive equations with a clear physical meaning to
clarify the effects of multiple variables, considering that there was a coupling effect between
different variables.

Recently, machine learning (ML) has been a hot topic of interest for researchers [24].
It has a strong ability to capture complicated relations among input and output data in
handling complex nonlinear structural analysis [24-26]. A large number of studies have
demonstrated that ML can be an accurate and efficient alternative approach to traditional
techniques for damage detection (classification problems) and strength predictions (regres-
sion problems) in structural engineering [24,26]. Specifically, the ML approach is a great
tool for analyzing the mechanical problems of steel structures, which is the case of this
study. For example, two representative ML algorithms including support vector regression
(SVR) and artificial neural network (ANN) could be used to predict the ultimate strength of
concrete-filled cold-formed steel tubular (CFCFST) columns under concentric and eccentric
loading [27]. ANN is also employed in the material modeling of steel when exposed to the
high temperatures expected in fires [28]. In addition to ANN and SVR, other advanced
ML algorithms (i.e., Extreme Gradient Boosting (XGBOOST), and Light Gradient Boosting
Machine (LightGBM) could be good choices to forecast the shear strength in steel buildings
accurately [29].

When solving regression problems, ANN and SVR models have mature algorithms
and they are simple to use [30]. ANN imitates the structure and mechanism of the human
brain, which is able to fit any relationship between input and output parameters, showing
its great potential to predict and identify the results [31]. SVR represents an extension
of SVM for regression problems, which is widely used for prediction in both linear and
nonlinear regression analyses, for its relatively high generalization ability, even with limited
samples [32].

Considering the complexity of the issue investigated in this study, ANN and SVR are
proposed to improve the prediction of the residual resistance of Q690 HSS plate girders
after a fire. The main body of this paper is structured as follows: Section 2 briefly introduces
the process of data collection, containing material tests, finite element modeling, parametric
studies and the basic algorithm of linear regression. The ML methodology is presented
in Section 3, which also discusses hyperparameter optimization. Subsequently, Section 4
demonstrates the results of the predictive models for the ultimate resistance and effective
service resistance reduction factors (TV,,/2°V,, ratio and TV, /20V, ratio) and correlation
analysis is shown. Section 5 presents the discussions and future works.

2. Data Collection
2.1. Material Tests

The material tests were conducted to clarify the residual mechanical properties of
Q690 HSS after exposure to elevated temperature. The chemical composition of Q690 HSS
studied in this research is listed in Table 1. The mechanical test specimens were cut from one
Q690 HSS sheet. The dimensions of the test specimen were determined according to the re-
quirements in GB/T 228.1-2010 [33], as shown in Figure 2. The test process in this study was
the same as that in Ref. [20], as presented in Figure 3. Firstly, the MX(Q1400-30 temperature-
controlled electric furnace was used to heat the Q690 HSS specimen for simulating the fire
load, where the exposure temperatures including 300/400/500/600/700/800/900 °C were
considered. Then, two different cooling methods were applied, respectively, namely cooling
in air (CIA) and cooling in water (CIW) [20-23]. For each cooling method and exposure
temperature combination, three test specimens were prepared. The test specimen without
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heating and cooling treatment was also involved as the benchmark. Finally, the tensile
coupon test was carried out after cooling treatment, where the loading rate was controlled
to be 1 mm/min, within the required range of GB/T 228.1-2010 [33]. An extensometer was
used to record the deformation of the test segment in the specimen. The load data was read
from the testing system and the loading will be terminated when the fracture of the test
specimen was observed.

Table 1. Q690 HSS chemical composition.

Element Si Mn C B Cr Mo Ti Ni P S Nb
wt.% 0.15 1.57 0.07 0.001 0.01 0.02 0.09 0.01 0.010 0.002 0.001
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Figure 2. Dimensions of tensile coupon test specimen.
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Heating treatment

Tensile coupon test

Figure 3. Process of the material test (CIA: cooling in air; CIW: cooling in water).

Based on the load-displacement data, the stress-strain curves of the test specimens
were obtained, as shown in Figure 4a. Test results indicated that when the exposure temper-
ature was lower than 700 °C, the residual stress-strain curves were almost identical to the
ones without fire. When the exposure temperature was higher than 700 °C, the reductions
in stress-strain properties of Q690 HSS were clearly seen. In that case, the effects of fire on
the residual resistance of the Q690 HSS plate girder should be given attention. Specifically,
when the exposure temperature ranged from 700 °C to 900 °C, the reduction in strength
properties for CIW specimens was clearly lower than that of specimens with CIA, which was
caused by the quenching effect. A similar phenomenon was also observed in Refs [21,34].
However, the current investigations on the post-fire mechanical properties of Q690 HSS
mainly focused on the stress-strain properties. There has been limited research considering
the microstructures of the Q690 HSS after exposure to elevated temperatures [20,35,36]. To
reveal the reason for the differences in the stress-strain properties, it was meant to clarify
the stress-strain properties. In this study, the microstructures of the Q690 HSS with different
cooling methods and exposure temperatures were discussed. The microstructures of the
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Stress (MPa)

