
Citation: Lan, D.; Chen, K.; Xu, Z.

Underground Parking Layout

Generation Based on the

WaveFunctionCollapse Algorithm.

Buildings 2023, 13, 2898.

https://doi.org/10.3390/

buildings13112898

Academic Editor: Svetlana J. Olbina

Received: 17 October 2023

Revised: 9 November 2023

Accepted: 13 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Underground Parking Layout Generation Based on the
WaveFunctionCollapse Algorithm
Di Lan, Kezhen Chen and Zhen Xu *

School of Architecture, Tianjin University, Tianjin 300072, China; landi730@tju.edu.cn (D.L.)
* Correspondence: zhenxu@tju.edu.cn

Abstract: During the design process, architectural layout configuration is subject to complex con-
straints such as site conditions and design requirements, resulting in limited design efficiency. This
research aims to provide architects with an effective design tool that can generate reference-worthy
underground parking layout solutions based on the given site information. In this research, we
extract spatial modules from underground parking layouts, and transform the design constraints into
adjacency rules based on the analysis of the configuration process for underground parking layout,
then develop a generation and optimization model of the underground parking layout based on the
WaveFunctionCollapse algorithm (WFC) and Multi-objective Optimization (MOO), and verify the
effectiveness of the model through experiments. The results show that with given plan contour and
entrance/exit locations as inputs, the model can efficiently generate architectural layout solutions
that meet the design objectives.

Keywords: underground parking layout configuration; generative design; WaveFunctionCollapse
algorithm (WFC); multi-objective optimization (MOO)

1. Introduction

Architectural layout configuration is a critical aspect of architectural design that is
subject to various constraints, such as site conditions, design requirements, technical speci-
fications, building codes, and aesthetic considerations. Architects often invest significant
time and effort in seeking the optimal solution to meet these constraints [1]. In this context,
generative design, which can be defined as a design approach that uses algorithms to
generate designs [2], offers architects a more efficient means of exploring a wider design
space through an iterative design process [3]. Based on mechanisms of generation, gener-
ative design can be categorized into two approaches: data-based generative design and
rule-based generative design [4]. The former involves acquiring knowledge from case
data, with artificial neural networks based on deep learning gaining significant attention
in recent years [5–7]. On the other hand, rule-based generation methods generate results
based on predefined rules. Existing methods in this category encompass L-systems, cellu-
lar automata, genetic algorithms, swarm intelligence, reinforcement learning and shape
grammars [8–13]. However, both approaches have their limitations in practice. Data-based
generative design relies on large volumes of case data and lacks adaptability to changing
design conditions. On the other hand, rule-based generative design struggles with ensuring
the overall quality of the generated results and effectively filtering valuable results from a
large pool of generated outcomes, particularly when faced with complex design problems.
Consequently, there is a demand for the exploration of efficient and adaptable generative
design algorithms and workflows for architectural layout configurations that are capable
of adapting to evolving design conditions and delivering optimized results that align with
the design objectives.

WaveFunctionCollapse (hereinafter referred to as WFC), initially developed by Maxim
Gumin in 2016 [14], is an algorithm for procedural content generation (PCG) that has

Buildings 2023, 13, 2898. https://doi.org/10.3390/buildings13112898 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13112898
https://doi.org/10.3390/buildings13112898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings13112898
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13112898?type=check_update&version=1

Buildings 2023, 13, 2898 2 of 15

gained prominence in recent years [15–17]. WFC draws inspiration from the concept of
wave function collapse in quantum mechanics. Its fundamental mechanism is as follows: a
system is set up with a specific number of slots, each capable of accommodating a range of
predefined modules. In the absence of observation, the state of all the slots is indeterminate,
resulting in maximum entropy within the system. Once the state of a particular slot is
determined, the states of the neighboring slots are also determined based on a predefined
set of neighboring rules. This reduces the entropy of the system, resulting in a collapse.
Once the state of all the slots is determined, the collapse is complete, and every part of the
system adheres to the predefined rules [14,18] (Figure 1).

Buildings 2023, 13, x FOR PEER REVIEW 2 of 15

WaveFunctionCollapse (hereinafter referred to as WFC), initially developed by
Maxim Gumin in 2016 [14], is an algorithm for procedural content generation (PCG) that
has gained prominence in recent years [15–17]. WFC draws inspiration from the concept
of wave function collapse in quantum mechanics. Its fundamental mechanism is as fol-
lows: a system is set up with a specific number of slots, each capable of accommodating a
range of predefined modules. In the absence of observation, the state of all the slots is
indeterminate, resulting in maximum entropy within the system. Once the state of a par-
ticular slot is determined, the states of the neighboring slots are also determined based on
a predefined set of neighboring rules. This reduces the entropy of the system, resulting in
a collapse. Once the state of all the slots is determined, the collapse is complete, and every
part of the system adheres to the predefined rules [14,18] (Figure 1).

Figure 1. Basic mechanism of WFC. (a) Modules and their neighboring rules are predefined (colors
represent types of modules). (b) In the initial state, each slot allows placement of any predefined
module. (c) During the observation phase, a slot is randomly chosen and one of the predefined mod-
ules is placed in it at random. (d) During the propagation phase, the states of other slots are deter-
mined by the predefined neighboring rules. (e) Once the state of all slots is determined, a solution
is attained.

As a PCG algorithm, WFC combines machine learning and constraint solving on the
algorithmic level. This algorithm demonstrates an exceptional capability to generate rich
and high-quality content without requiring extensive training data [18,19]. Consequently,
this approach has the potential to overcome the limitations commonly associated with
data- and rule-based generative design methods, thereby enabling its potential use in the
field of architectural generative design. WFC possesses two notable features. Firstly, un-
like many generative methods that rely heavily on parametric control, WFC synthesizes
outcomes based on constituent elements (modules) and the relationships between them
(rules). This guarantees a high level of control over the generated outcomes as all modules
and rules are pre-established. Secondly, unlike some generation methods that require ex-
tensive training data, WFC achieves rich content generation using only a small number of
module inputs and rule settings. This guarantees the efficiency of the generation process
[14,20] (Figure 2).

Figure 2. (Left): In WFC, the form of the input directly affects the generated results; (Right): by
changing the rules, a minimal input can generate rich content.

Figure 1. Basic mechanism of WFC. (a) Modules and their neighboring rules are predefined (colors
represent types of modules). (b) In the initial state, each slot allows placement of any predefined
module. (c) During the observation phase, a slot is randomly chosen and one of the predefined
modules is placed in it at random. (d) During the propagation phase, the states of other slots are
determined by the predefined neighboring rules. (e) Once the state of all slots is determined, a
solution is attained.

As a PCG algorithm, WFC combines machine learning and constraint solving on the
algorithmic level. This algorithm demonstrates an exceptional capability to generate rich
and high-quality content without requiring extensive training data [18,19]. Consequently,
this approach has the potential to overcome the limitations commonly associated with data-
and rule-based generative design methods, thereby enabling its potential use in the field of
architectural generative design. WFC possesses two notable features. Firstly, unlike many
generative methods that rely heavily on parametric control, WFC synthesizes outcomes
based on constituent elements (modules) and the relationships between them (rules). This
guarantees a high level of control over the generated outcomes as all modules and rules are
pre-established. Secondly, unlike some generation methods that require extensive training
data, WFC achieves rich content generation using only a small number of module inputs
and rule settings. This guarantees the efficiency of the generation process [14,20] (Figure 2).

Buildings 2023, 13, x FOR PEER REVIEW 2 of 15

WaveFunctionCollapse (hereinafter referred to as WFC), initially developed by
Maxim Gumin in 2016 [14], is an algorithm for procedural content generation (PCG) that
has gained prominence in recent years [15–17]. WFC draws inspiration from the concept
of wave function collapse in quantum mechanics. Its fundamental mechanism is as fol-
lows: a system is set up with a specific number of slots, each capable of accommodating a
range of predefined modules. In the absence of observation, the state of all the slots is
indeterminate, resulting in maximum entropy within the system. Once the state of a par-
ticular slot is determined, the states of the neighboring slots are also determined based on
a predefined set of neighboring rules. This reduces the entropy of the system, resulting in
a collapse. Once the state of all the slots is determined, the collapse is complete, and every
part of the system adheres to the predefined rules [14,18] (Figure 1).

Figure 1. Basic mechanism of WFC. (a) Modules and their neighboring rules are predefined (colors
represent types of modules). (b) In the initial state, each slot allows placement of any predefined
module. (c) During the observation phase, a slot is randomly chosen and one of the predefined mod-
ules is placed in it at random. (d) During the propagation phase, the states of other slots are deter-
mined by the predefined neighboring rules. (e) Once the state of all slots is determined, a solution
is attained.

As a PCG algorithm, WFC combines machine learning and constraint solving on the
algorithmic level. This algorithm demonstrates an exceptional capability to generate rich
and high-quality content without requiring extensive training data [18,19]. Consequently,
this approach has the potential to overcome the limitations commonly associated with
data- and rule-based generative design methods, thereby enabling its potential use in the
field of architectural generative design. WFC possesses two notable features. Firstly, un-
like many generative methods that rely heavily on parametric control, WFC synthesizes
outcomes based on constituent elements (modules) and the relationships between them
(rules). This guarantees a high level of control over the generated outcomes as all modules
and rules are pre-established. Secondly, unlike some generation methods that require ex-
tensive training data, WFC achieves rich content generation using only a small number of
module inputs and rule settings. This guarantees the efficiency of the generation process
[14,20] (Figure 2).

Figure 2. (Left): In WFC, the form of the input directly affects the generated results; (Right): by
changing the rules, a minimal input can generate rich content.
Figure 2. (Left): In WFC, the form of the input directly affects the generated results; (Right): by
changing the rules, a minimal input can generate rich content.

Multi-objective optimization (MOO) is a discipline within the field of multi-criteria
decision-making that seeks to identify the optimal trade-off solution for problems with
multiple objectives. The main goal of optimization is to identify the optimal solution (or a
set of optimal solutions, known as Pareto solutions) for a specified design problem [21].
Given the inherent complexity of architectural design problems, multi-objective optimiza-

Buildings 2023, 13, 2898 3 of 15

tion is recognized as a suitable approach for optimizing results in architectural generative
design [22–26]. Its applications span from building performance optimization to neighbor-
hood layouts optimization on an urban scale, demonstrating its ability to address diverse
objectives within an architectural generative design process.

As an important branch of architectural layout configuration, underground parking
layout configuration is representative because of its clear design objectives and quantifiable
design constraints. This study aims to investigate the potential of WFC in the realm of
architectural generative design by applying it to the generative design of underground
parking layouts, and to explore a new workflow that effectively combines WFC and MOO.
A WFC-based generation and MOO-based optimization model is established, which is
capable of generating the optimal layout solution in real time according to the given plan
contour and entrance/exit locations of the underground parking in order to aid architects
to cope with the continuous adjustments during the design process. In this paper, we use
the layout generation of a single-level underground parking with an 8.4 m × 8.4 m column
network as an example to demonstrate generation and optimization methods.

2. Related Work

Extensive research has been conducted to implement generative methods in architec-
tural layout configuration. Verma and Thakur [10] utilized a genetic algorithm to generate
consistent conceptual architectural layout solutions in accordance with design specifica-
tions. Veloso and Krishnamurti [12] proposed a method that employs multi-agent deep
reinforcement learning to create spatial agents that interact within site to fulfill specific
objectives associated with a house layout configuration. Wang et al. [13] utilized shape
grammar to generate layouts for traditional village dwellings. Filtration rules have been
implemented as an optimization approach by reducing low-quality results, thereby ensur-
ing the efficiency of the generative design process. In relation to underground parking
layout configuration, Carrasco and Pecanac [27] identified the advantages of computer-
aided design (CAD) in the semi-automated development of parking layouts. The proposed
approach involves the automatic generation of parking layout options, which are based on
predefined construction lines and physical constraints of the parking lot. Yu [28] proposed
a generative design framework based on reinforcement learning to facilitate the realization
of underground parking layout generative design in a regular column network. Despite
the increasing popularity of generative design approaches regarding architectural layout
configuration, the field has yet to be thoroughly explored. There remains a dearth of work-
flows that can efficiently navigate the design space of a given problem and simultaneously
filter the optimized solution from the generated results.

As an emerging generative algorithm, WFC has found widespread application in vari-
ous fields due to its exceptional capabilities. For instance, in the game Townscaper (2022),
the designer utilized WFC to construct a customizable virtual town world that can infinitely
expand under rule-based control [29,30]. Moreover, WFC has also been employed in di-
verse domains such as poetry creation [31] and 3D city model generation [32], showcasing
its adaptability to different fields. The ability of WFC to construct 2D and even 3D spatial
systems using predefined modules and rules suggests its potential application in the realm
of architecture, particularly in the field of generative design [33]. Van et al. [34] utilized
PCG to effectively create complex architectural spaces. This was achieved by breaking
down building spaces into minimal units according to their functions and establishing
connection rules that were guided by architectural semantics and typology. This approach
exhibits similarities with the mechanism utilized in WFC, highlighting the potential of this
kind of approach within the realm of architectural generative design. However, application
cases of WFC in this field are still scarce; the specific methods of utilizing WFC in this
context require further exploration.

Many researchers have investigated the integration of generative design methods and
multi-objective optimization. Mukkavaara et al. [22] emphasized the significance of opti-
mization approaches in the design process, and proposed a framework for the exploration

Buildings 2023, 13, 2898 4 of 15

of architectural design solutions. This framework encompasses both the generative design
process and multi-objective optimization process. Huang et al. [23] identified a lack of
maturity in the techniques and workflows associated with optimization-based generative
design. In response, they proposed a framework that integrates generative design meth-
ods with data-driven decision-making for urban design. Gerber and Lin [24] integrated
parametric modeling with multi-objective optimization to provide a comprehensive plat-
form for conducting trade-off analysis in the areas of design, energy use intensity, and
finance. The results of their study underscore the advantages of utilizing multi-objective
optimization, as it enhances design decision-making during the initial phases of the design
process and accommodates a greater degree of design complexity. Nagy et al. [25] outlined
a flexible generative design workflow for office space planning. Their approach involved
employing a multi-objective genetic algorithm to generate design alternatives based on
six architectural performance criteria. While the results of their study were promising, the
researchers acknowledged that the calculation of each design is still relatively slow and
there is a need for a more efficient method of generation and optimization. In another
research, Nagy et al. [26] demonstrated the utilization of an optimization-based generative
design process for developing residential neighborhood layouts on an urban scale, in which
profitability of the project for the developer and the potential for energy generation of solar
panels acted as objectives. They concluded that this project exemplifies the effectiveness of
the generative design process in generating sound design strategies, while also unveiling
valuable insights regarding the inherent conflicts and tradeoffs between design objectives.
Despite the vast amount of existing research, there remains a necessity to investigate a
more cohesive workflow that amalgamates generation and optimization processes in order
to enhance the efficiency of the generative design process.

3. Framework of Generation and Optimization Process

The general process of generation and optimization consists of the following steps
(Figure 3):

Buildings 2023, 13, x FOR PEER REVIEW 5 of 15

Figure 3. Basic framework of generation and optimization process.