test specimens were observed after the tensile coupon test for further analysis, as presented
in shown in Figure 4b. For the Q690 HSS at room temperature (benchmark), there were fer-
rite (white area) and pearlite (black dot), where the area proportion of ferrite was obviously
higher than that of pearlite. For Q690 HSS after 800 °C heating and CIA cooling, compared
to the benchmark specimen, the area proportion of granular pearlite increased while the
size of ferrite seemed to be larger. The above changes in microstructures led to a decrease
in strength and an increase in ductility, which agreed with the tendency of stress-strain
curves in Figure 4a. For Q690 HSS with 900 °C exposure temperature and CIW, cementite
was widely dispersed in the range of ferrite, which brought beneficial and adverse effects
to the strength and ductile properties, respectively. This characteristic in the microstruc-
ture might be the reason for the disappearance of the yield plateau, as seen in curves of
800 °C-CIW and 900 °C-CIW. For the Q690 HSS in this study, when exposure temper-
ature was higher than 700 °C, exposure temperature was higher than the austenitizing
temperature of Q690 HSS, where a clear transformation of the metallographic structure was
observed. Differences in microstructures led to differences in mechanical properties. The
austenitizing temperature of mild steel might be different from that of Q690 HSS, which
might lead to different turning points.

400

200 |-
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—w— 500°C-CIA
600°C-CIA
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(a) (b)
Figure 4. Results of the material test. (a) strain-stress curve; (b) microstructures.

Considering the test results above, in the following numerical analysis, the stress-strain
properties of Q690 HSS with 25/700/800/900 °C exposure temperatures and CIW /CIA
cooling methods would be introduced to study the residual resistance of the Q690 plate
girder after a fire.

2.2. Finite Element (FE) Modeling

The finite element (FE) model of the Q690 HSS plate girder was established using
ABAQUS software, as shown in Figure 5a. The S4R shell element was selected to simulate
the steel plate in the Q690 HSS plate girder [5-7,37]. To simulate the welding, the “Tie”
constraint was set to build a connection between the web (flange) and transverse stiffener.
The true stress-strain relations of steel were calculated using averaged engineering stress-
strain data (equations were introduced in Ref. [6]) in Section 2.1, later imported to ABAQUS.
The true stress and strain equations are given in EN 1993-1-5:2006 [38]. Simply supported
boundary condition was selected. The end sections of the plate girder model were coupled
to the reference points. Then, the rotational and translational degrees of freedom of the
reference points were restrained to simulate the simply supported boundary condition.
The details about rotational and translational degrees of freedom of the reference points
were introduced in Ref. [8]. Some lateral supports were introduced in the flange to avoid
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lateral-torsional buckling, which was used to simulate the constrained effect from beams
and floor on the plate girder. It is worth noting that the initial imperfection was considered
by introducing the first buckling mode obtained from the elastic buckling analysis, where
the peak value of the initial imperfection was determined to be 1/100 of web height (h),
as recommended in section 9 of the AASHTO Bridge Welding Code [39]. The above peak
value of the initial imperfection was also recommended in Refs. [3,40,41]. The convergence
study was performed based on a typical model to determine the proper size of the element
mesh. The results are shown in Figure 5b, where the error is (V,, ; — V,,5)/V,, 2, in which
Vi and V,, » denote the ultimate resistance of the plate girder whose element size is 7 and
2 mm, respectively. To balance the accuracy and calculation consumption, the element size
was determined to be 20 mm, which meant the error would be below 2%. The accuracy
of the above numerical modeling method had been validated by the experimental results
of mild steel plate girders [7,8] and stainless steel plate girders [6] comprehensively. It is
worth noting that the post-fire stress-strain properties of the Q690 HSS were similar to
those of mild steel and stainless steel, such as the yield plateau, strain-hardening effect
and so on. Hence, it is believed that the numerical modeling method validated by the
experimental results on the mild steel and stainless-steel plate girders could be used to
predict the resistant properties of the Q690 HSS plate girder after fire effectively. It is worth
noting that the experimental and numerical investigations in this study were focused on
the post-fire-resistant properties of the Q690 HSS plate girder, considering the effects of
exposure temperature and cooling method.

Buckling analysis (elastic) 0.16 T T T T
0.12 E
Initial 3
i i W % 0.08 A J
imperfection ¥ e 3
e ?
>
0.04 A e
’ 0.00 : : : :
0 20 40 60 80 100

Stable resistance analysis (elastic-plastic)

Dimension of element (mm)

(a) (b)

Figure 5. Numerical analysis. (a) FE model; (b) convergence study.

2.3. Parametric Study

Based on the modeling technics introduced in Section 2.2, a parametric study was
conducted involving 210 FE models. The material properties of Q690 HSS under different
exposure temperature and cooling methods were identical to the test results reported in
Section 2.1, where the reduction factors for the stress properties of steels have been listed in
Table S1 in the Supplementary Materials. For all the models, web thickness is t;, = 5 mm,
and the flange width (by) and thickness (;) are 200 mm and 20 mm, respectively. The key
parameters include the height-to-thickness ratio of web hy,/t, (100/150/200/250/300),
aspect ratio of web a/hy, (0.5/0.75/1/1.25/1.5/2), exposure temperature (20/700/800/
900 °C) and cooling method (CIA and CIW), where 7 is the spacing of transverse stiffeners,
which are the applicable ranges of input parameters of the predictive model. Based on
the experimental results introduced in Section 2.1, the effects of exposure temperature and
cooling method on the post-fire mechanical properties of the Q690 HSS were ignorable,
when the exposure temperature was lower than 700 °C. Hence, there was almost no
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difference in the resistant properties of the Q690 HSS plate girder after exposure to an
elevated temperature below 700 °C. Therefore, the exposure temperatures below 700 °C
were not included in the parameter study. The span of the place girder (L) could be
calculated by L = 2a + 320 mm. The effects of t,, on the resistant properties of plate girder
are reflected in the /1, / ¢, which is recommended by many researchers [6-8,40,42]. Basically,
the flanges of plate girder provide the bending moment resistance rather than the shear
resistance, so the effects of the by and #; on the shear-resistant properties of the plate girder
are relatively small. Hence, the t;, bf and tf are not varied in this study. The geometry
details of each model are introduced in Table S2 in the Supplementary Materials.