4. Analysis of the Configuration Process for Underground Parking Layout
4.1. Design Process for Underground Parking Layout Configuration

The design process of underground parking is influenced by various factors such as
site conditions and design requirements. Consequently, the design process often necessi-
tates multiple modifications to accommodate changes in the overall project. This, in turn,
leads to an increased workload and time costs. Based on relevant building design codes,
the general design process for underground parking layouts can be summarized as the
following steps:

(a) Clarify the design scope of the underground parking and define relevant eco-
nomic and technical indicators in accordance with the planning requirements and design
specifications.

(b) Determine the precise boundaries of the underground parking and strategically
determine the number and placement of entrances and exits.

(c) Consider factors such as column network, building structure, location of elevator
shafts, and equipment rooms to ensure a logical and efficient arrangement of the driveway
and parking spaces.

(d) Continuously adapt the layout of driveway and parking spaces based on overall
design adjustments, prioritizing parking efficiency, traffic convenience and other indica-
tors. This stage often involves repeated design adjustments.

(e) Finalize the layout, therefore achieving the final design outcome.
According to the general design process, developing a generative design model for

the generation of underground parking layouts is essential because it allows for real-time
output of design results that are able to respond to changing design conditions, ultimately
improving the overall efficiency of the layout configuration.

4.2. Transformation: From Layout Configuration to Constraint Satisfaction Problem
There are three key characteristics of underground parking layout: first, the layout

exhibits a highly grid-like pattern due to the influence of the column network arrangement
in the superstructure; second, the composition of parking space elements, such as drive-
ways and parking spaces, demonstrates modularity; third, the design is subject to quanti-
fiable constraint rules due to site conditions, design requirements, and other factors. Based
on these characteristics, the layout configuration problem can be abstracted as a constraint
satisfaction problem (CSP) represented by a ternary <X,D,C>, where:

X (variable) = {minimum space positions divided by the column network (each ac-
commodating one driveway/parking space unit)};

D (domain of values) = {For each minimum space position, all possible forms of the
driveway/parking space unit it accommodates};

C (constraints) = {all adjacency relationships between minimum space units}.
A solution to a CSP is by applying a set of assignments to a group of variables selected

from their respective domain of values, which satisfies all constraints simultaneously
[35,36]. In the context of underground parking layout configuration, a solution to this
problem is achieved when each minimum space cell contains a specific driveway/parking

Figure 3. Basic framework of generation and optimization process.

(a) Analysis of the configuration process for underground parking layout: in this step,
we summarize the design process and key characteristics of underground parking layout
configuration by consulting relevant design codes, and transform the layout configuration
problem into a constraint satisfaction problem based on the analysis.

(b) Modules and rules: based on the analysis of the configuration process for under-
ground parking layout described in the previous step, the parking space is divided into
basic spatial units to develop modules for WFC, and the neighboring rules between the
modules are extracted by analyzing the functional relationship of the underground parking
space to construct rules for WFC.

(c1) Construction of generation model: a generation model is developed based on the
Monoceros plug-in on the Rhino–Grasshopper platform to generate layout solutions based
on given plan contour and entrance/exit locations.

(c2) Construction of optimization model: a multi-objective optimization model utiliz-
ing the Octopus plug-in on the Rhino–Grasshopper platform is developed to optimize the
outputs of the generation model.

Buildings 2023, 13, 2898 5 of 15

(d) Experiments and analysis: two tests are conducted to verify the effectiveness
of the generation model and the optimization model separately, and a test is conducted
to evaluate the generation and optimization model’s applicability to real-world design
problems. The accuracy and efficiency of the model are verified through analysis of the
test results.

4. Analysis of the Configuration Process for Underground Parking Layout
4.1. Design Process for Underground Parking Layout Configuration

The design process of underground parking is influenced by various factors such as site
conditions and design requirements. Consequently, the design process often necessitates
multiple modifications to accommodate changes in the overall project. This, in turn, leads to
an increased workload and time costs. Based on relevant building design codes, the general
design process for underground parking layouts can be summarized as the following steps:

(a) Clarify the design scope of the underground parking and define relevant eco-
nomic and technical indicators in accordance with the planning requirements and design
specifications.

(b) Determine the precise boundaries of the underground parking and strategically
determine the number and placement of entrances and exits.

(c) Consider factors such as column network, building structure, location of elevator
shafts, and equipment rooms to ensure a logical and efficient arrangement of the driveway
and parking spaces.

(d) Continuously adapt the layout of driveway and parking spaces based on overall
design adjustments, prioritizing parking efficiency, traffic convenience and other indicators.
This stage often involves repeated design adjustments.

(e) Finalize the layout, therefore achieving the final design outcome.
According to the general design process, developing a generative design model for

the generation of underground parking layouts is essential because it allows for real-time
output of design results that are able to respond to changing design conditions, ultimately
improving the overall efficiency of the layout configuration.

4.2. Transformation: From Layout Configuration to Constraint Satisfaction Problem

There are three key characteristics of underground parking layout: first, the layout
exhibits a highly grid-like pattern due to the influence of the column network arrangement
in the superstructure; second, the composition of parking space elements, such as driveways
and parking spaces, demonstrates modularity; third, the design is subject to quantifiable
constraint rules due to site conditions, design requirements, and other factors. Based on
these characteristics, the layout configuration problem can be abstracted as a constraint
satisfaction problem (CSP) represented by a ternary <X,D,C>, where:

X (variable) = {minimum space positions divided by the column network (each accom-
modating one driveway/parking space unit)};

D (domain of values) = {For each minimum space position, all possible forms of the
driveway/parking space unit it accommodates};

C (constraints) = {all adjacency relationships between minimum space units}.
A solution to a CSP is by applying a set of assignments to a group of variables selected

from their respective domain of values, which satisfies all constraints simultaneously [35,36].
In the context of underground parking layout configuration, a solution to this problem
is achieved when each minimum space cell contains a specific driveway/parking space
unit and there are no violations of the constraints. Transforming the layout configuration
problem into a constraint satisfaction problem involves leveraging the logical correlation
between the constituent units of the building plan to break down the holistic layout
problem into adjacency problems between these units, thereby providing conditions for the
WFC solution.

Buildings 2023, 13, 2898 6 of 15

5. Modules and Rules

As a procedural content generation algorithm, WFC is capable of efficiently solving
constraint satisfaction problems. WFC encompasses three fundamental elements: 1. slots,
which are an array that accommodates all the minimal spatial units. In this research, the
array in which the slots are located overlaps with the 8.4 m × 8.4 m column network;
2. modules, the smallest spatial units used to generate results; 3. rules, the connections
between modules. The three fundamental elements align well with the three key charac-
teristics of underground parking layout, which indicates that WFC is suitable for solving
underground parking layout configuration problems. This chapter demonstrates how
modules and rules are developed for WFC.

5.1. Modules

During the module construction stage, the underground parking layout is decomposed
into several basic space units based on the column network. According to our analysis of
underground parking layouts, the modules are categorized into three main types (Figure 4):

Buildings 2023, 13, x FOR PEER REVIEW 6 of 15

space unit and there are no violations of the constraints. Transforming the layout config-
uration problem into a constraint satisfaction problem involves leveraging the logical cor-
relation between the constituent units of the building plan to break down the holistic lay-
out problem into adjacency problems between these units, thereby providing conditions
for the WFC solution.

5. Modules and Rules
As a procedural content generation algorithm, WFC is capable of efficiently solving

constraint satisfaction problems. WFC encompasses three fundamental elements: 1. slots,
which are an array that accommodates all the minimal spatial units. In this research, the
array in which the slots are located overlaps with the 8.4 m × 8.4 m column network; 2.
modules, the smallest spatial units used to generate results; 3. rules, the connections be-
tween modules. The three fundamental elements align well with the three key character-
istics of underground parking layout, which indicates that WFC is suitable for solving
underground parking layout configuration problems. This chapter demonstrates how
modules and rules are developed for WFC.

5.1. Modules
During the module construction stage, the underground parking layout is decom-

posed into several basic space units based on the column network. According to our anal-
ysis of underground parking layouts, the modules are categorized into three main types
(Figure 4):

(a) Parking space modules: parking spaces are the foundational components of any
parking layout. They are demarcated zones expressly dedicated to the storage of vehicles.
These spaces are meticulously planned, considering various aspects such as size, orienta-
tion, and layout, to accommodate a diverse range of vehicles. The effective design and
organization of parking spaces are pivotal in optimizing the parking facility’s capacity
and accessibility. According to relevant building design codes, the most economical park-
ing pattern is a six-space module, and there are also four-space and three-space modules.

(b) Driveway modules: driveways in underground parking units facilitate vehicular
movement by connecting various parking spaces and enabling the circulation of vehicles.
These pathways are crucial for ingress, egress, and inter-space navigation. The judicious
placement and distribution of driveways significantly impact the flow of traffic within the
parking structure, preventing congestion and traffic bottlenecks. Driveway modules can
be categorized into straight sections, turning sections, intersections, and three-way inter-
sections.

(c) Entrance modules: entrances function as the gateway for vehicles entering the fa-
cility from the street or ground level. Their design is pivotal in regulating the influx of
vehicles and guiding them safely into the parking structure. Entrances play a fundamental
role in ensuring the orderly traffic management and smooth transition from external road-
ways to the underground parking space. Entrance modules can be categorized into
straight sections and intersections.

Figure 4. Basic types of driveway, parking space, and entrance modules.

Figure 4. Basic types of driveway, parking space, and entrance modules.

(a) Parking space modules: parking spaces are the foundational components of any
parking layout. They are demarcated zones expressly dedicated to the storage of vehicles.
These spaces are meticulously planned, considering various aspects such as size, orienta-
tion, and layout, to accommodate a diverse range of vehicles. The effective design and
organization of parking spaces are pivotal in optimizing the parking facility’s capacity and
accessibility. According to relevant building design codes, the most economical parking
pattern is a six-space module, and there are also four-space and three-space modules.

(b) Driveway modules: driveways in underground parking units facilitate vehicular
movement by connecting various parking spaces and enabling the circulation of vehicles.
These pathways are crucial for ingress, egress, and inter-space navigation. The judicious
placement and distribution of driveways significantly impact the flow of traffic within the
parking structure, preventing congestion and traffic bottlenecks. Driveway modules can be
categorized into straight sections, turning sections, intersections, and three-way intersec-
tions.

(c) Entrance modules: entrances function as the gateway for vehicles entering the
facility from the street or ground level. Their design is pivotal in regulating the influx of
vehicles and guiding them safely into the parking structure. Entrances play a fundamental
role in ensuring the orderly traffic management and smooth transition from external
roadways to the underground parking space. Entrance modules can be categorized into
straight sections and intersections.

5.2. Rules

After the initial construction of modules, a set of rules is established to indicate
their adjacency relationships. In the rule construction stage, we represent the potential
neighboring relationships (rules) between all modules. The rules are categorized into four
main types (Figure 5):

Buildings 2023, 13, 2898 7 of 15

Buildings 2023, 13, x FOR PEER REVIEW 7 of 15

5.2. Rules
After the initial construction of modules, a set of rules is established to indicate their

adjacency relationships. In the rule construction stage, we represent the potential neigh-
boring relationships (rules) between all modules. The rules are categorized into four main
types (Figure 5):

(a) Driveway—driveway rules: driveway modules are interconnected to form a trans-
portation network within the underground parking.

(b) Parking space—parking space rules: parking modules are separated by the struc-
tural column network, resulting in a juxtaposition of plan configurations. This arrange-
ment maximizes the utilization of space, ensuring an optimal layout of parking spaces.

(c) Driveway—parking space rules: driveway modules seamlessly connect with park-
ing space modules, running perpendicular to the alignment of parking spaces. This con-
nection enhances the accessibility of parking spaces and streamlines the flow of vehicles.

(d) Driveway—entrance rules: the transportation network formed by driveway mod-
ules is connected to the outside through entrance modules.

Figure 5. Neighboring relationships (rules) between modules.

According to the basic mechanism of WFC [14], the generation process begins by
randomly selecting a slot and allocating a specific module to that slot (stage 1 in Figure 6).
In the subsequent propagation stages (stage 2–4 in Figure 6), the slots adjacent to the de-
fined slots are determined according to the predefined rules. When all slots are defined
by a specific module without any rule contradictions, the generation process is considered
complete. Otherwise, the generation process will be restarted.

Figure 5. Neighboring relationships (rules) between modules.

(a) Driveway—driveway rules: driveway modules are interconnected to form a trans-
portation network within the underground parking.

(b) Parking space—parking space rules: parking modules are separated by the struc-
tural column network, resulting in a juxtaposition of plan configurations. This arrangement
maximizes the utilization of space, ensuring an optimal layout of parking spaces.

(c) Driveway—parking space rules: driveway modules seamlessly connect with park-
ing space modules, running perpendicular to the alignment of parking spaces. This connec-
tion enhances the accessibility of parking spaces and streamlines the flow of vehicles.

(d) Driveway—entrance rules: the transportation network formed by driveway mod-
ules is connected to the outside through entrance modules.

According to the basic mechanism of WFC [14], the generation process begins by
randomly selecting a slot and allocating a specific module to that slot (stage 1 in Figure 6).
In the subsequent propagation stages (stage 2–4 in Figure 6), the slots adjacent to the
defined slots are determined according to the predefined rules. When all slots are defined
by a specific module without any rule contradictions, the generation process is considered
complete. Otherwise, the generation process will be restarted.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 15

Figure 6. Application of rules during the generation process.

6. Construction of Generation and Optimization Model
6.1. Generation Model

In this study, we utilize Monoceros, a Grasshopper plug-in developed by Subdigital
Studio [37], to construct the generation model. Monoceros aims to provide a comprehen-
sive framework for integrating architectural or industrial design with WFC. This plug-in
offers full control over input and output data in a Grasshopper-compatible manner while
adhering to the principles of WFC.

The generation model encompasses three key sections: data input, WFC solver, and
result collector. Within the data input section, all modules and rules, as well as the given
plan contour and entrance/exit locations (interpreted as slots in Monoceros), are input in
the form of the Rhino digital model. Considering symmetry, rotation and other special
spatial situations, the modules and rules developed in the previous chapter are modified
and increased in number. For the layout generation of a single-level underground parking
discussed in this paper, a total of 77 modules and 278 rules are input in the generation
model (Figure 7).

Figure 7. 77 modules (left) and 278 rules ((right), colors represent types of rules).

These inputs are then fed into the WFC solver. During the iterative process within
the WFC solver, multiple observations gradually transition the state of slots from non-
deterministic (allowing multiple modules) to deterministic (allowing exactly one mod-
ule). This process occurs within the solver component, where the slots are observed using
pseudo-random numbers until either every slot achieves a deterministic state (success), or
any slot reaches a contradictory state (failure). In the event of contradiction, the solver
component internally re-attempts the process up to a predefined number of times, with
each attempt using the modified random state to produce a distinct outcome. By inputting
random values (seeds), the WFC solver can generate a series of results. Results are col-
lected and stored in the result collector section (Figures 8 and 9).

Figure 6. Application of rules during the generation process.

Buildings 2023, 13, 2898 8 of 15

6. Construction of Generation and Optimization Model
6.1. Generation Model

In this study, we utilize Monoceros, a Grasshopper plug-in developed by Subdigital
Studio [37], to construct the generation model. Monoceros aims to provide a comprehensive
framework for integrating architectural or industrial design with WFC. This plug-in offers
full control over input and output data in a Grasshopper-compatible manner while adhering
to the principles of WFC.