For all the FE models in this study, the flange plastic hinge mode was observed,
which is the expected failure mode in the design code [43]. In this study, the ultimate
resistance V, corresponding to the peak point of the resistance curve and the effective
service resistance V. corresponding to the L/400 midspan displacement were selected
to quantify the resistant properties of Q690 HSS plate girders with different cooling
methods and exposure temperatures. Based on the requirement in GB 50017-2017 [44]
for the deflection limit of the plate girder with different bearing functions and load-
ing conditions, the deflection limit L/400 was selected. The V, and V, values of each
model with different dimensions, exposure temperature and cooling methods are listed in
Table S3-55 in the Supplementary Materials.

As for the load-midspan displacement curves, the typical model P-1-250 (which
meant a/hy =1 and hy, /t, = 250) is selected to clarify the effects of exposure temperature
and cooling method, as shown in Figure 6. When the CIA is applied, with increments
in the exposure temperature, the resistant performance of Q690 HSS plate girders de-
creases, gradually. When the exposure temperature is 700 °C, the resistance curves are
similar to that of the Q690 HSS plate girder at 20 °C. When the exposure temperatures are
800 and 900 °C, the resistant performance is clearly poorer than that of the Q690 HSS plate
girder with 20 °C, along with the change in the nonlinear tendency of curves. For the curve
of the Q690 HSS plate girder at 20 °C, when the elastic segment is over, the noteworthy
strengthening segment is observed. However, when the exposure temperatures are 800
and 900 °C, there is barely any such strengthening segment in the resistance curves of
Q690 HSS plate girder hy, /t, with CIA. When the elastic segment is over, the peak point is
reached rapidly. When the CIW is performed, the resistance curve of the Q690 HSS plate
girder exposed to 700 °C is similar to that of the Q690 HSS plate girder at 20 °C. When the
exposure temperature increases from 700 °C to 800 °C or 900 °C, the resistance of the Q690
HSS plate girder decreases correspondingly. It should be noticed that the resistance of the
Q690 HSS plate girder with exposure temperature of 900 °C and CIW is better than that
of the Q690 HSS plate girder with exposure temperature of 800 °C and CIW. The above
increment in resistant performance is caused by the quenching effects of the stress-strain
properties mentioned in Section 2.1. Compared with Q690 HSS plate girders with CIA, the
Q690 HSS plate girders with CIW always have higher resistance.

Generally, the effect of fire on the resistance of the plate girder could be quantified
by the reduction factor, which is a great concern. Therefore, in this study, the effect of the
key parameters on the post-fire resistance reduction factors for the ultimate resistance and
effective service resistance (TVM/ 20y, ratio and TV, /20V, ratio) are studied, where Ty,
and TV, are the resistance after exposure to elevated temperature T, while 2°V,, and ?°V,
are the resistances under room temperature (20 °C). The correlation analysis is proposed
by individual conditional expectation (ICE), which can be used to visualize or quantify
the impact of every input variable on the output variable [45]. It shows how the output
changes when one of the four input variables changes, while the other three variables
remain unchanged. Each line represents one occasion of the impact on the v,/ 20 V, or
TVe/ZO V. ratio of each Xj, and the red line is expected to reflect the average trend, where
X1, X, X3 and Xy represent the hy/ty, ratio, a/hy, ratio, exposure temperature and cooling
method (0 denotes CIA while 1 denotes CIW), respectively. Figure 7 shows that both the
Ty, /?0V, ratio and the TV,/2%V, ratio are influenced by the four parameters. As can be
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seen, Figure 7a shows a trend towards a gradual decrease in the Ty, /?0V, ratio with higher
exposure temperature (X3). Although the cooling method (X4) has an obviously positive
effect on TV, /20V,, ratio, which means the CIW method has a more beneficial effect than
the CIA method. Additionally, the influence of hy/t,, (X1) and a/h,, (X7) on the Tv,/?v,
ratio is complex, and almost no overall conclusion could be made. As for the Ty, 20y,
ratio, Figure 7b proves that exposure temperature (X3) is the most significant factor with a
negative effect, and the positive effect is seen between hy/t, (X7) and the Tv,/20V, ratio,
as well as the a/h,, (X,) and TV,/2’V, ratios. The impact of the cooling method (X4) on the
Ty, 20V, ratio seems to be complicated, but overall, the reduction factor is higher for those
using CIW, rather than CIA. The stress distributions and failure modes corresponding to the
ultimate resistance of the plate girder model with different cooling methods and exposure
temperatures are shown in Figure 8, where a/hy, = 1 and hy,/t,, = 200. Local buckling is
observed in the web while the plastic hinges occurred in the flange. Effects of the cooling
method and exposure temperature on the failure mode are relatively small. However, the
tension field of the web is changed after fire exposure.