The generation model encompasses three key sections: data input, WFC solver, and
result collector. Within the data input section, all modules and rules, as well as the given
plan contour and entrance/exit locations (interpreted as slots in Monoceros), are input in
the form of the Rhino digital model. Considering symmetry, rotation and other special
spatial situations, the modules and rules developed in the previous chapter are modified
and increased in number. For the layout generation of a single-level underground parking
discussed in this paper, a total of 77 modules and 278 rules are input in the generation
model (Figure 7).

Buildings 2023, 13, x FOR PEER REVIEW 8 of 15

Figure 6. Application of rules during the generation process.

6. Construction of Generation and Optimization Model
6.1. Generation Model

In this study, we utilize Monoceros, a Grasshopper plug-in developed by Subdigital
Studio [37], to construct the generation model. Monoceros aims to provide a comprehen-
sive framework for integrating architectural or industrial design with WFC. This plug-in
offers full control over input and output data in a Grasshopper-compatible manner while
adhering to the principles of WFC.

The generation model encompasses three key sections: data input, WFC solver, and
result collector. Within the data input section, all modules and rules, as well as the given
plan contour and entrance/exit locations (interpreted as slots in Monoceros), are input in
the form of the Rhino digital model. Considering symmetry, rotation and other special
spatial situations, the modules and rules developed in the previous chapter are modified
and increased in number. For the layout generation of a single-level underground parking
discussed in this paper, a total of 77 modules and 278 rules are input in the generation
model (Figure 7).

Figure 7. 77 modules (left) and 278 rules ((right), colors represent types of rules).

These inputs are then fed into the WFC solver. During the iterative process within
the WFC solver, multiple observations gradually transition the state of slots from non-
deterministic (allowing multiple modules) to deterministic (allowing exactly one mod-
ule). This process occurs within the solver component, where the slots are observed using
pseudo-random numbers until either every slot achieves a deterministic state (success), or
any slot reaches a contradictory state (failure). In the event of contradiction, the solver
component internally re-attempts the process up to a predefined number of times, with
each attempt using the modified random state to produce a distinct outcome. By inputting
random values (seeds), the WFC solver can generate a series of results. Results are col-
lected and stored in the result collector section (Figures 8 and 9).

Figure 7. 77 modules (left) and 278 rules ((right), colors represent types of rules).

These inputs are then fed into the WFC solver. During the iterative process within
the WFC solver, multiple observations gradually transition the state of slots from non-
deterministic (allowing multiple modules) to deterministic (allowing exactly one module).
This process occurs within the solver component, where the slots are observed using
pseudo-random numbers until either every slot achieves a deterministic state (success),
or any slot reaches a contradictory state (failure). In the event of contradiction, the solver
component internally re-attempts the process up to a predefined number of times, with
each attempt using the modified random state to produce a distinct outcome. By inputting
random values (seeds), the WFC solver can generate a series of results. Results are collected
and stored in the result collector section (Figures 8 and 9).

Buildings 2023, 13, x FOR PEER REVIEW 9 of 15

Figure 8. Basic framework of the generation process.

Figure 9. Grasshopper interface of the generation model. The gray area on the left represents the
data input section, the blue area on the top right represents the WFC solver section, and the green
area on the bottom right represents the result collector section.

6.2. Optimization Model
Because of the robust content generation capability of WFC, the generation model is

able to quickly produce a large volume of results. By efficiently filtering these results
based on the general evaluation criteria for the underground parking layout configura-
tion, the generation process can be significantly improved in terms of efficiency. In this
research, a multi-objective optimization model is developed to filter the generated results
and identify the optimal layout solution in accordance with the design objectives for the
underground parking layout configuration.

Mathematically, a multi-objective optimization problem can be expressed as:

],1[,0)(
],1[,0)(..

))(),...,(),((min 21

Ljxh
Mixgts

xfxfxf

j

i

kDx

∈=
∈≥

∈

 (1)

Let D represent the feasible domain of this multi-objective optimization problem:

]},1[,0)(],,1[,0)(|{ LjxhMixgxD ji ∈=∈≥= (2)

Figure 8. Basic framework of the generation process.

Buildings 2023, 13, 2898 9 of 15

Buildings 2023, 13, x FOR PEER REVIEW 9 of 15

Figure 8. Basic framework of the generation process.

Figure 9. Grasshopper interface of the generation model. The gray area on the left represents the
data input section, the blue area on the top right represents the WFC solver section, and the green
area on the bottom right represents the result collector section.

6.2. Optimization Model
Because of the robust content generation capability of WFC, the generation model is

able to quickly produce a large volume of results. By efficiently filtering these results
based on the general evaluation criteria for the underground parking layout configura-
tion, the generation process can be significantly improved in terms of efficiency. In this
research, a multi-objective optimization model is developed to filter the generated results
and identify the optimal layout solution in accordance with the design objectives for the
underground parking layout configuration.

Mathematically, a multi-objective optimization problem can be expressed as:

],1[,0)(
],1[,0)(..

))(),...,(),((min 21

Ljxh
Mixgts

xfxfxf

j

i

kDx

∈=
∈≥

∈

 (1)

Let D represent the feasible domain of this multi-objective optimization problem:

]},1[,0)(],,1[,0)(|{ LjxhMixgxD ji ∈=∈≥= (2)

Figure 9. Grasshopper interface of the generation model. The gray area on the left represents the data
input section, the blue area on the top right represents the WFC solver section, and the green area on
the bottom right represents the result collector section.

6.2. Optimization Model

Because of the robust content generation capability of WFC, the generation model is
able to quickly produce a large volume of results. By efficiently filtering these results based
on the general evaluation criteria for the underground parking layout configuration, the
generation process can be significantly improved in terms of efficiency. In this research, a
multi-objective optimization model is developed to filter the generated results and identify
the optimal layout solution in accordance with the design objectives for the underground
parking layout configuration.

Mathematically, a multi-objective optimization problem can be expressed as:

min
x∈D

(f1(x), f2(x), . . . , fk(x))s.t.gi(x) ≥ 0, i ∈ [1, M]hj(x) = 0, j ∈ [1, L] (1)

Let D represent the feasible domain of this multi-objective optimization problem:

D =
{

x
∣∣gi(x) ≥ 0, i ∈ [1, M], hj(x) = 0, j ∈ [1, L]

}
(2)

The goal is to find an x within the feasible domain D, such that all the objective
functions f(x) attain their minimum values. In this study, the optimization objectives are
defined as the maximization of parking efficiency and traffic convenience. The parking
efficiency is quantified by the total number of parking spaces, while traffic convenience
is quantified by the total number of efficient driveway modules and the total number
of redundant driveway modules. By considering the set of all generated results as the
feasible domain D, the optimization model aims to identify a specific result x within D that
maximizes the optimization objectives. By converting the above two optimization objectives
into quantifiable metrics and inputting them into the multi-objective optimization plug-in
Octopus in Grasshopper, a number of Pareto-optimal solutions that maximally satisfy the
optimization objectives can be obtained among all the generated results (Figure 10).

Buildings 2023, 13, 2898 10 of 15

Buildings 2023, 13, x FOR PEER REVIEW 10 of 15

The goal is to find an x within the feasible domain D, such that all the objective func-
tions f(x) attain their minimum values. In this study, the optimization objectives are de-
fined as the maximization of parking efficiency and traffic convenience. The parking effi-
ciency is quantified by the total number of parking spaces, while traffic convenience is
quantified by the total number of efficient driveway modules and the total number of re-
dundant driveway modules. By considering the set of all generated results as the feasible
domain D, the optimization model aims to identify a specific result x within D that max-
imizes the optimization objectives. By converting the above two optimization objectives
into quantifiable metrics and inputting them into the multi-objective optimization plug-in
Octopus in Grasshopper, a number of Pareto-optimal solutions that maximally satisfy the
optimization objectives can be obtained among all the generated results (Figure 10).

Figure 10. Basic framework of the optimization process.

7. Experiments and Analysis
7.1. Evaluation of the Generation Model

The effectiveness of the generation model was evaluated through an experimental
process. As depicted in Figure 11, the generation model successfully produces distinct
outcomes when changes are made solely to the location of entrances and exits (a,b), or
when both the input plan contour and the location of entrances and exits are altered (a-c-
d). Comparatively, a more complex plan contour (d) exhibits a narrower range of out-
comes due to the imposition of additional constraints on the rules governing the boundary
region, in contrast to a simpler plan contour (a). It is important to highlight that while all
the generated results conform to the fundamental principles of underground parking lay-
out configuration, certain outcomes prove to be significantly better than others. For in-
stance, the result with seed = 500 in group (b) exhibits notably lower traffic redundancy
compared to those with seed = 596 and seed = 673. This indicates that the identification of
a suitable approach to filter and optimize the generated outcomes is imperative.

Figure 10. Basic framework of the optimization process.

7. Experiments and Analysis
7.1. Evaluation of the Generation Model

The effectiveness of the generation model was evaluated through an experimental
process. As depicted in Figure 11, the generation model successfully produces distinct
outcomes when changes are made solely to the location of entrances and exits (a,b), or
when both the input plan contour and the location of entrances and exits are altered (a-c-d).
Comparatively, a more complex plan contour (d) exhibits a narrower range of outcomes
due to the imposition of additional constraints on the rules governing the boundary region,
in contrast to a simpler plan contour (a). It is important to highlight that while all the
generated results conform to the fundamental principles of underground parking layout
configuration, certain outcomes prove to be significantly better than others. For instance,
the result with seed = 500 in group (b) exhibits notably lower traffic redundancy compared
to those with seed = 596 and seed = 673. This indicates that the identification of a suitable
approach to filter and optimize the generated outcomes is imperative.

Buildings 2023, 13, x FOR PEER REVIEW 10 of 15

The goal is to find an x within the feasible domain D, such that all the objective func-
tions f(x) attain their minimum values. In this study, the optimization objectives are de-
fined as the maximization of parking efficiency and traffic convenience. The parking effi-
ciency is quantified by the total number of parking spaces, while traffic convenience is
quantified by the total number of efficient driveway modules and the total number of re-
dundant driveway modules. By considering the set of all generated results as the feasible
domain D, the optimization model aims to identify a specific result x within D that max-
imizes the optimization objectives. By converting the above two optimization objectives
into quantifiable metrics and inputting them into the multi-objective optimization plug-in
Octopus in Grasshopper, a number of Pareto-optimal solutions that maximally satisfy the
optimization objectives can be obtained among all the generated results (Figure 10).

Figure 10. Basic framework of the optimization process.

7. Experiments and Analysis
7.1. Evaluation of the Generation Model

The effectiveness of the generation model was evaluated through an experimental
process. As depicted in Figure 11, the generation model successfully produces distinct
outcomes when changes are made solely to the location of entrances and exits (a,b), or
when both the input plan contour and the location of entrances and exits are altered (a-c-
d). Comparatively, a more complex plan contour (d) exhibits a narrower range of out-
comes due to the imposition of additional constraints on the rules governing the boundary
region, in contrast to a simpler plan contour (a). It is important to highlight that while all
the generated results conform to the fundamental principles of underground parking lay-
out configuration, certain outcomes prove to be significantly better than others. For in-
stance, the result with seed = 500 in group (b) exhibits notably lower traffic redundancy
compared to those with seed = 596 and seed = 673. This indicates that the identification of
a suitable approach to filter and optimize the generated outcomes is imperative.

Figure 11. Experimental results of the evaluation of the generation model. Four sets of experiments
were conducted (labeled (a–d) in the figure). For each set, three randomly selected generated results
are presented.

7.2. Evaluation of the Optimization Model

To evaluate the efficiency of the optimization model, a multi-objective optimization
process was conducted on 300 generation results obtained from the generative model. The
outcomes are illustrated in Figure 12. The left side of the figure displays the distribution
of the 300 generated results in the multi-objective space, with each axis representing an
optimization objective. The shaded gray area signifies the Pareto-optimal front, within
which three generated results are identified as Pareto-optimal solutions.

Buildings 2023, 13, 2898 11 of 15

Buildings 2023, 13, x FOR PEER REVIEW 11 of 15

Figure 11. Experimental results of the evaluation of the generation model. Four sets of experiments
were conducted (labeled (a–d) in the figure). For each set, three randomly selected generated results
are presented.

7.2. Evaluation of the Optimization Model
To evaluate the efficiency of the optimization model, a multi-objective optimization

process was conducted on 300 generation results obtained from the generative model. The
outcomes are illustrated in Figure 12. The left side of the figure displays the distribution
of the 300 generated results in the multi-objective space, with each axis representing an
optimization objective. The shaded gray area signifies the Pareto-optimal front, within
which three generated results are identified as Pareto-optimal solutions.

On the right side of Figure 12, a comparison is shown between the three Pareto-opti-
mal solutions and five randomly selected results. The axial plot indicates the extent to
which the corresponding generation results fulfill the optimization objective. The compar-
ison elucidates that the space arrangement of the Pareto-optimal solutions is notably more
rational, offering increased parking capacity and fewer redundant traffic units. These re-
sults demonstrate that the present optimization model effectively identifies the optimal
layout that maximizes the satisfaction of the optimization objective from the output results
of the generation model.

Figure 12. Experimental results of the evaluation of the optimization model.

7.3. Evaluation of the Generation and Optimization Model
The aforementioned evaluations provide evidence that the generation and the opti-

mization model is competent in generating a multitude of underground parking layout
solutions that adhere to the design conditions specified in the given plan contour and des-
ignated entrance/exit locations. Furthermore, it successfully identifies the optimal layout
solutions according to relevant optimization objectives. To evaluate the model’s applica-
bility to real-world design problems, as well as the model’s overall accuracy and effi-
ciency, the experiment selects 20 underground parking layouts with an 8.4 m × 8.4 m col-
umn network from the internet. These layouts are then input into the generation and op-
timization model along with their contours and entrance/exit locations. Subsequently, the

Figure 12. Experimental results of the evaluation of the optimization model.

On the right side of Figure 12, a comparison is shown between the three Pareto-optimal
solutions and five randomly selected results. The axial plot indicates the extent to which
the corresponding generation results fulfill the optimization objective. The comparison
elucidates that the space arrangement of the Pareto-optimal solutions is notably more
rational, offering increased parking capacity and fewer redundant traffic units. These
results demonstrate that the present optimization model effectively identifies the optimal
layout that maximizes the satisfaction of the optimization objective from the output results
of the generation model.

7.3. Evaluation of the Generation and Optimization Model

The aforementioned evaluations provide evidence that the generation and the opti-
mization model is competent in generating a multitude of underground parking layout
solutions that adhere to the design conditions specified in the given plan contour and
designated entrance/exit locations. Furthermore, it successfully identifies the optimal
layout solutions according to relevant optimization objectives. To evaluate the model’s
applicability to real-world design problems, as well as the model’s overall accuracy and
efficiency, the experiment selects 20 underground parking layouts with an 8.4 m × 8.4 m
column network from the internet. These layouts are then input into the generation and
optimization model along with their contours and entrance/exit locations. Subsequently,
the output layout solutions are compared to the actual layouts. The experiment involves a
total of 20 groups, conducted on a computer equipped with an Intel(R) Xeon(R) W-2123
CPU @ 3.60 GHz. The generation model generates 500 results for each group, which are
then optimized by the optimization model. From the several Pareto-optimal solutions
obtained, the optimal solutions are manually selected for each group based on the general
experiences of underground parking layout configuration. Each group successfully yields
one final result. The experimental results are shown in Figure 13.