1800 —
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= 900
s N L
c_: —=— original-20°C
S 0o —— CIA-700°C
) —— CIA-800°C
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0 " " 1 " " 1 " " 1 N N
0 20 40 60 80

Mid-span displacement (mm)

Figure 6. Shear load-midspan displacement curves of P-1-250 with different exposure temperatures
and cooling methods.
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Figure 7. Individual conditional expectation plots. (a) Results for Ty, /20V, ratio; (b) Results for
Ty, /20V, ratio.
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Figure 8. Failure modes of numerical models: (a) 20 °C and without cooling treatment; (b) 900 °C
and CIA; (c) 900 °C and CIW.

2.4. Prediction of Resistance Reduction through Linear Regression

Regression analysis is a commonly-used method to model the simple relationship
between the independent variables and dependent variables. Linear regression analysis
researches the relationship by building a linear equation [46] and one of the most popular
ways is the ordinary least squares (OLS). OLS regression fits a straight line, which satisfies
the demand of minimizing the squared vertical distance from all observations to the
regression line on the scatter plot [47]. As concluded in Section 2.3, the Ty, /20V, ratio
and TV,/?0V, ratio are both highly influenced by the hy/t,, ratio, a/h, ratio, exposure
temperature and cooling method. Therefore, the equations for the simple linear regression
are obtained below. Considering that the numerical analysis was focused on the variable
scope in Section 2.3, the input parameters of the predictive model should be controlled
within the above applicable ranges.

TV, 12V, = a1 Xg + 00 Xo + a3 X5 + aa Xy + €1 1)

TV, /2V, = B1 X1 + BaXy + B3 X5 + BaXy + €2 ()

where TV, /20V,, ratio and TV, /20V, ratio are the dependent variables, X; represents the
independent variables after pre-processing (the process of generation and normalization is
illustrated in Section 3.1), «; (i = 1,2,3,4) and §; (j = 1,2,3,4) are the regression coefficients and
&, (k=1,2) is an error to account for the difference between predicted data and the true data.
It is worth noting that the reduction factor is investigated in this manuscript, where the
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ultimate shear resistance of the Q690 plate girder without exposure to elevated temperature
is considered to be the benchmark. Therefore, when the design standard could be used
to predict the ultimate shear resistance of Q690 plate girder without exposure to elevated
temperature accurately, the predictive model in this manuscript could be used to predict
the ultimate shear resistance of Q690 plate girder after exposure to elevated temperature,
which quantifies the reduction factor.

The results of the OLS regression analysis are presented in Figure 9 and the analysis
of variance (ANOVA) is shown Table 2. Generally speaking, a model that maximizes the
coefficient of determination (R?) is considered to be more accurate [46], so R? serves as a
vital statistical metric for comparison among all the methods in this study. R? indicates the
statistical relationships between the true value and the predicted value, and the formula is
shown in Equation (3).
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Figure 9. Prediction of resistance reduction through linear regression. (a) TVu,pmd / ZOVu,p,Ed —
TV, re/%°V,, pE scatter plot; (b) TVe,pred /%0 Ve pred — TV, re /?°V,  scatter plot.
Table 2. ANOVA response for the linear regression model.
Dependent Variables
Independent Variables Ty, /20y, Ratio Ty,/20v, Ratio
Coef p-Value Coef p-Value
X1: hw/tw —0.0246 0.098 * 0.0639 <0.001 ***
Xp: a/hw —0.0183 0.085 * 0.048 <0.001 ***
X3: exposure temperature T —0.2583 <0.001 *** —0.1857 <0.001 ***
Xy: cooling method 0.1582 <0.001 *** 0.0414 <0.001 ***
R? 0.78600 0.69540

Note: *** Highly significant parameter (p-value < 0.01), * Effective parameter (p-value < 0.1).

The R? values of the linear regression model for the Tv,/?V, ratio and TV,/20V,
ratio are 0.7860 and 0.6954, respectively. The R? values are not high enough for accurate
prediction but it could be concluded that the considered parameters have a reasonable
contribution to explaining the behavior of v, /2V, ratio and TV,/20V, ratio, at least
for this linear model. In Table 2, the statistical P-value for each parameter (independent
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variable) is listed, which could be used to measure whether the parameter is statistically
significant to the dependent variable. Variables with a p-value lower than 0.1 (marked
with “*”) are effective, and variables with a p-value lower than 0.01(marked with “***”)
could be regarded as highly significant parameter [48]. Specifically, for the TV, /?'V,
ratio, hy/ty and a/hy, are effective, and the exposure temperature and cooling method are
highly significant. For TV, /?’V,, all the parameters are highly significant. According to
the coefficients (Coef), all independent variables have negative effects on Tv,/?V, ratio
except the cooling method, while all have positive effects on Ty, /20V, ratio except exposure
temperature. However, linear regression has some limitations in prediction accuracy. Thus,
for a better prediction, the machine learning methods are introduced and applied in the
following sections.

3. Machine Learning Methodology
3.1. Overall Introduction

The general process of ML algorithms based on ANN and SVR for prediction is
illustrated as follows, as shown in Figure 10.

Step 1
Data generation

l

Step 2
Nomalization

I

Step 3
Dataset division

!

Step 4
Model training

Anrtificial Neural
Networks (ANN)

Value of N

Value of |CV, PSO, Support Vector
cg GA ; Regression (SVR)

| L

Value of S

hy perparam eter optim ization

Step 5§
Model evaluation

and comparison

PR
( End

N
J
Figure 10. Flow chart of the machine learning methodology.

Step 1 (Data generation): All qualitative variables are converted into quantitative
variables. In this study, cooling in air (CIA) and cooling in water (CIW) in cooling method
are indicated by 0 and 1, respectively.

Step 2 (Normalization): To eliminate the effect of scale, all the data must be normal-
ized to improve the efficiency so that the range of processed data is within [0, 1]. The
normalization formula is shown in Equation (4). [49]:

x; — min(x;)

Xi = max(x;) — min(x;) @)
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where X; is the normalized data, min(x;) is the minimum of the un-normalized value, and
max(x;) is the maximum of the un-normalized value.

Step 3 (Dataset division): To avoid overfitting, these data are randomly divided into
two parts [50], with 5/6 and 1/6 of the data for training and testing the model, respectively.
The training set is used for training and hyperparameter optimization, and the test set is
used to evaluate the prediction accuracy of this model.

Step 4 (Model training): With the software of MATLAB R2021a, ANN and SVR
algorithms are utilized in model training, and the hyperparameter optimization is carried
out. Each objective hyperparameter is adjusted while keeping all others fixed.

Step 5 (Model evaluation and comparison): Other than R?, the mean square error
(mse) [51] is also a widely used statistical metric to evaluate the prediction accuracy of ML,
which measures the difference between the predicted values and the true values, as shown
in Equation (5).

mse =S4 @)

where, §J; and y; are the ith true and predicted values, respectively, and 7 is the number of
total data. By presenting R? and mse values, the prediction accuracy of different methods
can be compared.

3.2. Artificial Neural Network (ANN)

Both feedforward neural networks trained with the Levenberg-Marquardt backpropaga-
tion algorithm (ANN_BP) [52,53] and radial basis function neural network (ANN_RBF) [54]
are popular neural networks with high predictive performance in recent studies. Their
basic structures are similar, generally composed of the input layer, hidden layer and output
layer [55]. Although the most difference is in the hidden layer, where ANN_RBF uses the
RBF kernel as a transfer function in it [56], while ANN_BP uses the Sigmoid function [52].

3.2.1. ANN_BP

In the feedforward neural network, backpropagation solves problems related to com-
plex networks and nonlinear functions. Figure 11 shows the basic principle of ANN_BP. The
training process consists of two steps, namely, feed forward and backpropagation, where
the ANN_BP model could be optimized by constantly adjusting the weight of neurons (w)
and bias function () based on the error between calculated values and actual values [57]
when the structure is basically fixed. The bias metrics in ANN_BP play a similar role as ¢ in

OLS regression.
) < Back Propagation
Bias

. TV, 7%V, ratio
—

exposure temperature = =—— . S .
P P TV/20V, ratio

X,
cooling method =—

af Y wa+p)

Note:
a=Output on the layer

Input Layer Hidden Layer Output Laver i
P v /= Transfer function

Feed Forward w= Weight matrix
S = Bias function

Figure 11. Technological structure of ANN_BP.
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In most studies, the critical hyperparameters in the ANN_BP algorithm are the number
of layers and the number of hidden neurons. Other hyperparameters are defined as follows:
choose the Sigmoid function as the activation function, since all the data fall in [0, 1] after
normalization, and the Sigmoid function ranges from 0 to 1 [58]. According to Li et al. [59],
previous studies adopted either 1 or 2 hidden layers. Considering the computational
efficiency, this paper chose one hidden layer first. The optimalization of the number of
neurons (N) is a trial-and-error process. In order to eliminate the random error of dataset
division and find the appropriate N, many trials are used to obtain the average statistical
metric of each training set. In this study, ten trials are adopted. The influence of N (3~9) on
prediction accuracy for TV, /?0V,, ratio is presented in Figure 12a, which shows an upward
and then downward trend. The results from sensitivity analysis indicate that the best
performance network for Tv,,/2V, ratio is with 6 neurons, where the average R? value
of the training set is 0.97590. After hyperparameter optimalization, the test set is used to
assess the prediction accuracy [60], and the average R’ value of the test set is 0.97216. The
influence of N (6~12) on prediction accuracy for the TV,20V, ratio is presented in Figure 12b.
It shows when N equals 9, the average R? of the training set reaches the maximum value of
0.91609, where that of the test set is 0.91891.

0.980 - 0.920 -
—=— Training set —=— Training set
m. n
0.975 - 0.97590 g 0,915 0.91609
0.97484 m 0.91469 .
. 0.97398 . e
= pN = 0B 0127
. ) |
Y 2
0.970 1 - 007106 097 0910 :
m-- .
0.96935 096969 090931
w7 -
0.00762 0-90789
1.965 T T T T T T T 0.905 T T T T T T T
3 4 5 6 7 8 9 6 7 8 9 10 1 12
N N
(a) (b)

Figure 12. Influences of the number of neurons (N) on R? on the training set. (a) Ty, /20V,, ratio;
(b) TV, /20V, ratio.

3.2.2. ANN_RBF

ANN_RBF has the advantage of nonlinearity analysis when solving prediction prob-
lems, and the spread of each neuron (S) is a key hyperparameter [55], related to the Gaussian
basis function in the hidden layers [57]. The larger the S is, the smoother the curve-fitting
will be, but the approximation error will be larger. The smaller the S is, the less smooth
the approximation process of ANN_RBF will be, and the poor performance even leads to
over-fitting phenomenon [55]. Therefore, the hyperparameter optimalization of S value is
required. Similarly, average R? values are calculated using the results of ten randomized
trials for choosing the best S value.