Buildings 2023, 13, 2898 12 of 15

Buildings 2023, 13, x FOR PEER REVIEW 12 of 15

output layout solutions are compared to the actual layouts. The experiment involves a
total of 20 groups, conducted on a computer equipped with an Intel(R) Xeon(R) W-2123
CPU @ 3.60 GHz. The generation model generates 500 results for each group, which are
then optimized by the optimization model. From the several Pareto-optimal solutions ob-
tained, the optimal solutions are manually selected for each group based on the general
experiences of underground parking layout configuration. Each group successfully yields
one final result. The experimental results are shown in Figure 13.

Figure 13. Experimental results of the evaluation of the generation and optimization model. The
red boxes in result number 9 indicate the locations where redundant driveways encroach upon
parking spaces. The red box in result number 19 indicates an area where the layout of parking
spaces is cluttered.

This experiment evaluates the accuracy of the generation and optimization model by
measuring the degree of overlap between the generated layouts and the actual layouts,
and evaluates the efficiency of the model by calculating its average running time.

Regarding the overlap, out of the 20 sets of experimental results, 80% of the generated
layouts (16) exhibit an overlap of 80% or higher with the actual layouts. Additionally, 30%
of the generated layouts (6) display an overlap of 90% or higher with the actual layouts.
The disparity between certain areas of the generated layouts and the actual layouts can be
attributed to two factors: first, the presence of redundant traffic layouts (e.g., redundant
driveways occupying parking spaces, as seen in the red box in result number 9); second,
the irregular arrangement of parking spaces, which deviates from the conventional prin-
ciples of underground parking space design (e.g., cluttered layout of parking spaces, as
indicated in the red box in result number 19). The unsatisfactory distribution of driveway

Figure 13. Experimental results of the evaluation of the generation and optimization model. The
red boxes in result number 9 indicate the locations where redundant driveways encroach upon
parking spaces. The red box in result number 19 indicates an area where the layout of parking spaces
is cluttered.

This experiment evaluates the accuracy of the generation and optimization model by
measuring the degree of overlap between the generated layouts and the actual layouts, and
evaluates the efficiency of the model by calculating its average running time.

Regarding the overlap, out of the 20 sets of experimental results, 80% of the generated
layouts (16) exhibit an overlap of 80% or higher with the actual layouts. Additionally, 30%
of the generated layouts (6) display an overlap of 90% or higher with the actual layouts.
The disparity between certain areas of the generated layouts and the actual layouts can be
attributed to two factors: first, the presence of redundant traffic layouts (e.g., redundant
driveways occupying parking spaces, as seen in the red box in result number 9); second, the
irregular arrangement of parking spaces, which deviates from the conventional principles
of underground parking space design (e.g., cluttered layout of parking spaces, as indicated
in the red box in result number 19). The unsatisfactory distribution of driveway and
parking space modules indicates that the generation model still needs to be optimized in
terms of rule setting.

In terms of running time, the average running time of the generation and optimization
model is 47.08 s when the total number of modules ranges from 50 to 100. For a total number
of modules between 101 and 150, the average running time is 64.79 s. Finally, when the total
number of modules falls within the range of 151 to 200, the average running time is 89.69 s.
Specifically, the generating model requires an average of 166.95 milliseconds to produce a
single result. The experimental results indicate that the generation and optimization model

Buildings 2023, 13, 2898 13 of 15

can efficiently generate reasonably accurate underground parking layouts within a short
timeframe, showcasing high levels of accuracy and efficiency.

8. Discussion

The findings of this study provide insight into various aspects of generative design
applications. Firstly, the WFC algorithm has been proven to be effective for generative
design. The inherent mechanisms of the WFC algorithm are compatible with the modular
and constraint-intensive nature of architectural design. This alignment allows for the
integration of the design problem, after being transformed into a constraint satisfaction
problem, into the generative model without oversimplification of the design objectives.
In contrast, older generative methods sometimes encounter the oversimplification of the
design problems, resulting in incomplete generation results [8,9,27].

Secondly, WFC demonstrates adaptability when confronted with a range of design
conditions. By decomposing underground parking layouts into basic spatial modules
and establishing adjacency rules among them, WFC utilizes these modules and rules to
generate layout solutions. Consequently, once the modules and rules are defined, the
specific design conditions, including layout size and shape, as well as the location and
number of entrances, will no longer impede the precision of the generative design process.
This feature is demonstrated in the third experiment, although the design conditions differ
from group to group, the generation and optimization model can still successfully produce
results for each group. This highlights the advantage of WFC over some data-based
methods, which are constrained by specific design conditions [5–7].

Lastly, based on the experimental results, the proposed generative method has success-
fully demonstrated its efficiency in generating architectural layout solutions within a short
timeframe. This is partly due to the algorithmic-level features of the WFC technique, which
facilitate effective exploration of the design space [18–20]. Furthermore, the integration
of the generation model and the optimization model within the Grasshopper platform
enhances the effectiveness of the generative process. This integration allows for real-time
collection and input of the generated results into the optimization process, thereby reduc-
ing the overall execution time. This addresses the previously identified limitation of slow
optimization calculation in earlier research [25]. Overall, the research suggests that WFC,
along with the proposed workflow that integrates WFC and MOO, exhibits a significant
degree of accuracy, efficiency, and adaptability. These findings underscore the substantial
potential of this approach in the domain of generative design.

9. Conclusions and Future Work

This study presents a novel approach utilizing the WaveFunctionCollapse algorithm
and multi-objective optimization to generate optimized underground parking layout so-
lutions. A generation and optimization model of underground parking layouts, which
incorporates WFC and MOO, is demonstrated in this paper. Experiments show that the
model can efficiently generate underground parking layouts that meet the relevant design
objectives based on given design conditions. This study showcases the application value of
WFC in the field of architectural generative design.

Future research will delve deeper into the advantages and limitations of WFC in this
context. First, WFC’s module-based and rule-based characteristics make its application
not only limited to underground parking layout configuration, but also has exploratory
value in the application of residential layout generation, cityscape generation and other
architectural generative design problems. Furthermore, the current WFC model is confined
to generating building layouts within a single-size orthogonal column network, limiting
its practical applicability. Future research will explore its application in irregular column
networks and other complex design conditions, alongside further optimization of the
existing model.

Buildings 2023, 13, 2898 14 of 15

Author Contributions: Conceptualization, D.L. and K.C.; methodology, D.L. and K.C.; software,
K.C.; validation, D.L. and K.C.; formal analysis, D.L. and K.C.; investigation, D.L. and K.C.; resources,
Z.X.; data curation, D.L.; writing—original draft preparation, D.L. and K.C.; writing—review and
editing, D.L. and K.C.; visualization, D.L.; supervision, Z.X.; project administration, Z.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Michalek, J.; Ruchi, C.; Panos, P. Architectural layout design optimization. Eng. Optim. 2002, 34, 461–484. [CrossRef]
2. Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design.

Front. Archit. Res. 2020, 9, 287–300. [CrossRef]
3. Krish, S. A practical generative design method. Comput.-Aided Des. 2011, 43, 88–100. [CrossRef]
4. Yan, S.; Liu, N. The development history and applicability analysis of building generative design algorithms. In Proceedings

of the 2022 National Symposium on Teaching and Research on Digital Technology in Architecture for Architecture Faculties,
Xiamen, China, 3 December 2022.