When building neural networks of the small-sample set, over-fitting phenomenon
could be caused [61], which can be seen in Figure 13. When S is set as 1, the average
R? values of training set are both infinitely close to or equal to 1 for Tv,/?V, radio
and TV, /?0V, ratio, while those of test set showing poor prediction performance, with
0.54064 and 0.15690, respectively. Therefore, following the approach adopted by Ref. [55],
the parameter S is optimized by considering both training sets and test sets in case of
overfitting. In Figure 13a, S = 1~50, the blue line rises faster with the fall of the red line,
which indicates that a larger S has influence more on the prediction accuracy of test set (the
blue line) than that of training set (the red line), for v, /?0V, ratio. When S equals to 10,
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the average R? value of training set is 0.99840, where the red line rises slightly and then
keeps dropping, and R? value of test set increases at a high level of 0.99402, showing the
predicted and true data are quite well matched of both training and test set. The similar
regular can be seen in Figure 13b for Ty, /20V, ratio, within the studied range of S (1~50),
and the best choice of S is 20. The results of R? values for the two parts of training and test
are 0.97570 and 0.96350, respectively.

1.00000  0.99974 0.99926 0.99743 0.99840 0.99743  0.99569
.5 % . SR 18 2 104 2% 096919 0.97570 097570 097036 096587 0.96409
198849 0.99329  0.99402 0.99468 0.99334 & &———§——3—=8
./' 095119 0.96350 094129 0.95391 0.95954
0.93776 s 0.80762 ini
0.9 1 —&— training set 0.8 4 -0 /02 —m— traming set
—— fest set ‘ —o— test set
0.8 J
% : . % 064 /| s
0.7 1 - 0.4+
0.6 o6 024 st
._
7 p ———— 15690 - —
0.54064 s g
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S S

(b)
Figure 13. Influences of spread (S) on R2 of training set and test set. (a) Ty, /20V,, ratio; (b) Ty, /207, ratio.

3.3. Support Vector Regression (SVR)

The regression and prediction accuracy of the SVR model is highly affected by the hy-
perparameter settings. Specifically, penalty hyperparameter ¢, and the key hyperparameter
g of the RBF kernel function are the most significant [50]. The optimalization of ¢ should
avoid excessive learning and incomplete searching phenomenon [62]. Hyperparameter g is
about the strength of the interaction between different support vectors, which affects the
prediction efficiency and accuracy [63]. As predictive results of SVR are sensitive to the hy-
perparameter tuning, many common algorithms are used as hyperparameter optimization
methods including cross-validation (CV) [64], particle swarm optimization (PSO) [65] and
genetic algorithm (GA) [66]. Therefore, these three methods are all adopted in this study.

3.3.1. SVR+CV

To avoid overfitting, the k-fold cross-validation of the dataset is needed to evaluate the
model performance during the process of training [64], and 5-fold is used in this study. The
iterative process is repeated until the algorithm satisfies the termination condition, namely,
the error convergence rate [67], which is the difference between two adjacent predicted
values. In this study, it is set to be less than 10~% [68]. The result of hyperparameter
optimalization for Ty, /20V,, ratio shows that the best ¢ is 1.00000 and the best gis 0.17678.
Similarly, the best c and g values for Tv,/20V, ratio are 0.70711 and 0.25000, respectively.
Finally, the average R? values of the test set for TV, /20V,, ratio and TV, /2V, ratio, are
0.98613 and 0.91172, respectively.

3.3.2. SVR+PSO

The particle swarm optimization algorithm (PSO) is inspired by the behaviors of ani-
mals, which uses the updated particle swarm to find the best global and local positions [69].
Here, each particle represents a possible solution for the algorithm. PSO shows good
performance in solving SVR optimization problems [65], and it is utilized in this part.

In this study, with a particle swarm size of 20 [70] and a maximum of 200 iterations [71],
proper conditions can be preliminarily set through a 5-fold cross-validation method. The
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inertia factor w(p) is 0.1, whose function is to prevent quick convergence [71]. The learning
factors (c; = 1.5 [69] and ¢, = 1.7) are considered as two accelerations adjusting the relative
velocities when finding the best positions [63]. This paper uses the LIBSVM (Library
for support vector machines) format for hyperparameter optimization in the SVR+PSO
algorithm [72], where the error convergence rate is less than 10~* [68]. Results show that
for Tv,,/20V,, ratio, the best ¢ is 100 and the best g is 0.50312 while the best ¢ is 19.53590 and
the best g is 0.92395 for TV, /20V, ratio. Using these optimal hyperparameters, the results of
average R? values of each test set can be obtained, with 0.99445 and 0.94714 for TV, /2°V,,
ratio and TV, /?0V, ratio, respectively.

3.3.3. SVR+GA

GA is used to automatically determine the optimal or approximate optimal hyper-
parameters in the SVR model [66]. The advantage of GA is its powerful global optimiza-
tion function, which guarantees the prediction accuracy and application range of the
SVR model.

The optimization process with GA is defined with a population of 20 individuals in
100 iterations, for 5-fold cross-validation. ggap is the proportion of superior individuals
selected from the parent generation. In this paper, the length of the individual ggap is 0.9,
which means the proportion of individuals replaced by the next generation is 10%. The
LIBSVM format is a significant step, which is utilized to find appropriate hyperparameters
directly [72]. The SVR+GA algorithm is terminated when the rate of error convergence
is less than 10~* [68]. The curves of fitness function for TV, /2°V, ratio are shown in
Figure 14a, where the optimization procedure converges after 4 iterations, showing best
c is 34.90380 and best g is 0.54646. The same method can be used to find the suitable
hyperparameters for 'V, /?’V, ratio in Figure 14b, which shows the best ¢ of 51.43410 and
the best g of 0.19455 after 27 iterations. Using the optimal hyperparameters of c and g with
the stable condition, the average R? values of test set for TV, /20V,, ratio and TV, /20V, ratio
are 0.99406 and 0.99472, respectively. It is observed that, both the R? values of SVR+GA
are close to 1, which preliminarily indicates that the SVR model could provide accurate
predictions for the objective functions after the process of hyperparameter tuning with GA.

the fitness curve[GAmethod]

The fitness curve [GAmethod] (Termination of algebra=100,pop=20)
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Figure 14. The fitness curve of GA method. (a) Results for Ty, /20V,, ratio; (b) Results for TV, /20V, ratio.

4. Predicted Results
4.1. Prediction of Ultimate Resistance ( Tv.,./2°V,, Ratio)

After optimalization of hyperparameters, the structures of ML are confirmed, and the
prediction accuracy is calculated using a test set [60]. Figure 15 presents the TVu,pred/ 20 Vi pred
— TV, re/?°V, rE scatter plots for ANN_BP, ANN_RBF, SVR+CV, SVR+PSO and SVR+GA,

respectively. In addition, Table 3 lists the average R? and mse values as the regular statistical
error indicators. It is visible that a majority of the points fall on the diagonal line of these
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five plots, indicating that the true values (V,, rg) and predicted values (Vi,pred) fit well. The
best agreement is seen in ANN_RBE, SVR+PSO and SVR+GA, where the averaged R?
values are 0.99402, 0.99445 and 0.99406, respectively. Additionally, their mse values are
0.00018, 0.00021 and 0.00015, respectively, lower than that of the two models. It could be
concluded that SVR and ANN models after hyperparameter optimization can reach higher

levels of predictive accuracy than the OLS model, especially for ANN_RBEF, SVR+PSO
and SVR+GA.
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Figure 15. Training and test results of machine learning methodology for TV, /?°V, ratio.
(a) TVu,pred / ZOVu,pred - TVu,PE / 2OVM,FE scatter plot of ANN_BP; (b) TVu,pred / Zovu,pred
TV, re/ %V, rE scatter plot of ANN_RBF; (c) TVu/p,ed / ZOVu,pyed — TV, re/?V, pE scatter plot of
SVR+CV; (d) TV prea/?* Viuprea — "Viu,re/?° Vi e scatter plot of SVR+PSO; (€) TV prea /*OV y pred —
TVu,pE / 2OVM,FE scatter plot of SVR+GA.
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Table 3. The statistical performance comparison of test sets for TV, /2V,, ratio.

ANN_BP ANN_RBF SVR+CV SVR+PSO SVR+GA
R? 0.97216 0.99402 0.98613 0.99445 0.99406
mse 0.00261 0.00018 0.00440 0.00021 0.00015

4.2. Prediction of Effective Service Resistance (TV,/?'V,)

Figure 16 the TV, req/?' Ve prea — " Ve re/?°Ve e scatter plots for ANN_BP, ANN_RBE,
SVR+CV, SVR+PSO and SVR+GA, respectively. It also presents R? values of each test set in
these five algorithms, which can be seen that only a few predicted values differ slightly
from the true values, and the other predicted values are very close to true values. The
specific R? and mse values of each test set with different algorithms are calculated and
compared for determining the accuracy, and the results are shown in Table 4. It could be
concluded that the algorithm combined with SVR and GA has a better prediction effect for
Tv,/20V, ratio, where R? value is 0.99472 and mse value is 0.00013.

Table 4. The statistical performance comparison of test results for T V,/0V,.

ANN_BP ANN_RBF SVR+CV SVR+PSO SVR+GA
R? 0.91891 0.96350 0.91172 0.94714 0.99472
mse 0.00130 0.00094 0.00095 0.00060 0.00013
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Figure 16.  Training and test results of machine learning methodology for TV,/?°V,.

(a) TVe,pred /20 Ve,pred - TVe,FE /20 Ve,FE scatter PlOt of ANN_BP; (b) TVe,pred /ZOVe,pred - TVe,FE /20 Ve,FE
scatter plot of ANN_RBEF; (c) TVe,p,ed / ZOVe,pred — TV, pp /% Vere scatter plot of SVR+CV;
(@) "Veprea/* Ve prea — TVere/*'V, i scatter plot of SVR+PSO; (€) TV pred /2 Ve prea — TVere/*' Ve re
scatter plot of SVR+GA.

5. Discussions and Future Works

Comparing the predicted results in Tables 2—4, it could be concluded that ML al-
gorithms represented by ANN and SVR can obtain better forecasting performance than
the traditional method of OLS regression. Apparently, OLS regression lacks the learning
process to eliminate interference values and errors, while both ANN and SVR have the
ability of nonlinear processing, which ensures that sufficient information of input variables
and output variables could be fully utilized.