5. Huang, W.; Zheng, H. Architectural drawings recognition and generation through machine learning. In Proceedings of the 38th
Annual Conference of the Association for Computer Aided Design in Architecture, Mexico City, Mexico, 18–20 October 2018.

6. Deng, Q.M.; Lin, W.Q.; Liu, Y.B.; Liang, L.Y. Exploration of generative design of campus general layout based on generative
adversarial network: Taking primary school campuses as example. World Archit. 2021, 9, 115–119+136.

7. Nauata, N.; Chang, K.H.; Cheng, C.Y.; Mori, G.; Furukawa, Y. House-gan: Relational generative adversarial networks for
graph-constrained house layout generation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, 23–28 August 2020.

8. Parish, Y.I.; Müller, P. Procedural Modeling of Cities. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, New York, NY, USA, 1 August 2001.

9. Krawczyk, R.J. Architectural Interpretation of Cellular Automata. In Proceedings of the 5th International Conference on
Generative Art, Milan, Italy, 11–13 December 2002.

10. Verma, M.; Thakur, M.K. Architectural Space Planning Using Genetic Algorithms. In Proceedings of the 2010 The 2nd International
Conference on Computer and Automation Engineering (ICCAE), Singapore, 26–28 February 2010.

11. Wiesenhuetter, S.; Wilde, A.; Noennig, J.R. Swarm Intelligence in Architectural Design. In Proceedings of the Advances in Swarm
Intelligence: 7th International Conference, Bali, Indonesia, 25–30 June 2016.

12. Veloso, P.; Krishnamurti, R. An Academy of Spatial Agents: Generating Spatial Configurations with Deep Reinforcement Learning.
In Proceedings of the 38th eCAADe Conference, Berlin, Germany, 14 September 2020.

13. Wang, J.; Fan, W.; Zhao, B.; Yang, Y.; Zhang, Z. A Rule-Based Design Approach to Generate Mass Housing in Rural Areas of the
North China Plain. Buildings 2023, 13, 2539. [CrossRef]

14. WaveFunctionCollapse. Available online: https://github.com/mxgmn/WaveFunctionCollapse/ (accessed on 15 January 2023).
15. Shaker, N.; Julian, T.; Mark, J.N. Procedural Content Generation in Games; Springer: Berlin/Heidelberg, Germany, 2016; pp. 978–983.
16. Togelius, J.; Yannakakis, G.N.; Stanley, K.O.; Browne, C. Search-based procedural content generation: A taxonomy and survey.

IEEE Trans. Comput. Intell. AI Games 2011, 3, 172–186. [CrossRef]
17. Smith, G. Understanding procedural content generation: A design-centric analysis of the role of PCG in games. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014.
18. Karth, I.; Smith, A.M. WaveFunctionCollapse: Content generation via constraint solving and machine learning. IEEE Trans. Games

2021, 14, 364–376. [CrossRef]
19. Karth, I.; Smith, A.M. WaveFunctionCollapse is constraint solving in the wild. In Proceedings of the 12th International Conference

on the Foundations of Digital Games, Hyannis, MA, USA, 14–17 August 2017.
20. Sandhu, A.; Chen, Z.; McCoy, J. Enhancing wave function collapse with design-level constraints. In Proceedings of the 14th

International Conference on the Foundations of Digital Games, San Luis Obispo, CA, USA, 26–30 August 2019.
21. Ngatchou, P.; Zarei, A.; El-Sharkawi, A. Pareto multi objective optimization. In Proceedings of the 13th International Conference

on Intelligent Systems Application to Power Systems, Arlington, TX, USA, 6–10 November 2005.
22. Mukkavaara, J.; Sandberg, M. Architectural Design Exploration Using Generative Design: Framework Development and Case

Study of a Residential Block. Buildings 2020, 10, 201. [CrossRef]
23. Huang, X.; Yuan, W.; White, M.; Langenheim, N. A Parametric Framework to Assess Generative Urban Design Proposals for

Transit-Oriented Development. Buildings 2022, 12, 1971. [CrossRef]
24. Gerber, D.J.; Lin, S.H.E. Designing in Complexity: Simulation, Integration, and Multidisciplinary Design Optimization for

Architecture. Simulation 2014, 90, 936–959. [CrossRef]

https://doi.org/10.1080/03052150214016
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.1016/j.cad.2010.09.009
https://doi.org/10.3390/buildings13102539
https://github.com/mxgmn/WaveFunctionCollapse/
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1109/TG.2021.3076368
https://doi.org/10.3390/buildings10110201
https://doi.org/10.3390/buildings12111971
https://doi.org/10.1177/0037549713482027

Buildings 2023, 13, 2898 15 of 15

25. Nagy, D.; Lau, D.; Locke, J.; Stoddart, J.; Villaggi, L.; Wang, R.; Zhao, D.; Benjamin, D. Project discover: An application of
generative design for architectural space planning. In Proceedings of the Symposium on Simulation for Architecture and Urban
Design, Toronto, ON, Canada, 22–24 May 2017.

26. Nagy, D.; Villaggi, L.; Benjamin, D. Generative urban design: Integrating financial and energy goals for automated neighborhood
layout. In Proceedings of the Symposium for Architecture and Urban Design Design, Delft, The Netherlands, 4–7 June 2018.

27. Carrasco, M.P.; Pecanac, M. Innovative CAD-based Application for Parking Lot Design. In Proceedings of the 2005 Annual
Conference of Transportation Association of Canada (TAC), Calgary, AB, Canada, 18–21 September 2005.

28. Yu, G. Underground Garage Generative Design Based on Reinforcement Learning. Master’s Thesis, South China University of
Technology, Guangzhou, China, 2020.

29. Townscaper. Available online: https://www.townscapergame.com (accessed on 8 November 2023).
30. Stojanovski, T. Townscaper (Software review). Urban Morphol. 2022, 26, 113–115. [CrossRef]
31. Oisin: Wave function Collapse for Poetry. Available online: https://github.com/mewo2/oisin/ (accessed on 18 January 2023).
32. Wave Function Collapse. Available online: https://marian42.itch.io/wfc/ (accessed on 24 January 2023).
33. Phan, H.T.T. Exploring Wave Function Collapse as a Design Tool. Ph.D. Theis, University of Cincinnati, Cincinnati, OH, USA,

2021.
34. Van, A.; Levi; Rafael, B. Declarative procedural generation of architecture with semantic architectural profiles. In Proceedings of

the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020.
35. Fan, R.M.; Zhao, C.Y.; Li, F.L. Heuristic backtracking algorithm to solve constraint satisfaction problems. Appl. Res. Comput. 2021,

38, 1438–1442.
36. Russell, S.J. Artificial Intelligence a Modern Approach, 3rd ed.; Pearson Education, Inc.: Hoboken, NJ, USA, 2010; pp. 202–227.
37. Monoceros. Available online: https://monoceros.sub.digital/ (accessed on 28 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.townscapergame.com
https://doi.org/10.51347/jum.v26i1.4705
https://github.com/mewo2/oisin/
https://marian42.itch.io/wfc/
https://monoceros.sub.digital/

	Introduction
	Related Work
	Framework of Generation and Optimization Process
	Analysis of the Configuration Process for Underground Parking Layout
	Design Process for Underground Parking Layout Configuration
	Transformation: From Layout Configuration to Constraint Satisfaction Problem

	Modules and Rules
	Modules
	Rules

	Construction of Generation and Optimization Model
	Generation Model
	Optimization Model

	Experiments and Analysis
	Evaluation of the Generation Model
	Evaluation of the Optimization Model
	Evaluation of the Generation and Optimization Model

	Discussion
	Conclusions and Future Work
	References