Basically, all the predictive results by ML are within a reasonable range, since the
R? values vary between 0.91891 and 0.99472 while mse values vary between 0.00013 and
0.00261. The predictive accuracy could be compared with that of other similar research.
For example, the R? value of SVR is 0.9470, when evaluating the compressive strength of
the concrete samples [50]. Concurrently, the R? value of ANN is 0.82 when predicting the
strength of different soils [73]. As for the accuracy of ANN, mse values for moment and
rotation prediction of tested connections are 0.63 and 0.0021, respectively [74]. Therefore, it
could be concluded that the predictive accuracy of the ML models in this paper is satisfying.

In terms of the comparisons between the two methods of ANN, ANN_RBF achieves
higher precision than ANN_BP, for it uses the RBF kernel as a transfer function [57], which
is the best of all kernel functions [75]. Within all the models of SVR, SVR+PSO seems to
be the most efficient and accurate for the hyperparameter optimization of the TV, /2°V,
ratio prediction, while SVR+GA exhibits the best of the Ty,/20V, ratio prediction. Basically,
SVR+GA performs the highest accuracy in predicting both TV, /2°V,, and TV, /?V, ratio.
Although both ANN_RBF and SVR+GA use the RBF kernel function and optimize the core
hyperparameters, the prediction accuracy of SVR+GA is higher than that of ANN_RBF for
™V, /?°V, ratio and TV, /?0V, ratio, since SVR has the characteristics of strong generalization
ability with small samples [76], which is the case in this study. Therefore, when carrying
out a similar prediction, the SVR+GA algorithm is expected to provide a more practical
guarantee in terms of prediction accuracy.

As for the correlation analysis, the results of ICE can be linked with the conclusions
in OLS regression, where the influence of each independent variable on the dependent
variable shows the same direction. In OLS regression, the influence of four parameters
on the dependent variable is considered simultaneously and one scatter plot is drawn.



Buildings 2022, 12, 1481

19 of 22

However, with ICE, the influence of one parameter on the dependent variable is considered
separately and the corresponding scatter plot is drawn as four plots. In practice, both
methods could be used to predict the general relationships between dependent variables
and independent variables, but the detailed trends shown in ICE seem to be clearer than
those in OLS regression, and ICE has a better ability to show the potential complexity of
the correlations.

For future studies, the numerical studies could be further improved by considering
the creep effects. Additionally, to enhance the generalization ability of machine learning
approaches, increasing the quantity of data could be an efficient measure. In addition,
the process of hyperparameter tuning could be optimized so that the evaluation process
significantly improves in accuracy. Furthermore, machine learning methods should be
used in solving other problems similar to the case of this study, especially for the capacity
prediction under complex circumstances. Finally, it should be noticed that the results
of Q690 plate girder after fire in this study are based on the following limitation: hy/ty
between 100 and 300, a/hy ratio within 0.5~2, exposure temperature 700~900 °C and
cooling method should be CIA or CIW.

6. Conclusions

Mechanical properties of Q690 HSS performed significant effects on the resistance of
plate girders” developing post-buckling capacity. When the plate girder did not collapse
after a fire its residual resistant capacity should be evaluated. The exposure temperature
and cooling method performed noteworthy effects on the mechanical properties of Q690
HSS, which also influenced the resistance of the plate girder. Considering that there
were many influencing variables, it is very difficult to determine the residual resistance
of the Q690 HSS plate girder effectively after the fire through the traditional predictive
method. Therefore, the machine learning method was innovatively used in this study.
Post-fire resistance of Q690 HSS plate girders was investigated through material tests,
FE analysis and parametric study. Additionally, the prediction of the reduction factor of
post-fire resistance with machine learning methods shows better performance than that
with traditional OLS regression, which could be conveniently used in the evaluation of the
residual resistance of the Q690 HSS plate girder after fire. The main conclusions of this
research include the following;:

1.  The exposure temperature is the most significant parameter for the reduction factor by
imposing a negative effect on the ultimate resistance and effective service resistance
of Q690 HSS plate girders while cooling in water (CIW) is a more beneficial cooling
method than cooling in the air (CIA) in terms of the residual resistance. Basically, the
small impact of i, /t;, ratio and a/h, ratio on the resistance reduction is seen.

2. The R? values of the OLS regression method for v, /?0V, ratio and TV, /20V, ratio are
0.7860 and 0.6954, respectively. The accuracy of fitting and calculating the statistical
metric is not high enough for predictions.

3. The results show that effective algorithms (i.e., PSO and GA) can be used to automati-
cally optimize the core hyperparameters, which may have higher efficiency than the
trial-and-error process relying on human experience.

4. Specifically, SVR+PSO seems to be the most accurate algorithm when predicting
Ty, /20V, ratio, where R? value of the test set is 0.99445 and mse value is 0.00021.
SVR+GA exhibits the best prediction of Ty, /207, ratio with an R? value of 0.99472
and mse value of 0.00013. Considering the accuracy in prediction, the SVR+GA
algorithm provides the best performance for both 7V, /2°V,, ratio and TV, /?°V, ratio.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/buildings12091481/s1, Table S1: Reduction factors for the stress
properties of steel, Table S2: Geometrical dimensions of numerical model, Table S3: Numeri-
cal analysis results: 20 °C, Table S4: Numerical analysis results: 700 °C and with CIA/ CIW,
Table S5: Numerical analysis results: 800 °C and with CIA/CIW.
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